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Abstract 

Vast quantities of biomedical data exist, not only in well-structured databases, but 
in texts as well. Two of these that have driven considerable text mining research in 
biomedicine are PubMed, which serves mostly the 18-million record MEDLINE 
resource of abstracts and other bibliographic information, and PubMedCentral which 
is increasingly influential due to the US’s recent policy requiring online availability of 
papers on research funded by its NIH funding agency. Textual information, regardless 
of language or national origin, presents a fundamental problem: it is in a form friendly 
to humans but not to computers, yet it is desirable to automatically extract and use 
knowledge in it nevertheless. 
 We describe several empirically determined facts about biomedical text passages 
and how they can support extracting protein interactions from biomedical texts. A 
system, PathBinder, built using text empirics is also presented. 
 
Introduction 

Full automated natural language understanding (NLU) remains a long-term dream. 
Until this dream is achieved at some undetermined time in the future, extracting 
knowledge automatically from texts must rely on shallower methods. Development of 
shallow methods is thus critical for the foreseeable future. Even should a 
comprehensive NLU vision ultimately be achieved, shallow methods can still make an 
important contribution: they comprise a source of evidence about meaning that can is 
computationally simpler to process and thus intrinsically faster than NLU. This means 
that in principle, integrating results from shallow methods run concurrently with NLU 
could be used to speed up NLU in real time, for example by trimming parse search 
spaces. The principle has been successfully applied (e.g. Frank et al. 2003). 
Consequently shallow methods may be expected to both be essential now, and to 
continue to be relevant indefinitely. 

One shallow approach that has generated an extensive body of literature is 
statistical, corpus-based analyses. For example, machine learning can determine facts 
about language from tagged examples and use those facts implicitly to reach 
conclusions about text meaning. An alternative way to determine such facts is to 
investigate text empirics.  The text empirics approach is to manually analyze texts to 
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empirically determine easily computed, useful properties, and use those properties to 
automatically extract knowledge from the texts. One advantage of text empirics is that 
the empirically determined properties can stand on their own as explicit facts about 
texts. Once in the public domain, such facts can be used by anyone to develop 
systems that extract knowledge from texts. 

The best-known of the classical work on statistical properties of words and their 
frequencies is that of George Zipf (1935, 1945), the source of what is now called 
Zipf’s Law (Fedorowicz 1982; Li 2003). We developed Figure 1 to test whether 
protein occurrences in MEDLINE are typical in conforming to Zipf’s empirically 
derived exponential law.  
A number of reports 
involve mining of 
protein-protein interactions 
from text (Blaschke et al. 
1999, Donaldson et al.  

2003, Humphreys et al. 
2000, Marcotte et al. 2001, 
Ng and Wong 1999, Ono et 
al. 2001, Park et al. 2001, 
Thomas et al. 2000, Wong 
2001). Available empirical 
information on text 
attributes as evidence that 
a passage describes a 
protein-protein interaction 
is not extensive. However a 
number of works with 
related foci describe some findings. Craven and Kumlien (1999) give a list 20 word 
stems and the ability of each to predict that a sentence describes the subcellular 
location of a protein, given that it contains the stem, a protein name, and a subcellular 
location term. However list content and order are noisy due to limited training data. 
Marcotte et al. (2001) provide a ranked list of the 20 words found most useful in 
identifying abstracts describing protein interactions. Results were derived from 
yeast-related abstracts and therefore may be yeast-specific, and the list includes words 
like from and required with little comment. Ono et al. (2001) assessed the abilities of 
four common interaction-indicating terms, each associated with a custom set of 
templates, to detect descriptions of protein-protein interactions. The quantitative 
performances of the four are hard to interpret because each used a different template 
set, but it is interesting that when ordered by precision their order was the same for 
both the yeast and E. coli domains, suggesting domain independence for precision. 
Thomas et al. (2000) proposed four categories of passages using a rule-based scoring 
strategy, and gave the IR performance of each category. However the set of rules is 
vaguely described and apparently complex, making it unclear how the results might 
be applied by others.  

Figure 1. Analysis of MEDLINE showing the 
approximately exponential drop off (linear on a log-log plot 
in biomolecule names vs. sentences containing them. Every 
x-axis value appears at most once, but plotting may seem 
to make points overlap and re-occur for different y values. 
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Other reports have focused on text properties with the potential for more concrete 
guidance in system design. Sekimizu et al. (1998) measured the IR performances of 8 
interaction-indicating verbs in the context of a shallow parser. The IR capabilities of 
the verbs could be meaningfully compared, although the extent to which these results 
would apply to other passage analysis techniques or specifically to protein-protein 
interactions is not clear. Ding et al. (2002) found that, as vehicles for describing 
protein-protein interactions, sentences had slightly higher IR effectiveness than 
phrases despite lower precision, and considerably higher IR effectiveness than whole 
abstracts.  
 

Methods 

We used a body of 303 MEDLINE abstracts chosen because they matched one of 
ten representative queries to PubMed. Each query consisted of two protein names, and 
was elicited from biologists to be typical of the kinds of queries biologists are likely 
to make. Some further details about the corpus appear in Ding et al. (2002). Each 
sentence in the corpus mentioning both terms or their synonyms in the query that 
retrieved its containing abstract was analyzed to determine empirical facts likely to be 
useful for extracting protein interactions automatically.  

 We investigated several properties of passages (sentences and phrases) containing 
co-occurrences of biomolecule names. These analyses are given next. 
 
Interaction-indicating terms. One basic characteristic is whether the passage contains 
an interaction-indicating term (e.g. ‘regulates,’ ‘inhibits,’ etc.) along with the 
biomolecules. We found that for the 
great majority of co-occurrences at 
least one interaction-indicating term 
was also present in the phrase 
(Figure 2) or sentence containing the 
co-occurrence. The ones that were 
not had low precisions: 0% of the 
co-occurrences were described as 
interacting for co-occurrences in 
phrases, and 8% for co-occurrences in 
sentences (but not a single phrase in 
the sentence). This was significant (p<.001, χ

2 test, for both phrase and sentence 
co-occurrences). Thus, we conclude that as a source of interactions to be mined, 
co-occurrences not associated with interaction-indicating terms have comparatively 
little to offer.   

Order of terms. A co-occurrence associated with an interaction-indicating term may 
have this term intervening between the co-occurring biomolecules, or in some other 
part of the phrase or sentence. Table 1 shows that when the interaction-indicating term  
intervenes, the recall is relatively high. This means that a system design would be well 
advised to handle such passages. On the other hand, when the interactor does not 
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intervene, the recall is much lower, indicating less benefit in analyzing those passages. 
The precision of these passages is also relatively low, so their overall effectiveness is 
also low. Consequently, while it would make little sense for a system design to ignore 
passages with co-occurrences and an intervening interaction-indicating term, ignoring 
passages with non-intervening interaction-indicating terms is a reasonable option.  

 Interaction-indicating 

term intervenes 

Interaction-indicating 

term elsewhere 

Interaction-indicating 

term anywhere 

Phrase 

co-occurrences 

196 out of 270 

r=0.55   p=0.73 

63 out of 231 

r=0.18    p=0.27 

259 out of 501 

r=0.73   p=0.52 

Sentence 

co-occurrences 

77 out of 210 

r=0.22   p=0.37 

21 out of 219 

r=0.059  p=0.096 

98 out of 429 

r=0.27   p=0.23 

All 

co-occurrences 

273 out of 480 

r=0.76   p=0.57 

84 out of 450 

r=0.24    p=0.19 

357 out of 930 

r=1     p=0.38 

Table 1. Analysis of co-occurrences with respect to recall (r) and precision (p). 

Separation of co-occurring terms. Co-occurring terms can be separated by any 
number of intervening words, from zero up. The separation can be zero when the terms 
are next to each other or when intervening material is hyphen-connected to a term. For 
example, “…A-induced B…” is considered to have zero full words between A and B. 
Different separations are associated with different recalls and precisions. These recalls 
and precisions can impact system design in different ways.  

Recall. Figure 3 shows percentages of co-occurrences (vertical axis) that have x 
words or fewer between the co-occurring terms, for each of four disjoint categories. 
The two curves for phrase co-occurrences level off sooner than the two for sentence 
co-occurrences, probably because phrases tend to be shorter than sentences. 

 

Figure 3. Cumulative interactions for four disjoint categories of co-occurrences. 

 

Precision. We found that different separations are associated with different 
precisions. Thus text mining systems could use the number of intervening words to help 
estimate the likelihood that an interaction is described. Figure 4 shows the precisions 
for different separations for each of the four co-occurrence categories of Figure 3. The 
number of data for any given separation was often small. Therefore statistical analysis 
was employed to see the underlying tendency while characterizing the noise. We used 
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the logistic regression model to describe precision p as a function of separation x. 
Maximum likelihood methods (Agresti 1990 pp. 112-117) were used to obtain 
estimates and error bars representing plus and minus one standard error.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Precision data for four categories of co-occurrences and various separations. 

 
Interation-indicating term category. We empirically investigated the ability of five 
different syntactic categories of interaction-indicating terms to predict that a passage 
containing such a term along with a biomolecule name co-occurrence describes an 
interaction. These categories were adjective, simple form verb, verb ending in –ing, 
past or perfect tense verb, and noun. Likelihoods for each were determined for the 
case of phrase co-occurrences (the biomolecules and the interaction-indicating term 
all in one phrase) and sentence co-occurrences (all in the same sentence but not in the 
same phrase). Detailed figures will be given later in Tables 2 and 3 when they are 
used. 
 
Using text empirics to assess phrases and sentences. We expanded the analysis 
above, quantifying as needed to get, for a given phrase or sentence containing two 
given biomolecules, the probability that it describes an interaction between the 
biomolecules based on its characteristics. This was a two stage process.  

• First, we identified specific characteristics and, for each, the conditional 
probability that an interaction is described based on just that characteristic: 
p(interaction | fi) for text feature i. For example, fi might be some number of 
words intervening between the two biomolecules, 0 if the biomolecule names 
were next to each other, 1 if there was one word between the biomolecule 
names, and so on. 

• Second, we combined the evidence provided by the various characteristics 
whose conditional probabilities were separately determined. The combination 
method assumed the different sources of evidence were independent. In the 
text mining domain this assumption is commonly made. While universally 
acknowledged to only approximate the true situation, it has been found 



 6

frequently useful in practice. This was verified in the present work, as 
discussed later. 

 
The Semi-Naïve Evidence Combination Model (see Appendix for a more complete 
discussion if desired) is the basis of our algorithm for evaluating the probability that a 
sentence describes an interaction between two given biomolecules. The formula in the 
Semi-Naïve evidence combination model is o(interaction | f1,...,fn) = o1o2...on/op

n-1 , 
where o(interaction | f1,...,fn) describes the odds that a passage describes an interaction 
if it has features f1 through fn, ok are the odds that a passage with feature k describes an 
interaction, and the prior odds (i.e. over all cases irrespective of their features) are op. 
The use of odds here instead of probabilities makes the formula simpler in appearance, 
but is otherwise unimportant because odds and probabilities are easily converted: 
p=o/(o+1), and o=p(1-p). The appendix explains Semi-Naïve Evidence Combination. 

In detail, given a sentence containing a co-occurrence of two biomolecules, here is 
how the probability that it describes an interaction between them is estimated. 
(Special cases are explained following.) 

1) Determine the odds that an interaction is described using Semi-Naïve 
Evidence Combination on evidence based on the locations of given 
biomolecule pair in the sentence. Independently, determine the odds based on 
the presence and morphological form of an interaction-indicating term using 
Semi-Naïve Evidence Combination.  

2) Convert the two odds o to probabilities p according to p=o/(1+o).  
3) Combine the probabilities according to the standard formula 

p (interaction)=1 - (1- p1)(1-p2). 
Special cases. If a sentence contains multiple co-occurrences (example: biomolecule 
A occurs once and B occurs twice, so there are two AB co-occurrences), calculate the 
probability for each and use the highest. We do not combine the probabilities, because 
we have observed that multiple co-occurrences do not necessarily improve the 
probability that a sentence describes an interaction, as the co-occurrences do not 
provide independent evidence that an interaction is described. 
 Analogous to the possibility of multiple co-occurrences, multiple 
interaction-indicating words may be present. For the same reasons as for multiple 
co-occurrences, multiple interaction-indicating terms are handled by calculating the 
evidence provided by each, using the one that is best, and discarding the rest.  
 
Using Semi-Naïve Evidence Combination.  

1) As noted, we treated evidence related to co-occurring term location in a 
sentence separately from evidence related to interaction-indicating terms. 
Other system builders may wish to treat them together as it is not a 
requirement that it be done one way or the other.  

2) Odds from co-occurring term location.  
a) If the co-occurrence is within a phrase: 

i. If no interaction-indication term is in the phrase, estimate 
p=0.1. 
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ii.  If an interaction-indicating term is in the phrase: 
1. If there is 1 co-occurrence in the phrase, estimate 

o2aii1=0.7/0.3=2.33. 
2. If there is >1 co-occurrences in the phrase, estimate 

o2aii2=0.86/0.14=6.1. 
3. If there is not an interaction-indicating term between the 

co-occurring terms, estimate o2aii3=0.24/0.76=0.316, 
except if separation=0. In that case, o2aii3=1/9 (as an 
estimate of 0+ε, for small but unknown ε). 

4. If there is an interaction-indicating term between the 
co-occurring terms, and separation>0, estimate 
o2aii4=(-0.03k+0.9)/(1-(-0.03k+0.9) 
=(-0.03k+0.9)/(0.1+0.03k)), where k is the number of 
words between the co-occurring terms. However, if this 
is below 0, set o2aii4=0. If separation=0 then o2aii4=17.  

5. Let prior odds ophrase=0.68. 
6. Compute the product of all the o2aii_ that apply. 
7. Divide by ophrase

n-1 where n is the number of o2aii_ that 
apply. 

b) If the co-occurrence is within a sentence but not on one phrase: 
1. If the sentence has 1 co-occurrence, estimate 

o2b1=0.4/0.6=0.67. 
2. If the sentence has >1 co-occurrences, estimate 

o2b2=0.32/0.68=0.47. 
3. If there is an interaction-indicating term between the 

co-occurring terms, and separation>0, estimate 
o2b3=(-0.01k+0.6)/(1+0.01k-0.6) 
=(-0.01k+0.6)/(0.4+0.01k) where k is the number of 
words between the co-occurring terms. However, if this 
is below 0, set o2b3=0). If separation=0, then o2b3=1/9 
(this is an estimate of 0+ε for small but unknown ε). 

4. If there is not an interaction-indicating term between the 
co-occurring terms, and separation>0, estimate 
o2b4=(-0.0033k+0.2)/(0.8+0.0033k) 
=(-0.0033k+0.2)/(0.8+0.0033k) where k is the number 
of words between the co-occurring terms. However, if 
this is below 0, set o2b4=0). If separation=0, then 
o2b4=4/7. 

5. Let prior odds osentence=0.33. 
6. Compute the product of all the o2b_ that apply. 

7. Divide by osentence
n-1 where n is the number of o2b_ that 

apply. 
3) To calculate the odds o(co-occurrence i is part of an interaction description) 

from interaction-indicating term evidence, do the following. 
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a.   If the co-occurrence is within a phrase: 
i. If no interaction-indicating term is in the phrase, return no value. 
ii.  If there are interaction-indicating term(s) in the phrase, find odds 

o3aii based on Table 2 for each one, and return the highest. 
b. If the co-occurrence is within a sentence (but not the same phrase): 

i.  If no interaction-indicating term is in the sentence, return no 
value.  

ii.  If there are interaction-indicating term(s) in the sentence, for 
each term, find its odds O3bii based on Table 3. Then return the 
highest one found. 

  
 

 

 

 

 

 

 

4) Odds normalization. Our corpus was made of sentences containing pairs of 
biomolecules known to interact, whether or not a given sentence describes 
them as interacting. Thus the odds obtained from analysis of these sentences 
and there values used in steps 2) and 3) above deviate from actual odds that 
should be used by systems that automatically assess sentences containing 
arbitrary co-occurring biomolecules. The reason is that arbitrary co-occurring 
biomolecules might not interact, in which case the passage containing them is 
unlikely to say they do regardless of its characteristics.  

To better understand this, we created another corpus made of 300 
sentences containing at least two biomolecules other from those in the corpus 
analyzed earlier. The default odds for these sentences of describing an 
interaction were obackground = 0.723, equivalent to probability pbackground = 0.419. 

Theory indicates (and preliminary testing confirmed) that results are 
better if the odds given in steps 2) and 3) above are normalized. Based on 
normalizing their corresponding probabilities by  

pnormalized=punnormalized x pbackground, and because  
onormalized= pnormalized /(1- pnormalized), 

algebra gives the corresponding formula for normalizing an odds om as 
onormalized= onormalized x obackground / (1+ onormalized + obackground). 

 
Results 
 
This interaction network has been applied in our software system, PathBinder, which 
serves as a query gateway to users. If users provide a biomolecule, PathBinder can 

Form Odds 

noun 1.469 

adj 0.818 

simple 1.923 

-ing 1.029 

past/perfect 1.203 

Form Odds 

noun 1.902 

adj 0.75 

simple 2.818 

-ing 1.231 

past/perfect 1.867 

Table 2.  Interaction-indicating 

term form odds for phrases. 

Table 3.  Interaction-indicating term 

form odds in sentence. 
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find other biomolecules likely to interact with it. Users can also choose a biomolecule 
pair as a query, as illustrated in Figure 5. Much of the database was populated by 
processing MEDLINE. Once PathBinder gets a query, it searches the database for 
sentences satisfying the query and displays them to users in a new window (Figure 6). 
It can rank the result sentences by their assessed probability of describing an 
interaction, or by PubMed’s PMID number. Users can click the PMID and the 
browser will go directly to PubMed to display the relevant record. 
 

 
Figure 5. PathBinder Main Interface 

 
Training set analysis. We tested the approach by taking sentences that were assessed 
a probability of close to 0.5 and manually tagging them as in fact describing an 
interaction or not. (If half of them described an interaction and half did not, then the 
assessed probability of 0.5 would be accurate.) We did this for sets of sentences from 
the training set assessed at other probabilities also, covering probabilities 0, 0.1, 
0.2,…0.7 (see Figure 7). There were no sentences assessed at 0.8 or above. A linear 
regression analysis produced the top curve in Figure 7. It clearly diverges, though 
only modestly, from the theoretical ideal of y = x, also shown in Figure 7 for 
comparison. This reflects sources of error in the Semi-Naïve Evidence Combination 
approach to assessing the probabilities, such as the independence assumption it uses 
when combining evidence. We then shifted the modestly divergent curve arithmetically 
with a basic algebraic transformation, by incorporating adjustment factors for slope and 
y-axis intercept to move it (and therefore every point on it) so that it exactly matched 
the ideal y = x curve. This shifting process adjusts the probability assessment for any 
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given sentence, which now is derived from Semi-Naïve Evidence Combination 
followed by application of the adjustment factors. 
 
 

 
Figure 6. PathBinder Search Results Window. 

 
 
Test set analysis. 600 new sentences were obtained. 123 of them contained the same 
biomolecule name co-occurrences as were in the training set, while the other 477 only 
contained other biomolecule co-occurrences. The assessed probabilities, adjusted as in 
the previous paragraph, were chosen pseudorandomly to be distributed over the range 
of interest (0 to 0.7). Then these sentences were manually analyzed to see if they really 
did describe the interaction or not, the regression line for this data obtained, and plotted 
in Figure 7. Note that the regression curve almost exactly matches y = x, indicating 
successful application of the method to the newly obtained test set. 
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Figure 7. The comparison among (i) y = x, (ii) the unadjusted regression line (not from the test 

set), and (iii) the regression line for the test set after it was adjusted based on the discrepancy 

between (i) and (ii). 
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Appendix: Semi-Naïve Evidence Combination 
 
[A detailed discussion of this model was submitted as a supplementary document.] 
 


