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Abstract

Vast quantities of biomedical data exist, not dnlyell-structured databases, but
in texts as well. Two of these that have drivenstderable text mining research in
biomedicine are PubMed, which serves mostly themilBen record MEDLINE
resource of abstracts and other bibliographic médron, and PubMedCentral which
is increasingly influential due to the US’s recpoticy requiring online availability of
papers on research funded by its NIH funding agefexytual information, regardless
of language or national origin, presents a funddedgmoblem: it is in a form friendly
to humans but not to computers, yet it is desirablautomatically extract and use
knowledge in it nevertheless.

We describe several empirically determined fabsué biomedical text passages
and how they can support extracting protein intevas from biomedical texts. A
system, PathBinder, built using text empirics sgresented.

Introduction

Full automated natural language understanding (Nfedjains a long-term dream.
Until this dream is achieved at some undeterminexe tin the future, extracting
knowledge automatically from texts must rely onlisivger methods. Development of
shallow methods is thus critical for the foreseealfiture. Even should a
comprehensive NLU vision ultimately be achievedlslw methods can still make an
important contribution: they comprise a sourcewaflence about meaning that can is
computationally simpler to process and thus intcelly faster than NLU. This means
that in principle, integrating results from shallavethods run concurrently with NLU
could be used to speed up NLU in real time, fomgpa by trimming parse search
spaces. The principle has been successfully apdeed. Frank et al. 2003).
Consequently shallow methods may be expected tb betessential now, and to
continue to be relevant indefinitely.

One shallow approach that has generated an ex¢emgdy of literature is
statistical, corpus-based analyses. For examplehima learning can determine facts
about language from tagged examples and use thaxds fmplicitly to reach
conclusions about text meaning. An alternative waydetermine such facts is to
investigatetext empirics. The text empirics approach isrt@anually analyze texts to



empirically determine easily computed, useful properties, and use those properties to
automatically extract knowledge from the texts. @Qdeantage of text empirics is that
the empirically determined properties can standhamr own as explicit facts about
texts. Once in the public domain, such facts canubed by anyone to develop
systems that extract knowledge from texts.

The best-known of the classical work on statistm@alperties of words and their
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frequencies is that of George Zipf (1935, 1945¢ #lource of what is now called
Zipf's Law (Fedorowicz 1982; Li 2003). We develop&thure 1 to test whether
protein occurrences in MEDLINE are typical in camfiing to Zipf’'s empirically
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2001). Available empirical
information on text
attributes as evidence tha Figure 1. Analysis of MEDLINE showing the
protein-protein interaction in biomolecule names vs. sentences containing theEvery
is not extensive. However : x-axis value appears at most once, but plotting mageem

' . to make points overlap and re-occur for differenty values.

number of works with
related foci describe some findings. Craven and kam(1999) give a list 20 word
location of a protein, given that it contains tlens, a protein name, and a subcellular
location term. However list content and order avesy due to limited training data.
Marcotte et al. (2001) provide a ranked list of @& words found most useful in
identifying abstracts describing protein interactio Results were derived from
like from andrequired with little comment. Ono et al. (2001) assessedahilities of
four common interaction-indicating terms, each asdged with a custom set of
templates, to detect descriptions of protein-proteiteractions. The quantitative
performances of the four are hard to interpret beeaach used a different template
both the yeast anB. coli domains, suggesting domain independence for poecis
Thomas et al. (2000) proposed four categories s$g@es using a rule-based scoring
strategy, and gave the IR performance of each cateblowever the set of rules is
vaguely described and apparently complex, makinqndlear how the results might

derived exponential law.

1999, Donaldson et al.

Thomas et al. 2000, Wong !

a passage describes  approximately exponential drop off (linear on a loglog plot
stems and the ability of each to predict that atesm® describes the subcellular
yeast-related abstracts and therefore may be gpastfic, and the list includes words
set, but it is interesting that when ordered bycigien their order was the same for
be applied by others.



Other reports have focused on text properties thighpotential for more concrete
guidance in system design. Sekimizu et al. (1998sured the IR performances of 8
interaction-indicating verbs in the context of alghw parser. The IR capabilities of
the verbs could be meaningfully compared, althaighextent to which these results
would apply to other passage analysis techniquespecifically to protein-protein
interactions is not clear. Ding et al. (2002) fouthét, as vehicles for describing
protein-protein interactions, sentences had skglmiigher IR effectiveness than
phrases despite lower precision, and considerabgleh IR effectiveness than whole
abstracts.

Methods

We used a body of 303 MEDLINE abstracts chosenusecthey matched one of
ten representative queries to PubMed. Each quersisted of two protein names, and
was elicited from biologists to be typical of thimdis of queries biologists are likely
to make. Some further details about the corpus appeDing et al. (2002). Each
sentence in the corpus mentioning both terms ar gymonyms in the query that
retrieved its containing abstract was analyzedeterthine empirical facts likely to be
useful for extracting protein interactions autoroaitiy.

We investigated several properties of passagesefsees and phrases) containing
co-occurrences of biomolecule names. These anadysagiven next.

Interaction-indicating terms. One basic characteristic is whether the passageios
an interaction-indicating term (e.g. ‘regulatesmhibits,’” etc.) along with the
biomolecules. We found that for th
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co-occurrence. The ones that wer
not had low precisions: 0% of the Figure 2. Percentages of the 285 phrases
co-occurrences were described as  containing containing 1 co-occurrence and 0,
interacting for co-occurrences in 1, 2,... interaction-indicating terms. 199
phrases, and 8% for co-occurrences described interactions.

sentences (but not a single phrase in

the sentence). This was significant (p<.0fttest, for both phrase and sentence
co-occurrences). Thus, we conclude that as a sofiingeractions to be mined,
co-occurrences not associated with interactioneetthg terms have comparatively
little to offer.

Order of terms. A co-occurrence associated with an interactioneatiing term may
have this term intervening between the co-occutpingnolecules, or in some other
part of the phrase or sentence. Table 1 showsuiexn the interaction-indicating term
intervenes, the recall is relatively high. This methat a system design would be well
advised to handle such passages. On the other Wwhaed,the interactor does not



intervene, the recall is much lower, indicatingslegnefit in analyzing those passages.
The precision of these passages is also relativelyso their overall effectiveness is
also low. Consequently, while it would make littlense for a system design to ignore
passages with co-occurrences and an interveniagagtion-indicating term, ignoring
passages with non-intervening interaction-indigaterms is a reasonable option.

Interaction-indicating
term intervenes

Interaction-indicating
term elsewhere

Interaction-indicating
term anywhere

Phrase 196 out of 270 63 out of 231 259 out of 501
co-occurrences r=0.55 p=0.73 r=0.18 p=0.27 r=0.73 p=0.52
Sentence 77 out of 210 21 out of 219 98 out of 429
co-occurrences r=0.22 p=0.37 r=0.059 p=0.096 r=0.27 p=0.23
All 273 out of 480 84 out of 450 357 out of 930
co-occurrences r=0.76 p=0.57 r=0.24 p=0.19 r=1 p=0.38

Table 1. Analysis of co-occurrences with respect tecall (r) and precision ).

Separation of co-occurring terms.Co-occurring terms can be separated by any
number of intervening words, from zero up. The s&@n can be zero when the terms
are next to each other or when intervening matesiayphen-connected to a term. For
example, “...A-induced B...” is considered to have ziebwords between A and B.
Different separations are associated with differenalls and precisions. These recalls
and precisions can impact system design in difterays.

Recall. Figure 3 shows percentages of co-occurrences ¢akdxis) that have
words or fewer between the co-occurring termsetmh of four disjoint categories.
The two curves for phrase co-occurrences levesadher than the two for sentence
co-occurrences, probably because phrases tendstoooier than sentences.
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Figure 3. Cumulative interactionsfor four disjoint categories of co-occurrences.

Precision.We found that different separations are associatdddifferent
precisions. Thus text mining systems could usatimeber of intervening words to help
estimate the likelihood that an interaction is dié®d. Figure 4 shows the precisions
for different separations for each of the four cmtarence categories of Figure 3. The
number of data for any given separation was oftealls Therefore statistical analysis
was employed to see the underlying tendency whideacterizing the noise. We used



the logistic regression model to describe precigpias a function of separation
Maximum likelihood methods (Agresti 1990 pp. 11271 tvere used to obtain
estimates and error bars representing plus andsnone standard error.
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Figure 4. Precision data for four categories of ceccurrences and various separations.

Interation-indicating term category. We empirically investigated the ability of five
different syntactic categories of interaction-irating terms to predict that a passage
containing such a term along with a biomolecule @ara-occurrence describes an
interaction. These categories were adjective, gnm@im verb, verb ending in —ing,
past or perfect tense verb, and noun. Likelihoaisefich were determined for the
case of phrase co-occurrences (the biomoleculeghenihteraction-indicating term
all in one phrase) and sentence co-occurrences (@lé same sentence but not in the
same phrase). Detailed figures will be given latefables 2 and 3 when they are
used.

Using text empirics to assess phrases and sentencéf® expanded the analysis
above, guantifying as needed to get, for a giveragsh or sentence containing two
given biomolecules, the probability that it desesban interaction between the
biomolecules based on its characteristics. ThisaM&g stage process.

» First, we identifiedspecific characteristics and, for each, the conditional
probability that an interaction is described basedjust that characteristic:
p(interaction [f;) for text featurd. For examplef; might be some number of
words intervening between the two biomoleculed, the biomolecule names
were next to each other, 1 if there was one worgvden the biomolecule
names, and so on.

* Second, we combined the evidence provided by thi®us characteristics
whose conditional probabilities were separatelyeeined. The combination
method assumed the different sources of evidence weependent. In the
text mining domain this assumption is commonly madéile universally
acknowledged to only approximate the true situatidtnhas been found



frequently useful in practice. This was verified the present work, as
discussed later.

The Semi-Naive Evidence Combination Model (see Adpefor a more complete
discussion if desired) is the basis of our algomnifior evaluating the probability that a
sentence describes an interaction between two d¢ivenolecules. The formula in the
Semi-Naive evidence combination modelo{gteraction | fy,...fn) = 0102...on/op”'1,
whereo(interaction | fy,...f) describes the odds that a passage describeseasacihion

if it has feature$, throughf,, ok are the odds that a passage with fedtutescribes an
interaction, and therior odds (i.e. over all cases irrespective of their featliiareo,.
The use of odds here instead of probabilities mé#ke$ormula simpler in appearance,
but is otherwise unimportant because odds and piidies are easily converted:
p=0/(o+1), ando=p(1-p). The appendix explains Semi-Naive Evidence Coatlon.

In detail, given a sentence containing a co-ocaaeef two biomolecules, here is
how the probability that it describes an interactibetween them is estimated.
(Special cases are explained following.)

1) Determine the odds that an interaction is describsthg Semi-Naive
Evidence Combination on evidence based on the itomatof given
biomolecule pair in the sentence. Independentligerdene the odds based on
the presence and morphological form of an intepaeindicating term using
Semi-Naive Evidence Combination.

2) Convert the two odds to probabilitiesp according tq=0/(1+0).

3) Combine the probabilities according to the standi@nchula
p (interaction)=1 - (1p1)(1-p2).

Special cases. If a sentence contains multiple co-occurrencaar{gle: biomolecule
A occurs once and B occurs twice, so there areA®@o-occurrences), calculate the
probability for each and use the highest. We docoatbine the probabilities, because
we have observed that multiple co-occurrences db nezessarily improve the
probability that a sentence describes an intemact&s the co-occurrences do not
provide independent evidence that an interactiaescribed.

Analogous to the possibility of multiple co-ocamces, multiple
interaction-indicating words may be present. F@& fame reasons as for multiple
co-occurrences, multiple interaction-indicatingmerare handled by calculating the
evidence provided by each, using the one thatsg bad discarding the rest.

Using Semi-Naive Evidence Combination.

1) As noted, we treated evidence related to co-ocuyrterm location in a
sentence separately from evidence related to otteraindicating terms.
Other system builders may wish to treat them tageths it is not a
requirement that it be done one way or the other.

2) QOdds from co-occurring termlocation.

a) If the co-occurrence is within a phrase:
i. If no interaction-indication term is in the phrasstimate
p=0.1.



ii. If an interaction-indicating term is in the phrase:

1.

o

If there is 1 co-occurrence in the phrase, estimate
02aii1:O-7/O-3:2-33-

If there is >1 co-occurrences in the phrase, eséima
02,ii2=0.86/0.14=6.1.

If there is not an interaction-indicating term beém the
Co-occurring terms, estimate,;iz=0.24/0.76=0.316,
except if separation=0. In that casg,iz=1/9 (as an
estimate of Og, for small but unknows).

If there is an interaction-indicating term betwelea
co-occurring terms, and separation>0, estimate
024ii4=(-0.0K+0.9)/(1-(-0.0&+0.9)
=(-0.0%+0.9)/(0.1+0.08)), wherek is the number of
words between the co-occurring terms. Howevehi# t
is below 0, seb,,is;=0. If separation=0 thedp,;i;=17.
Let prior odd0pnrase=0.68.

Compute the product of all tlme,; that apply.

Divide byophr;,\se”'l wheren is the number ob,,;i that

apply.

b) If the co-occurrence is within a sentence but mobie phrase:

1.

5.
6.

If the sentence has 1 co-occurrence, estimate
02b1:O.4/0.6:O.67.
If the sentence has >1 co-occurrences, estimate
02,=0.32/0.68=0.47.
If there is an interaction-indicating term betwelea
co-occurring terms, and separation>0, estimate
02p=(-0.01k+0.6)/(1+0.0%k-0.6)
=(-0.0%k+0.6)/(0.4+0.0k) wherek is the number of
words between the co-occurring terms. Howevehi# t
is below 0, seb,,z=0). If separation=0, themp,z=1/9
(this is an estimate of @#or small but unknowss).
If there is not an interaction-indicating term beém the
co-occurring terms, and separation>0, estimate
02p4=(-0.003%+0.2)/(0.8+0.00319
=(-0.003%+0.2)/(0.8+0.0038 wherek is the number
of words between the co-occurring terms. HowevYer, i
this is below 0, set,,,=0). If separation=0, then
Oop=4/7.
Let prior odd0gentence=0.33.
Compute the product of all tlwg, that apply.

7. Divide byosemencen'l wheren is the number ob,, that

apply.

3) To calculate the oddsco-occurrenceis part of an interaction description)
from interaction-indicating term evidence, do tbhédwing.



a. If the co-occurrence is within a phrase:
i.  If no interaction-indicating term is in the phraseturn no value.
i. If there are interaction-indicating term(s) in fferase, find odds
03,i based on Table 2 for each one, and return theekigh
b. If the co-occurrence is within a sentence (butthetsame phrase):
i. If no interaction-indicating term is in the sergenreturn no
value.
il. If there are interaction-indicating term(s) in gentence, for
each term, find its oddS3p; based on Table 3. Then return the
highest one found.

Form Odds Form Odds
noun 1.902 noun 1.469
adj 0.75 adj 0.818
simple 2.818 simple | 1.923
-ing 1.231 -ing 1.029
past/perfect 1.867 past/perfect 1.203

Table 2. Interaction-indicating Table 3. Interaction-indicating term

term form odds for phrases form odds in sentenc.

4) Odds normalization. Our corpus was made of sentences containing péirs
biomolecules known to interact, whether or not @egi sentence describes
them as interacting. Thus the odds obtained froalyars of these sentences
and there values used in steps 2) and 3) abovatdeivom actual odds that
should be used by systems that automatically assestences containing
arbitrary co-occurring biomolecules. The reasoth& arbitrary co-occurring
biomolecules might not interact, in which case pagsage containing them is
unlikely to say they do regardless of its charasties.
To better understand this, we created another sorpade of 300
sentences containing at least two biomoleculesr dtbm those in the corpus
analyzed earlier. The default odds for these seeterof describing an
interaction wer®pacground = 0.723, equivalent to probabilipgackground = 0.419.
Theory indicates (and preliminary testing confirmékdat results are
better if the odds given in steps 2) and 3) abaeenmrmalized. Based on
normalizing their corresponding probabilities by
Prormalized=Punnormalized X Poackground, and because
Onormalized= Prormalized /(1= Pnormalized),

algebra gives the corresponding formula for noranadj an odd®y, as
Onormalized= Onormalized X Obackground / (1+ Onormalized + Obackground)-

Results

This interaction network has been applied in oditvwsre system, PathBinder, which
serves as a query gateway to users. If users mavidiomolecule, PathBinder can



find other biomolecules likely to interact with Wsers can also choose a biomolecule
pair as a query, as illustrated in Figure 5. Mu€hithe database was populated by
processing MEDLINE. Once PathBinder gets a quedrgearches the database for
sentences satisfying the query and displays themsdos in a new window (Figure 6).
It can rank the result sentences by their assepsedability of describing an
interaction, or by PubMed’'s PMID number. Users aick the PMID and the
browser will go directly to PubMed to display tleavant record.
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Figure 5. PathBinder Main Interface

Training set analysis.We tested the approach by taking sentences that agsessed
a probability of close to 0.5 and manually taggthgm as in fact describing an
interaction or not. (If half of them described ateraction and half did not, then the
assessed probability of 0.5 would be accurate.d\Wehis for sets of sentences from
the training set assessed at other probabilities, atovering probabilities 0, 0.1,
0.2,...0.7 (see Figure 7). There were no sentencseEssed at 0.8 or above. A linear
regression analysis produced the top curve in Eigurlt clearly diverges, though
only modestly, from the theoretical ideal gf= x, also shown in Figure 7 for
comparison. This reflects sources of error in tekenSNaive Evidence Combination
approach to assessing the probabilities, sucheagsttependence assumption it uses
when combining evidence. We then shifted the mdyldstergent curve arithmetically
with a basic algebraic transformation, by incorpiogadjustment factors for slope and
y-axis intercept to move it (and therefore everynpon it) so that it exactly matched
the idealy = x curve. This shifting process adjusts the probgbdssessment for any



given sentence, which now is derived from Semi-Hakvidence Combination

followed by application of the adjustment factors.

(3 the potential rernaing for a while after detachiment of the myosin head and statistically

the direction of thermal motion of the myosin head, so that the myosin head translates toward the
Z-line as a statistical average. (0.733)

[31568135])In relaxed fibers, comparison of the amount of exchange with the ATPasze activity

suggests that the rate constant for the reformation of myosin- ATP from the myosin
igabout 10 s-1 at 20 degrees Cand pH 7.1, (0730

[1264497 4 rapid equilibration between myosin- ATP and a myosin- Caf

account for the extra water oxygen of the phosphate, (0,739

[PEE2E14]) The ATP- myosin head movement was not chserved in filaments in which

ATPase activity of the myosin heads was L 00.726%

[B113997] The ATP- myosin head movement was not ohserved in filaments in which

ATPase activity of the myosin heads was 007263

[EL1D09345])We studied the unitary distance of ATP- actin-myosin shding using an i vitro

" FindiFind Mext ) Sorthy (O PMID (@) Interaction score [ Highlight verbs:

Entity 1: Synonyms w ) ATP MYOSIM Tatal Score: 1.0 Fossible Interaction: hydralvzeEntity 2: 0

[E405450]1t iz concluded that the 51 ADP BeF3- can he considered, like the 51 ADF Wi :
. 4 stable structural analogue of the myosin head ADP Pi transition state of the 1

myosin- ATP (0739

[3410961])We agsume that (1) a myosin head by ATP ta the thin

filatnent at a defintte angle and does not do the power stroke, 1e does not its orientation

during attachiment, (2% a potential of force acting on the myosin head is around the thin

filarnent when an ATP- myosin head to at actin molecule in the thin filament, and

force-movement azsay system consisting of a myosin-coated glass microneedle and well organized

-

Figure 6. PathBinder Search Results Window.

Test set analysis600 new sentences were obtained. 123 of them cmutdhe same
biomolecule name co-occurrences as were in theingset, while the other 477 only
contained other biomolecule co-occurrences. Thesassl probabilities, adjusted as in
the previous paragraph, were chosen pseudorandorbky distributed over the range
of interest (0 to 0.7). Then these sentences wareually analyzed to see if they really
did describe the interaction or not, the regresbkmanfor this data obtained, and plotted
in Figure 7. Note that the regression curve alneasictly matchey = x, indicating

successful application of the method to the newvlyaimed test set.
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Figure 7. The comparison among (iy = x, (ii) the unadjusted regression line (not from thetest
set), and (iii) the regression line for the test $eafter it was adjusted based on the discrepancy
between (i) and (ii).
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Appendix: Semi-Naive Evidence Combination

[A detailed discussion of this model was submitiech supplementary document.]
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