
2/14/22, 10:15 AM Version augmented URIs for reference permanence via an Apache module design

https://www.ra.ethz.ch/cdstore/www7/1879/com1879.htm 1/10

Version augmented URIs for reference permanence
via an Apache module design

J. Simonson,
D. Berleant, X. Zhang, M. Xie, and H. Vo



Department of Computer Systems Engineering

University of Arkansas, Fayetteville, AR 72701-1201, USA


js1@engr.uark.edu, djb@engr.uark.edu

Abstract
The World Wide Web is perhaps the
most convenient library resource ever to exist. Yet it also suffers
from
a critical flaw: WWW document citations existing as clickable
links and as standard references in printed
documents are quite
unreliable. This arises from the ease with which these documents may
be altered.
Alteration of cited WWW documents may lead to the
citations themselves becoming invalid or inaccurate.
Printed documents
are less prone to such problems due to the greater difficulty in
altering or eradicating
them. As a consequence of the alterability of
WWW documents, the whole traditional system of new work
building upon
an archive of unchangeable previous work ceases to be valid. For the
first time in history,
documents are being built upon a shifting
foundation to an extent of ever increasing and serious
proportions.
This work investigates a system aimed at encouraging the stability of
WWW documents. In
doing so it helps to preserve the accuracy of
citations over time. The system presented extends a
document's URI
(Universal Resource Identifier) to include date or revision
information thus allowing
document providers to permit users to refer
accurately to a particular document version. This paper both
describes
the system and demonstrates its use. The system is implemented as an
Apache WWW server
module. The module processes and retrieves documents
referenced with extended URIs. It provides a
model public domain
system for alleviating the problem of content stable WWW documents.

Keywords
Identifiers; Reference permanence;
Versioning; Archiving; Apache

1. Introduction

Documents on the WWW often undergo changes. A
reference to a WWW document can cease to be valid when
the document
is altered. Though much improved, the document may no longer
contain the information for which
the reference was intended. The
problem is further compounded when the URIs of referenced documents are
changed.

A growing body of work has addressed the alterability
 of links, underscoring increasing perception of the
significance of the
problem. A smaller but equally important body of work has started to
address the importance
of content permanence of documents on the
WWW. The work described herein focuses on content permanence.
To put our
work in context, however, the alterability of URIs is briefly discussed
next.

One typical example of the need to alter a URI is when
an individual changes affiliation. URIs pointing to the
individual's Web
page must be changed to point to his or her new location on the
Internet. Clearly, it would be a
step in the right direction to have
virtual location identifiers that don't change. An efficient way to do
this is to
have a logical URI or URL which is an alias of another
 physical URI, and automatically forwards (or
"redirects") requests to
the physical URI. The term PURL (Permanent URL) [1,
2, 3] is being used for such a
logical URI. A PURL can be deactivated ("turned off"), causing the PURL
 server to return history and
administrative information in place of the
contents of the physical URI.

PURLs are intended as a stopgap until such time as
Uniform Resource Names (URNs) become established. A
URN is intended to
be a permanent name for a unique resource, where a resource might be a
document (our

mailto:js1@engr.uark.edu
mailto:djb@engr.uark.edu


2/14/22, 10:15 AM Version augmented URIs for reference permanence via an Apache module design

https://www.ra.ethz.ch/cdstore/www7/1879/com1879.htm 2/10

concern here) or some other resource. This is analogous
 to the use of International Standard Book Numbers
(ISBNs). URLs on
the other hand specify the locations for these unique resources. A
given resource might be
lost and no longer accessible via any URL, or
 it might be available at one or several different URLs. [4, 5]
describe the means by which a name server takes a URN as input, and returns a URL at which the resource may
be found (if
there is one). URNs are currently
undergoing specification by the URN Working Group [
6] of the
Internet Engineering Task Force (IETF) [
7].

Although PURLs and URNs help to address the permanence
 of a document's unique identifier, they do not
address the problem of
 document content permanence. Archiving is one means of achieving content
permanence. While it is useful to be able to archive documents, it is
often necessary to change them as well. The
way to have both permanence
and changeability is by archiving one version and creating another.

One approach to archiving
of WWW information is to ensure the existence of "snapshots" of the WWW,
each
stored as a permanent record of the information on the WWW at a
particular point in time [8]. This is
currently
being done by the Internet Archive organization [9]. Despite what at first glance seems a daunting
 task,
downloading and storing a copy of every accessible document on the
WWW is technically quite doable. Kahle
[8] estimates
the memory requirement at a relatively modest 1.5 terabytes as of
mid-1997, doubling yearly. He
proposes yearly followup snapshots
containing only material which has changed since the last snapshot.

Other methods of archiving have begun to centre more
on the use of revision control systems via the Hypertext
Transfer
 Protocol (HTTP). Versioning is sufficiently important in a practical
 sense that versioning tools are
widely available. For example RCS (revision control
system) is one of a few UNIX utilities for versioning [
10,
11]. Because of the importance of
 versioning to such areas as electronic commerce and record retrieval for
patent, legal, and medical cases, versioning systems will need to become
 tamper-proof. Such uses of revision
control systems may require
 documents to be processed through a secure hashing scheme that gives
 special
codes that are unique to each version of a document and its
associated creation date. Any modification to the
document or claim that it was created at a different time implies a code
different from the valid one [12]. This
scheme is being applied commercially [
 13, 14] as well as to the documents
 in a digital library of scholarly
materials [15, 16].

Versioning concepts can apply not only to individual
 documents but also to sets of documents that are
interconnected by
hyperlinks. Thus a version may refer to a particular state of a
document, or it may refer to the
state of a set of interconnected
 documents. This concept can be used in distributed
 authoring of hypertext
documents [17]. In fact, a working group of the IETF is devoted to such
distributed authoring and versioning
[18].

The use of revision control systems has found its way
into a number of works dealing with versioning across the
WWW. Vitali and Durand [19] describe a
 method of encoding multiple versions (indeed an entire tree of
diverging
 versions) in one file which contains HTML markup tags as well as a set
 of specially designed
versioning tags. The file suffix for such
versioned documents is "VTML." To request a given version, the user
provides a request like http://www.your-business.com/Research/MPP/whitepaper.vtml/2.2.3 which specifies
version 2.3.3 of the VTML format document
 whitepaper.vtml. The server must know how to extract version
2.2.3 from whitepaper.vtml by interpreting the version tagged
text chunks appearing in it. Furthermore, special
editor features for
 properly handling version tags must be used to do any updates to the
 document since the
version tagging operations are too complex to be done
reliably by hand. Their system is aimed at assisting in
collaborative
work across the WWW by implementing a prototype WWW server based
revision control system.
Their approach requires a fairly complex VTML
editor, and also a VTML parser that must be run by the server.
Mortice Kern Systems offers an analogous system,
Integrity Engine, in commercial form which is also intended
to assist in
 collaborative work across the WWW by implementing a fairly complete WWW
 revision control
system [20]. These works focus not
 so much on the issue of WWW document content permanence but on
collaborative
work through the WWW using revision control. The focus of this paper
is on content permanence
although the work to be presented in
 the following sections could be extended in the future to support
collaborative work.



2/14/22, 10:15 AM Version augmented URIs for reference permanence via an Apache module design

https://www.ra.ethz.ch/cdstore/www7/1879/com1879.htm 3/10

A work more closely related to this
paper's focus, hyperlinks to stable ("permanent") content, is that of
Pettengill
[21]. Pettengill created a Common Gateway
Interface (CGI) program to handle the retrieval of documents under
revision control. His purpose was to capture the history of a
project or topic through its revisions. CGI based
systems such as
Pettengill's have the drawback that the document citation is tied to
the URI of the CGI program.
In addition it can, as a consequence of
system calls to the CGI program, require more system processing power
than a compiled server component. Depending on the server, output may
 receive no further processing thus
requiring the CGI program to handle
such extras as Server Side Includes (SSI).

This paper describes a system we have implemented that
uses the concept of version and date extended URIs to
encourage content
 stable references to WWW documents. The system is
 implemented as a module for the
Apache WWW server
 [22]. This content permanence module, as a
 consequence of being part of the server,
removes the problems previously
mentioned with regards to CGI programs. It should be noted, however,
 that
programming errors that are part of a server can have greater
repercussions than those in a CGI program.

In Section 2 of this paper,
we will discuss the concept of content permanence relating it to the
system we have
developed to handle this problem. Section 3 presents the syntax of date and
version extended URIs which are a
necessary part of the whole
system. Along with this section are given indications of when a date
extended URI
might be used over a version extended URI and vice
 versa. The actual implementation through an Apache
module is described
in Section 4. Section 5 summarizes our work and briefly
mentions future extensions.

2. URI content permanence

Because the content of a WWW document can be updated
at any time, the content of the document is unreliable.
Consequently
it is difficult to use such a source as a reliable reference due to
the changeability of its content. A
technical solution is needed
 to keep the content referenced by a link the same even when the
 corresponding
document needs to be updated. This can be done by
 retaining revisions of the document and referencing the
appropriate
 one. The solution proposed here involves extending URIs to include
date or version information,
which the server uses to obtain the
 appropriate revision of a document. (The syntax for the extended URI
 is
described in Section  3.) Hypermedia
 authors can use this capability to ensure that links in their authored
documents continue to refer over time to the same content that they
originally referred to. Thus authors who
refer to WWW documents could
rely on the permanence of the contents of those documents similarly to
how
they would rely on the permanence of the contents of printed
documents.

In our system, the client requests a URI augmented
with a suffix that is a date or version description, and the
server
 provides the appropriate version of the requested resource. The server
 does this by extracting the
requested version from a file containing the
 document and its revision history. In this system the WWW
document
 provider must store documents using the RCS revision control system. In
 conjunction the Apache
server must be configured to use the new module
described in this paper.

The source code for the content permanence
functionality is currently being drawn directly from the Unix
rcs
command co (check
 out) [11]. This functionality has been
 added to the Apache WWW server as a special
Apache "module," per the
Apache Applications Program Interface (API).

Our design falls squarely in the category of
distributed version maintenance systems. Every site wishing to
have
support for links to permanent content must run a server that
 supports version retrieval. Centralized version
maintenance would
also be possible. Under a centralized approach, a site might contract
with an external version
maintenance service to archive the various
revisions of their resources and make them available over the WWW.
This
would reduce the possibility of document providers altering
preexisting document versions.

In both the distributed system and the centralized
system the server is altered to provide the particular version of
interest to a requesting client. Alternatively the server could provide
the entire contents of the RCS file letting
the client extract the
desired version. This method would use a WWW client plugin that
understands either RCS
files or some other format such as non-standard
HTML tags that denote version-specific information, as in [
19].
Two major disadvantages of the client approach
compared to our server approach are (1) the WWW contains



2/14/22, 10:15 AM Version augmented URIs for reference permanence via an Apache module design

https://www.ra.ethz.ch/cdstore/www7/1879/com1879.htm 4/10

more installed
clients than servers, so a server-based solution such as ours has a
wider impact per installation,
and (2) the client approach implies that
the proper version is extracted after transmission of all
versions over the
Web, leading to higher network traffic and slower
 response times compared to a server approach such as we
describe here.

Another design issue concerns security. Should
archived versions be authenticated in some way? If not, archived
versions could be surreptitiously changed. An authentication system such
as that sold by Surety [13] could be
integrated
into a version archiving solution to alleviate this type of problem.

Each of the above mentioned approaches uses extended
 URIs that contain date or version specifications. We
define the syntax
for these extended URIs in the following section.

3. Date and version extended URIs

Since our system supports URIs augmented with date
or version specifications, it is important to describe the
syntax and
semantics of these augmentations.

In order to augment URIs with revision information,
 each actual version must have some unique version
designation. Version
information can be specified by actual version number or by a date. To
make sense of URIs
augmented with a date specification, there must be a
 mechanism at the server for translating the date
specification into the
proper version number. The version number received is the most recent
version saved prior
to the date specified. This implies that many date
specifications may map to one version.

Since HTTP GET requests by the client must contain a
version or date specification in our system, a mechanism
for this is
 necessary. One possibility is through a new HTTP request-header field.
 Link specifications in an
HTML document could include the information,
 the client could use that information in the link (when it is
provided)
and put it in the HTTP request-header field, and finally the server
could use the new request-header
field to help in extracting the proper
version to serve. Alternatively the URI can be extended to include the
date
or version desired. This eliminates the need for an additional
request-header field. The server then simply parses
out that information
from the URI and uses it to extract the proper version. We have
established a scheme for
this, as follows.

First, to ensure backward compatibility, we specify
 appropriate handling of a request for a URI having no
appended version
or date specification. Such a request would return either the most recent
version in the case of
multiple versions or the only available version
in the case of a single version. A request of this type is depicted
in Fig. 1.



2/14/22, 10:15 AM Version augmented URIs for reference permanence via an Apache module design

https://www.ra.ethz.ch/cdstore/www7/1879/com1879.htm 5/10

Fig. 1. Request for most recent document version.

We specify that appending a colon (":") to a
URI causes the server to serve a listing of all versions and their
associated dates. This of course requires the server to respect the ":"
 as a reserved character in the syntax of
URIs with version or date
specifications. The results of such a request are shown in Fig. 2, which contains a list
of clickable
version links. This is useful when referring to all versions or when
uncertain as to which version to
reference.

Fig. 2. Request for revision history (URI is colon
terminated). The "CPS" logo stands for
Content Permanence
Service.

A version number following a ":" causes the server to
serve the specified version. An example is provided in
Fig. 3. A document discussing the revision history of another document could
benefit from this syntax. Links
referring to a particular
version of source code would be another case in which this syntax
might be useful.



2/14/22, 10:15 AM Version augmented URIs for reference permanence via an Apache module design

https://www.ra.ethz.ch/cdstore/www7/1879/com1879.htm 6/10

Fig. 3. Version request by version
number (URI is version number terminated).

We specify that appending a date spec to the URI
causes the server to serve the version that was current as of
that
date. This would be the most recently saved version prior to the date
specification. Versions appearing later
than the requested date
specification would be unsuitable because they would contain changes
that occurred after
the time at which the content was cited by the
link. The date specification format should comply
with RFC 1123
[23] or ANSI C's
asctime() except that spaces are replaced by underscores. A
date extended URI is shown in
Fig. 4.

Fig. 4. Version request by date (URI is date terminated).

Date specifications might be used when referring to
documents that are time sensitive. A weather bulletin is such
an example
because of its time dependent nature. Date specifications might also be
used when attempting to
provide a sense of the time relation between
separate documents. This might apply when reviewing the work



2/14/22, 10:15 AM Version augmented URIs for reference permanence via an Apache module design

https://www.ra.ethz.ch/cdstore/www7/1879/com1879.htm 7/10

histories
of two groups with competing patent claims. Lastly a writer may find
it easier to just append the current
time to a URI to reference the
current version of a document.

As a heuristic guideline, the syntax used should
 reflect whether the revision history is of more interest
(suggesting
the version syntax) or whether the currency is of more interest
(suggesting the time syntax). For both
syntaxes, the mechanism
 for retrieval of the appropriate revision is similar. We discuss the
 mechanism our
system uses next.

4. Apache module design and supporting software

Due to the popularity of the Apache server and the
availability of its source code, we decided that Apache with
its API was
an appropriate server for adding the necessary functionality for
handling version and date extended
URIs. Apache's modular software
design allows second party modules to be easily incorporated into the
server.
System administrators can install Apache with the modules of
 their choosing providing the server with the
functionality necessary for
their particular site.

In designing a new module to handle
content permanence, it is desirable to follow the API that Apache
provides
for module design [24]. Apache
modules are designed with one or more standard functions. Each function
 is
associated with some stage of the request processing. During each
stage the corresponding functions from each
module are called by the
 server core. The stages that the new content permanence module uses are
 fixup,
handler, and logger. These stages are called
in the following order.

Fixup is the first of these stages called and does
preprocessing of the request. Each module containing a
fixup function
is called before the server proceeds to the next stage.

Next, the handler function is called for the module that
will need to respond to the client with the
requested document. The
handler function either responds to the client with the resource
requested by the
client, or "redirects" the request. Redirection can be
either internal or external. Internal redirection causes
the server to
serve a different URI. An external redirection sends the client a new
URI and the client
makes a new request for that URI. The handler
function that is called is selected prior to the fixup stage
based on the MIME type of the requested resource. During the
fixup stage, the handler function can be
reselected if desired.

Next, the logger function of each module having such a
function is called. The logger function commonly
records log
information in a log file, though any type of cleanup operation can be performed here.

The fixup routine for the new content permanence
 module checks to determine if the requested document is
under RCS
 control. It does so by checking for an RCS file with the same name as
 the requested document
followed by a ",v" extension. This file if it
exists resides in the RCS subdirectory under the directory from which
the document is being requested. If the file is under RCS control, the
fixup routine in the new module calls code
to extract the appropriate
revision of the file from the RCS revision repository and store it in
a temporary file.
The server then is internally redirected to access
this file. In the event that the request was for a revision listing,
such a listing is returned and no redirection is necessary. When the
 request is completed, the new module's
logger routine removes the
temporary file.

Various configuration file commands control the new
module. One specifies the directory for storing temporary
files. Another
enables or disables the module. The system can be configured to allow or
disallow override of this
command in .htaccess files.

In conjunction with this software, software has been
developed to process an HTML document and add date
specifications to
each URI. Currently the date specifications represent the time at
which the software was run.
This software is being augmented to check
 each link to determine if it points to a document under revision
control and if so what the most recent version is. Only links to
 documents under revision control will be



2/14/22, 10:15 AM Version augmented URIs for reference permanence via an Apache module design

https://www.ra.ethz.ch/cdstore/www7/1879/com1879.htm 8/10

considered by this program
for augmentation with date specifications. Those links could either
be augmented by
default or augmented if the user responds positively
to a prompt.

5. Conclusion

This paper describes our approach to supporting
 permanence in the content referred to by links in HTML
documents. Thus
 it aims at preserving the traditional approach of new work building upon
 an unchanging
foundation of previous work.

In our solution, the server retrieves the correct
version of a document based on the version or date specification
suffix appended to a URI. Documents under revision control must be
maintained using systems based on RCS.
Other revision systems could be
used but would require modifications to the new content permanence
Apache
module. The new module is build using the standard Apache API.
 This new module uses code from the
generally available RCS revision
 control system. Because it supports serving URIs augmented with date
 or
version specifications in a distributed manner, using the existing
Apache module API for accessibility and low
cost, it is suitable for
widespread, incremental application. It requires no special client
programs. The modified
Apache server we have developed also
 understands ordinary URIs without version or date suffixes. We also
described our working prototype program for transforming ordinary URI
 links in an HTML file into URIs
containing appropriate date
specifications. The additional features that we plan to add to the
existing system will
serve to better meet the goal of an accessible,
workable system for encouraging content permanence.

The importance of having links refer to content which
is permanent is simply, and importantly, to preserve the
traditional
 system of supporting new work by referencing previous work despite the
 ongoing transition to a
cyberspace era of digitally stored
 references. If referred-to work can change, as is currently the case on
 the
WWW, that traditional and important system is in jeopardy.

The new Apache module will soon be thoroughly tested
and documented, and submitted for distribution as an
officially
 sanctioned Apache module. Our approach and syntax need to be developed
 into a form suitable for
consideration and approval by the IETF. Work is
 need toward gaining acceptance of the system for use in a
digital
 library of significant size and impact, and more generally toward
 obtaining general acceptance in the
WWW community, with all of the
technical development and public acceptance measures that entails.

Acknowledgements

The Netscape browser frame is a trademark of Netscape Communications Corp.

References*
1. Persistent URL home page, Online Computer Library Center,
Inc. (OCLC), December 1997,

http://purl.oclc.org (February 10, 1998).
2. PURL free on Web, Information Retrieval and Library
Automation, 32(2): 3, July 1996.
3. OCLC offers its PURL software for free on the World
Wide Web (WWW), Online Libraries, and

Microcomputers,
14(8–9): 7, September 1996.
4. S. Weibel, The changing landscape of network recourse
description, Library Hi Tech, 14(1): 7–10, 1996.
5. K. Sollins and L. Masinter, Functional requirements for
Uniform Resource Names, Request for Comments

(RFC) 1737, Internet
Engineering Task Force, December 1994,
ftp://NIS.NSF.NET/internet/documents/rfc/rfc1737.txt (February 10,
1998).

6. Uniform Resource Name (URN) charter, Internet
Engineering Task Force, January 1998,
http://www.ietf.org/html.charters/urn-charter.html (February 10,
1998).

7. Internet Engineering Task Force home page, Internet
Engineering Task Force, May 1997,
http://www.ietf.org (February 10, 1998).

http://netscape.com/
http://purl.oclc.org/
ftp://nis.nsf.net/internet/documents/rfc/rfc1737.txt
http://www.ietf.org/html.charters/urn-charter.html
http://www.ietf.org/


2/14/22, 10:15 AM Version augmented URIs for reference permanence via an Apache module design

https://www.ra.ethz.ch/cdstore/www7/1879/com1879.htm 9/10

8. B. Kahle, Preserving the Internet, Scientific
American, 276: 82–83, March 1997,
http://www.sciam.com/0397issue/0397kahle.html (February 10, 1998).

9. Building a digital library for the future, Internet
Archive, San Francisco, CA, http://archive.org/home.html
(February 10, 1998).

10. W. F. Tichy, RCS – A system for version control,
Software – Practice and Experience, 15(7):
637–654,
July 1985.

11. P. Eggert and W. F. Tichy, rcsintro(1), 1991, http://pardis.sas.upenn.edu/man.shtml/rcsintro(1)
(February 10,
1998).

12. S. Haber and W. S. Stornetta, How to time-stamp a
digital document, Journal of Cryptology, 3(2): 99–111,
1991.

13. Surety Technologies, Surety
Technologies, Inc., December 1997, http://www.surety.com (February 10,
1998).

14. B. Menkus, A secure electronic document audit trail
product, EDPACS, 22(12): 15–16, June 1995.
15. Surety Technologies teams with Research Libraries
Group to protect scholarly research information

online, Surety
Technologies, Inc., January 1997, http://www.surety.com/in_news/RLG.html (February 10,
1998).

16. Surety Technologies joins Research Libraries Group,
Computers in Libraries, 17(4): 44, 1997.
17. A. Haake, Under CoVer: the implementation of a
contextual version server for hypertext applications, in:

European
Conference on Hypertext Technology (ECHT '94), September, 1994,
Edinburgh, Scotland,
pp. 81–93.

18. WWW distributed authoring and versioning (WebDAV)
charter, Internet Engineering Task Force, January
1998, http://ietf.org/html.charters/webdav-charter.html (February 10,
1998).

19. F. Vitali and D. G. Durand, Using versioning to
provide collaboration on the WWW, in: Proc. 4th
International World Wide Web Conference, Boston, MA, December,
1995, World Wide Web Journal,
pp. 37–50, http://www.w3.org/WWW4/Papers/190 (February 10, 1998).

20. J. Whitehead, Versioning and configuration management
of World Wide Web content, February 1997,
http://www.ics.uci.edu/~ejw/versioning (February 10, 1998).

21. R. Pettengill and G. Arango, Four lessons learned from
managing World Wide Web digital libraries, in:
The Second Annual
Conference on the Theory and Practice of Digital Libraries,
Austin, TX, June, 1995,
http://csdl.tamu.edu/DL95/papers/pettengill/pettengill.html
(February 10, 1998).

22. Apache HTTP server project, Apache Group, http://www.apache.org (February 10,
1998).
23. R. Braden, (Ed.), Requirement for Internet hosts:
application and support, Request for Comments (RFC)

1123, Internet
Engineering Task Force, October 1989,
ftp://NIS.NSF.NET/internet/documents/rfc/rfc1123.txt (February 10,
1998).

24. B. Laurie and P. Laurie, Apache: The Definitive
Guide, O'Reilly and Associates, Inc., Sebastopol, CA,
1997.

*Citations of electronic sources
follow the format described by J. Walker, Walker/ACW Style Sheet
 (Columbia
Online Style), January 1995, http://www.cas.usf.edu/english/walker/mla.html (February  10, 1998).
The format
has been endorsed by the Alliance for Computers and
Writing.

Vitae

Jonathan Simonson is an Assistant Professor in the
 Department of Computer Systems
Engineering at the University of
Arkansas, Fayetteville. His research interests include
computer
architecture, real-time systems, multiprocessor design, memory
system management and design,
compilers, and the World Wide Web.

He received the Ph.D., M.S., and B.S. degrees in electrical
engineering from the
University of
Illinois at Urbana-Champaign
 in 1996, 1991 and 1986, respectively. During his
 graduate studies he was a
research assistant in the Center for Reliable and High-Performance Computing
 at the University of Illinois.
From 1986 to 1989 he worked for Convex Computer Corporation, now a division of Hewlett Packard, on
 the
design of Convex's C2 and C3 Supercomputers.





http://www.sciam.com/0397issue/0397kahle.html
http://archive.org/home.html
http://pardis.sas.upenn.edu/man.shtml/rcsintro(1)
http://www.surety.com/
http://www.surety.com/in_news/RLG.html
http://ietf.org/html.charters/webdav-charter.html
http://www.w3.org/WWW4/Papers/190
http://www.ics.uci.edu/~ejw/versioning
http://csdl.tamu.edu/DL95/papers/pettengill/pettengill.html
http://www.apache.org/
ftp://nis.nsf.net/internet/documents/rfc/rfc1123.txt
http://www.cas.usf.edu/english/walker/mla.html
http://www.engr.uark.edu/~js1
http://www.uiuc.edu/
http://www.crhc.uiuc.edu/
http://www.hp.com/wsg/cxdv/convex_facts.html
http://www.hp.com/


2/14/22, 10:15 AM Version augmented URIs for reference permanence via an Apache module design

https://www.ra.ethz.ch/cdstore/www7/1879/com1879.htm 10/10

Daniel Berleant is an Associate Professor at the University of
 Arkansas, Fayetteville. He
publishes in the areas of information
customization, text processing, qualitative and numerical
simulations,
 interval mathematics, and computer assisted language learning. His
 teaching
activities include a course on the future of computing. He
received the Ph.D. and M.S. degrees
in computer science from the
University of Texas at Austin in 1991 and 1990, respectively, and
the
 B.S. degree in computer science and engineering from the Massachusetts
 Institute of

Technology in 1982.


Xiaoxiang Zhang is receiving the M.S. degree in
 computer systems engineering at the
University of Arkansas, Fayetteville
in Spring 1998, and received the B.S. degree in electronics
engineering
from Tsinghua University, Beijing in 1996. His primary area of
interest is Internet
programming. 

Ming Xie is with Federal Express. His areas of
 interest include information and network
technology, software design
 and development, systems engineering and architecture, and
medical
 physics. He received the M.S. degree in engineering from
 University of Arkansas in
1997, the M.S. degree in medical
physics from the University of Oklahoma in 1996, the M.S.
degree in
applied physics from the University of Southwestern Louisiana in 1992,
and the B.S.
in physics from Guangzhou Normal University in 1983.


Hanh N. Vo is receiving the B.S. in computer systems
 engineering in Spring 1998 at the
University of Arkansas,
Fayetteville. Her primary area of interest is software development.


http://www.engr.uark.edu/~djb

