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Abstract 

Characterizing the distribution of times to failure in 2-component systems is an important 

special case of a more general problem, finding the distribution of a function of random 

variables. Advances in this area are relevant to reliability as well as other fields, and 

influential papers on the topic have appeared in the reliability field over a span of many 

years. Using failure times of 2-component systems as a vehicle, this report begins by 

reviewing a technique for characterizing distributions of functions of random variables 

when the dependency relationship between the random variables used as inputs to the 

function is unknown. The technique addressed is called Distribution Envelope 

determination (DEnv). Using this review as a foundation, an extension to DEnv is 

described which applies to cases where means and variances of the input distributions are 

known, and partial information about dependency is available in the form of a value for 

correlation. Pearson correlation is used because it is the most commonly encountered 

correlation measure. This reason is important because the assumption of independence, 

while common, is frequently problematic. Yet the opposite extreme of no assumption 

about dependency may mean ignoring available information which could affect the 

analysis.  
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Acronyms1 

Cdf Cumulative distribution function 

pdf Probability density function 

DEnv Distribution Envelope Determination algorithm 

Notation 

Fk(t) Cumulative probability of failure for component Ck 

fk(t) Probability density function describing failure for component Ck 

[l, h] Interval with lower bound l and upper bound h, inclusive of the 

end points 

1  Introduction 

We consider the problems of determining the time until the first of two components fails, 

and the time until both fail. These problems can be addressed by modeling the time to 

failure of each component with a probability density function (pdf). The area under the 

pdf, over a given time interval, is the probability of failure during that time interval.  

If a joint density function can be obtained, each point in it could be labeled with a 

time t whose value is the minimum of its two marginal values if we wish to characterize 

the time of first component failure, or the maximum to characterize the time to failure of 

both components. Integrating the joint density from 0 to t produces a cumulative 

probability of failure as a function of t. Alternatively, the two marginals could be 

integrated to get their corresponding cumulative distribution functions F1(t), and F2(t). 

Assuming s-independence, the probability of both components failing by time t is 

F1(t)F2(t). The probability of the first component failure occurring by time t may be 
                                                 
1 The singular and plural of an acronym are always spelled the same.  



 3

stated using different, but algebraically equal expressions depending on the motivating 

intuition: 
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  The assumption of s-independence in the foregoing analysis is a serious 

limitation. Often other dependency relationships hold among events, motivating methods 

for calculation which take known dependencies into account (see Section 2.1; also [19]; 

additional references in [21]). Reliability modeling with the wrong dependency 

relationship can lead to decisions which are much more expensive than necessary [6], yet 

the actual dependency relationship may be unclear. Thus, explicitly accounting for the 

degree [10] of such model uncertainty can lead to understanding (i) the range of possibly 

optimal decisions, and (ii) the potential value of knowing the correct dependency model. 

The following four examples illustrate the variety and pervasiveness of situations 

relevant to reliability engineering in which the dependency relationship between two 

random variables, in the present case times to failure, is unknown. 

Example 1 – lights. Consider rooms at a conference center. Each room has two 

lights. The switch for one light is by one entrance, and the switch for the other is at the 

other entrance. Users who like plenty of light will turn on both lights, while others will 

turn on only the one at the entrance from which they enter the room. A user tends to 

repeatedly use the same conference rooms, so each room has its own light usage profile.  

Based on past experience, the engineer has determined a distribution function 

describing, for the conference center as a whole, the amount of time a light operates 

before it needs a new bulb or other service. We wish to characterize the distribution 
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describing the time until either of the lights in a given conference room will need service. 

Similarly, we wish to characterize the distribution describing the time until both lights 

have failed in a given conference room (thereby rendering the room unusable until 

repaired).  

  The distributions for the times to failure of the lights in a room might be s-

independent. Alternatively they might be positively correlated if, for example, users of 

the room tend to prefer bright lighting and so use both lights at once, causing both to 

wear simultaneously. On the other hand, the distributions might be negatively correlated. 

For example, users of a room may tend to use only one light, so when one light is on and 

undergoing wear, the other is probably off and not undergoing wear. If users tend to enter 

the room by one of its entrances in preference to the other, one light will tend to last less 

time than average, and the other more time. 

Example 2 – tires. A car has two new Flamerock brand tires installed. These tires 

are rated for 30,000 miles, but their actual lives are samples of a distribution function 

which expresses variations in duty conditions, the chance of failure due to damage, 

manufacturing variations, etc. The company is offering a special replacement warranty 

for customers installing two new tires. Understanding the cost of offering the warranty 

requires characterizing the distribution describing the distance traveled before either tire 

requires replacement, as well as before both will require replacement. 

  As in the previous example, the distributions of the tire lifetimes (in miles) might 

not be s-independent. They would be positively correlated if tire life for a given customer 

is dominated by such factors as the type of road surface typically traveled, or poor 

maintenance of tire pressure. On the other hand, they would be negatively correlated if 
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tire life is dominated by the fact that a customer has installed one on the heavier front of 

the (front wheel drive) vehicle and one on the lighter rear, and does not rotate tires, so 

that the front tire wears faster than average and the rear, slower. 

  Example 3 – keyboard and mouse. A computer is equipped with keyboard and 

mouse. Given a distribution for the life of each, what is the time until one of them fails? 

The individual distributions for time to failure might be s-independent. Or, they might be 

positively correlated, as in a harsh environment which tends to wear out both components 

sooner than expected, or in a low use environment in which both tend to last longer than 

expected. The lifetimes might also be negatively correlated, as for a user who mostly 

types, thus wearing the keyboard and preserving the mouse; or a user who mostly points 

and clicks, thus wearing the mouse and preserving the keyboard. 

  Example 4 – electric generators. Two electric generators are producing power. 

Distributions are known which describe the time to failure of each, and it is desired to 

characterize the time to the first failure. The times to failure of the individual generators 

could be correlated positively, or negatively. They would be correlated positively if both 

are usually operated at the same production level, because production level is a predictor 

of time to failure. They would be correlated negatively if power is generated 

preferentially from one generator, as would occur when one produces electricity at lower 

cost than the other. The higher production from one generator would cause it to wear 

while preserving the other. 

1.1 Solution Approach 

Because the dependency relationships in the previous problems are unknown, the joint 

probability density functions are underdetermined. Thus the distributions for the times to 
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failure of one component, and of both, are also underdetermined. While any specific 

dependency relationship is associated with some specific result distribution, we wish to 

avoid specifying a particular dependency relationship when there is insufficient evidence 

to justify one. In that case, the problem is underspecified, and a solution could do no 

better than to describe the set of possible distributions for the solution. Left and right 

envelopes can specify bounding curves within which the trajectory of any Cdf in the set 

must lie (see Figure 1; also [9], [13]).  

For determining the left and right envelopes, an analytical approach is one 

strategy. This imposes limitations on the form of the input distributions. Monte Carlo 

simulation is an alternative. However, this leads to envelopes which are not crisply 

described, and tends to handle tails problematically [12]. A numerical approach is another 

strategy in which the input distributions need not be described with any particular type of 

equation or even with equations at all. A numerical solution does however involve 

discretization, and consequently the possibility of imperfect representation of the inputs. 

For many numerical methods, the result is error in the output. However, the numerical 

method described here converts discretization error in the inputs into increased separation 

of the envelopes instead. 

One numerical algorithm for deriving such envelopes, Probabilistic Arithmetic, is 

based on copulas [13] [17]. It was developed into a numerical algorithm by Williamson 

and Downs [20], and is implemented in a commercial software package targeted at the 

mathematical ecology area, although the tool itself, RiskCalc, is not domain specific [11]. 

Another algorithm, Distribution Envelope Determination (DEnv), uses intervals as well 
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as minimal and maximal cumulations consistent with the set of possible joint density 

functions [5]. It is implemented in a program called Statool.  

The algorithms have important underlying similarities [18], as well as pragmatic 

and theoretical differences [2]. One pragmatic difference is that DEnv and its 

implementation in Statool do not use copulas, making it more accessible to individuals 

not already familiar with copulas. Another pragmatic difference is that RiskCalc 

incorporates handling of other forms of uncertainty, in particular fuzzy numbers and 

hybrid numbers, while Statool is limited to the domain of distributions.  

Theoretical differences arise from the fact that RiskCalc uses copulas while 

Statool does not. Because copulas normalize the marginals by stretching them into a 

standard shape [17], computations which rely on the un-normalized curves will be 

problematic in copula-based algorithms. Pearson (product-moment) correlation, the kind 

generally meant by use of the term “correlation” but by no means the only kind, is an 

important example. Thus, while Statool incorporates Pearson correlation, it is unclear 

how copula-based methods could. On the other hand, Spearman rank correlation is an 

example of a type of correlation which is natural to apply to normalized marginals. More 

generally, copulas are a mathematically elegant vehicle for describing a wide variety of 

constraints on dependency, though not Pearson correlation.  

In the next section, the DEnv algorithm is explained. An explanation of DEnv in 

the context of a reliability problem is new in the present report. Also new is an 

explanation of correlation (Section 2.3) in the important case where the means & 

variances of the times to failure, and the value of the Pearson correlation coefficient, are 

available.  
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2  Distribution Envelope Determination (DEnv) 

The DEnv algorithm works with the set of joint density functions which are possible for 

given marginals. In the context of the example problems described in the Introduction, a 

marginal pdf models the time to failure of a light, a tire, a keyboard, a mouse, or an 

electric generator. The joint density function of two marginals (one for each of two 

components C1 & C2) assigns a probability density f(t1,t2) to each point (t1,t2) for which t1 

is a failure time for component C1, and t2 is a failure time for C2. 

 Each point (t1,t2) in a joint density function can have another value associated 

with it besides a probability density. If that value is tmin=min(t1,t2), then 

∫ ∫ ≤
=

1 min2| 2121 ),()(
t tttone dtdtttftF  gives the probability that the first component to fail 

does so by time t. Similarly, if that value is tmax=max(t1,t2), then 

∫ ∫ ≤
=

1 max2| 2121 ),()(
t tttboth dtdtttftF  gives the probability that both components will fail by 

time t. 

 Let set S be the set of joint density functions consistent with the marginals. Let 

joint density function f be termed extremal for time t and function Fone if it leads to a 

higher or lower value for Fone(t) than any other f in S. Similarly, f may be extremal for 

time t and Fboth. DEnv finds joint density functions which are extremal. Finding extremal 

joint density functions for appropriate values of t makes it possible to plot envelopes for 

Fone or Fboth (Figure 1). The DEnv technique computes these envelopes using discrete 

representations of the marginals and joint density functions. A step by step description 

follows. 
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1) The probability density function (pdf) for each component’s time to failure is 

discretized using a histogram-like representation, consisting of a set of intervals, 

and an associated probability for each interval. Figure 2 illustrates this process. 

Although only four density functions consistent with the discretization are shown 

in the Figure, an infinite number of others are as well. The flat tops of the 

histogram bars are merely a graphical convenience, because the details of the 

distribution of a bar’s probability over the interval it spans are actually 

unconstrained. Discretizations can also be represented numerically, as in the 

leftmost column & the bottom row of Table 1.  

[30.0,100.0] 
p=0.031 

tf=[0,5.0] 
ts=[30.0,100.0] 

p16=0.0031 

tf=[5.0,8.0] 
ts=[30.0,100.0] 

p26=0.0031 

tf=[8.0,10.0] 
ts=[30.0,100.0] 

p36=0.0093 

tf=[10.0,12.0] 
ts=[30.0,100.0] 

p46=0.0093 

tf=[12.0,20.0] 
ts=[30.0,100.0] 

p56=0.0031 

tf=[20.0,80.0] 
ts=[30.0,100.0] 

p66=0.0031 
[24.0,30.0] 

p=0.031 
tf=[0,5.0] 

ts=[24.0,30.0] 
p15=0.0031 

tf=[5.0,8.0] 
ts=[24.0,30.0] 

p25=0.0031 

tf=[8.0,10.0] 
ts=[24.0,30.0] 

p35=0.0093 

tf=[10.0,12.0] 
ts=[24.0,30.0] 

p45=0.0093 

tf=[12.0,20.0] 
ts=[24.0,30.0] 

p55=0.0031 

tf=[20.0,30.0] 
ts=[24.0,80.0] 

p65=0.0031 
[18.0,24.0] 

p=0.063 
tf=[0,5.0] 

ts=[18.0,24.0] 
p14=0.0063 

tf=[5.0,8.0] 
ts=[18.0,24.0] 

p24=0.0063 

tf=[8.0,10.0] 
ts=[18.0,24.0] 

p34=0.0189 

tf=[10.0,12.0] 
ts=[18.0,24.0] 

p44=0.0189 

tf=[12.0,20.0] 
ts=[18.0,24.0] 

p54=0.0063 

tf=[18.0,24.0] 
ts=[20.0,80.0] 

p64=0.0063 
[12.0,18.0] 

p=0.125 
tf=[0,5.0] 

ts=[12.0,18.0] 
p13=0.0125 

tf=[5.0,8.0] 
ts=[12.0,18.0] 

p23=0.0125 

tf=[8.0,10.0] 
ts=[12.0,18.0] 

p33=0.0375 

tf=[10.0,12.0] 
ts=[12.0,18.0] 

p43=0.0375 

tf=[12.0,18.0] 
ts=[12.0,20.0] 

p53=0.0125 

tf=[12.0,18.0] 
ts=[20.0,80.0] 

p63=0.0125 
[6.0,12.0] 

p=0.25 
tf=[0,5.0] 

ts=[6.0,12.0] 
p12=0.025 

tf=[5.0,8.0] 
ts=[6.0,12.0] 

p22=0.025 

tf=[6.0,10.0] 
ts=[8.0,12.0] 

p32=0.075 

tf=[6.0,12.0] 
ts=[10.0,12.0] 

p42=0.75 

tf=[6.0,12.0] 
ts=[12.0,20.0] 

p52=0.025 

tf=[6.0,12.0] 
ts=[20.0,80.0] 

p62=0.025 
[0,6.0] 
P=0.5 

tf=[0,5.0] 
ts=[0.0,6.0] 

p11=0.05 

tf=[0,6.0] 
ts=[5.0,8.0] 

p21=0.05 

tf=[0,6.0] 
ts=[8.0,10,0] 

p31=0.15 

tf=[0,6.0] 
ts=[10.0,12.0] 

p41=0.15 

tf=[0,6.0] 
ts=[12.0,20.0] 

p51=0.05 

tf=[0,6.0] 
ts=[20.0,80.0] 

p61=0.05 
 ↑ y=f1(t) 

X=f2(t) → 
[0,5.0] 
p=0.1 

[5.0,8.0] 
p=0.1 

[8.0,10.0] 
p=0.3 

[10.0,12.0] 
p=0.3 

[12.0,20.0] 
p=0.1 

[20.0,80.0] 
p=0.1 

Table 1. A joint tableau showing discretizations of marginals f1(t), and f2(t) in bold. 

2) Given two discretized input probability density functions, one for the time to 

failure of each component, a discretized joint density function is represented by a 

grid of cells, termed the joint tableau. Table 1 shows an example. Marginals f1(t) 

and f2(t) are discretized. They represent the probabilities of failure over time for 

components C1, and C2 respectively. Each marginal cell contains a time interval 
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[lower, upper], representing a time period during which component failure might 

occur, and a probability p that the component will fail during that time period. 

The marginal intervals shown share end points, which is not significant unless the 

pdf contains an impulse at a shared value, in which case overlaps can be removed 

by giving appropriate intervals open endpoint(s).  

A discrete representation of the joint density function appears in Table 1 

as the interior (non-bolded) cells. Each such cell contains a value pij for the 

probability assigned to the interval-valued bucket in the cell for time tf of the first 

component to fail, and another bucket for time ts of the second component (i.e. 

both components) to fail. Each interior cell corresponds to two marginal cells, one 

to its left in the leftmost column, and another below it in the bottom row.  

The interval-valued bucket for tf in any given interior cell cij represents the 

range of times possible for the first of two components C1and C2 to fail, given that 

C1 fails within the time interval of the marginal cell to the left of cij in the left 

hand column, and C2 fails within the interval of the marginal cell below cij in the 

bottom row. Consequently, to be binned in cij, the first of C1 & C2 to fail can fail 

as early as the min of cij’s two marginal interval lower bounds, and as late as the 

min of its two marginal interval upper bounds.  

The time interval ts for each interior cell cij represents the range of times 

possible for the second of the components to fail (i.e. for both components to fail), 

given that C1 fails within the interval in the marginal cell to the left of cij in the 

left column, and C2 fails within the interval of the marginal cell below cij in the 

bottom row. Consequently, if a case of failure of both is binned in cij, then the last 
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of C1 & C2 to fail can fail as early as the max of cij’s two marginal interval lower 

bounds, and as late as the max of its two marginal interval upper bounds.  

In the joint tableau shown in Table 1, the probability pij in each interior 

cell cij happens to be the product of the probabilities of its marginal cells, which is 

consistent with s-independence of f1(t), and f2(t). Changing the values of the pij 

would express a dependency relationship situation not consistent with s-

independence. 

3) Each row and column in a joint tableau defines a constraint. For Table 1, the row 

and column constraints are shown in Table 2.  

 

Table 2. Marginal constraints imposed by the discretized marginals of Table 1. 

These constraints only partially determine the allocation of probability among the 

interior cells of the joint tableau. Thus, probability can be transferred among cells 

as long as these constraints remain satisfied. Any particular allocation of 

probability among interior cells constitutes a particular discretized joint density 

function. Table 1 showed one such discretized joint density function. Table 3 

shows another one for the same marginals. Both are consistent with the marginal 

constraints summarized in Table 2. 

4) The value of the left envelope at some time point t answers the question, “What is 

the maximum probability which can be cumulated up to t?” Computing that 

maximum probability involves identifying interior cells with time intervals which: 

Row constraints Column constraints 
0.5    =p11+p21+p31+p41+p51+p61
0.25  =p12+p22+p32+p42+p52+p62
0.125=p13+p23+p33+p43+p53+p63
0.063=p14+p24+p34+p44+p54+p64
0.031=p15+p25+p35+p45+p55+p65
0.031=p16+p26+p36+p46+p56+p66

0.1=p11+p12+p13+p14+p15+p16 
0.1=p21+p22+p23+p24+p25+p26 
0.3=p31+p32+p33+p34+p35+p36 
0.3=p41+p42+p43+p44+p45+p46 
0.1=p51+p52+p53+p54+p55+p56 
0.1=p61+p62+p63+p64+p65+p66 
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i. end below t, because the probability assignments of such cells must contribute 

to cumulation ),( ttp failure ≤  and 

ii. contain t, because the distribution of the probabilities of a cell over its interval 

is not determined, and therefore it is possible for it all be distributed at or 

below t. Because we want to maximize the cumulation by time t, we must 

assume that extreme possibility. Knowledge that such an extreme is not 

possible would have to be modeled via a different, e.g. finer, discretization for 

the marginals.   

More parsimoniously stated, interior cells with interval lower bounds t≤  

contribute their probabilities to the cumulation at time t. The shaded cells of Table 

3 illustrate an example. 

5) Having identified the interior cells contributing to the cumulation for a given t, we 

next find the maximum amount of probability which can be allocated among them 

consistently with the row and column constraints. The value of t, and the 

maximum probability found, define the coordinates of a point on the left 

envelope.  

Finding the maximum can often be done using careful inspection to move 

probabilities around in a joint tableau, although linear programming on a 

computer is much faster. Linear programming problems maximize or minimize a 

linear expression, called the objective function, consistently with a set of linear 

constraints. The constraints here are the row and column constraints (Table 2); the 

objective function is the sum of the probabilities of the interior cells found in Step 

4, which can contribute to the cumulation; and maximization is used to find a 
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point on the left envelope because that envelope describes the maximum 

cumulation for a given time point.  

Table 3 illustrates each of these points. Table 3 shows a joint tableau with 

the same marginals as in Table 1, though different pij, and hence a different joint 

probability situation. The shaded cells contribute their probabilities to the sum 

that gives the value of the left envelope at time t=7. These are the cells with lower 

bounds ≤7 because that enables them to contribute to the objective of cumulating 

as much probability as possible by time t=7. To achieve that objective, we must 

allocate probability among the interior cells in a way which assigns as much as 

possible to these cells consistently with the row and column constraints (which 

were given in Table 2). Thus the objective function, call it z, to be maximized, 

e.g. by linear programming or careful inspection, is the sum of the probabilities of 

the shaded cells: 

z=p16+p26+p15+p25+p14+p24+p13+p23+p12+p22+p32+p42+p52+p62+p11+p21+p31+p41+p51+p61. 

It turns out that most of the probability can be allocated among these cells, but 

0.05 cannot, and must be allocated among un-shaded interior cells. Table 3 

happens to lump it into the one cell containing probability p33 (bolded in the table 

for emphasis). To see intuitively that the full probability of 1.0 cannot all be 

allocated within the shaded cells, observe that the probabilities in each of the two 

fully shaded rows of interior cells must sum to the probability of its corresponding 

marginal cell (i.e. 0.25 for one row, and 0.5 for the other). Similarly, the 

probabilities in each of the two fully shaded columns of interior cells must sum to 

0.1. Therefore the entire shaded area cannot contain more probability than the 
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total of these four values, 0.25+0.5+0.1+0.1=0.95, leaving 0.05 to be allocated 

elsewhere. 

Table 3. A joint tableau with the same marginals as in Table 1, but different values 

for the pij.  

6) Different points on the left envelope are derived from different sets of interior 

cells. Recall from Step 4 that the value of t determines which interior cells are in 

the set contributing to the cumulated probability at time t. Because each set 

defines its own objective function, and hence its own linear programming 

problem, linear programming is called as a subroutine each time a maximal 

cumulation is needed. Fortunately the discrete nature of the joint tableau limits the 

number of linear program solutions required. The reason is that the set of interior 

cells to be maximized to find )( ttp failure ≤  is the same for all values of time 

which fall on the same side of each interior cell interval lower bound (either 

greater than or less than) that t does. Because there are rows*columns interior 

cells, there are rows*columns different lower bounds at most; and fewer if any 

interior cells share the same lower bound. The lower bounds partition the time 

line into at most rows*columns+1 regions, each of which defines a different 

[30.0,100.0] 
p=0.031 

tf=[0,5.0] 
 p16=0.031 

tf=[5.0,8.0] 
p26=0 

tf=[8.0,10.0] 
p36=0 

tf=[10.0,12.0] 
p46=0 

tf=[12.0,20.0] 
p56=0 

tf=[20.0,80.0] 
p66=0 

[24.0,30.0] 
p=0.031 

tf=[0,5.0] 
p15=0.031 

tf=[5.0,8.0] 
p25=0 

tf=[8.0,10.0] 
p35=0 

tf=[10.0,12.0] 
p45=0 

tf=[12.0,20.0] 
p55=0 

tf=[20.0,30.0] 
p65=0 

[18.0,24.0] 
p=0.063 

tf=[0,5.0] 
p14=0.038 

tf=[5.0,8.0] 
 p24=0.025 

tf=[8.0,10.0] 
p34=0 

tf=[10.0,12.0] 
p44=0 

tf=[12.0,20.0] 
p54=0 

tf=[18.0,24.0] 
p64=0 

[12.0,18.0] 
p=0.125 

tf=[0,5.0] 
p13=0 

tf=[5.0,8.0] 
p23=0.075 

tf=[8.0,10.0] 
 p33=0.05 

tf=[10.0,12.0] 
p43=0 

tf=[12.0,18.0] 
p53=0 

tf=[12.0,18.0] 
p63=0 

[6.0,12.0] 
p=0.25 

 tf=[0,5.0] 
p12=0 

tf=[5.0,8.0] 
p22=0 

tf=[6.0,10.0] 
p32=0.25 

tf=[6.0,12.0] 
p42=0 

tf=[6.0,12.0] 
p52=0 

tf=[6.0,12.0] 
p62=0 

[0,6.0] 
p=0.5 

 tf=[0,5.0] 
p11=0 

tf=[0,6.0] 
p21=0 

tf=[0,6.0] 
p31=0 

tf=[0,6.0] 
p41=0.3 

tf=[0,6.0] 
p51=0.1 

tf=[0,6.0] 
p61=0.1 

 ↑ y=f1(t) 
x=f2(t) → 

[0,5.0] 
p=0.1 

[5.0,8.0] 
p=0.1 

[8.0,10.0] 
p=0.3 

[10.0,12.0] 
p=0.3 

[12.0,20.0] 
p=0.1 

[20.0,80.0] 
p=0.1 
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linear programming problem. The separate treatment of each region also explains 

the staircase shape of the envelopes (Figures 3, 4, 5). 

7) Obtaining the right envelope instead of the left poses a dual problem, solved as 

previously described except for the following. 

i. The summed probabilities of sets of interior cells are minimized instead of 

maximized.  

ii. Given a value of t, the interior cells whose probabilities should be summed are 

identified by whether their interval upper bounds are ≤t, rather than their 

lower bounds. The upper bounds are used because if a cell’s upper bound is 

above t, then its probability might not contribute to the cumulation, because its 

probability might be concentrated at its upper bound.  

The result is the right envelope curve, which shows the smallest possible 

cumulative probability for any given value of t. The bounding curve is an 

envelope which bounds from the right all distribution functions corresponding to 

some joint density function consistent with the row and column constraints. 

2.1 S-Independent Marginals, and Other Specific Dependency Relationships 

If the marginals are assumed to be s-independent, a simplification of the algorithm 

described earlier can provide the resulting Cdf. S-independence implies that the 

assignment of probability to each interior cell is the product of its marginal probabilities, 

as in Table 1. These assignments are fully determined, so there is no need for linear 

programming. Thus Step 3 and Step 5 above become irrelevant, and Step 6 is greatly 

simplified by removing the linear programming subroutine calls. The result is a 

numerical convolution algorithm with bounding of the effects of discretization error 
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(Berleant 1993). If an approximate result curve is acceptable (instead of envelopes), the 

class of algorithm simplifies further [7], [8], [15], [16]. 

The argument in the previous paragraph applies to any fully specified dependency 

relationship, not just s-independence. Naturally, the envelopes resulting from different 

dependency relationships are likely to be different, because the probabilities in the 

interior cells of the joint tableau will be different, reflecting the different joint density 

functions implied by different dependency relationships (see e.g. Figure 3 of [2]). 

2.2 A Software Tool 

Figure 3 of this paper shows the user interface of Statool, a tool for performing DEnv [3]. 

The top and middle windows each show a discretized pdf for the time to failure of one of 

the two components. The lower window shows result envelopes bounding the space 

containing the Cdf for the time to the first component failure. The button labeled 

“Min(x,y)” was clicked to produce the result shown, while the “Max(x,y)” button would 

compute envelopes for the time to failure of the second component (i.e. both 

components). Besides min and max computations, +, –, ÷, and × computations may be 

invoked by the appropriately labeled buttons. Compound expressions in +, –, ÷, × may be 

parsed, and then computed using the “Parsing” button. Results shown in the lower 

window were calculated for the case of an unknown dependency relationship between 

f1(t) and f2(t). Marginals f1(t) & f2(t) are from Tables 1 & 3. Numerical coordinates for the 

envelopes may also be plotted (Figures 4 & 5) using a popup window. 
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2.3 Correlation 

A correlation value is a constraint on the dependency relationship, but not a full 

description of it because different joint density functions can yield the same correlation 

(Equation 1, below). Thus specifying a correlation value will typically not lead to a single 

Cdf for the time to failure for either the first component to fail, or for both components to 

fail. However, it does constitute a constraint on the set of possible joint density functions, 

and so will tend to yield envelopes which are closer together than they would be if 

correlation was unspecified. An illustration is provided by the contrast between Figures 

4(b) & 4(e), and between Figures 4(d) & 4(f). Figure 4 is based on the marginals in 

Tables 1 & 3 as inputs representing the times to failure of components C1 and C2. 

Because DEnv determines points on envelopes using linear programming (LP) routine 

calls, a value for correlation must be used to define a linear constraint. That constraint 

then supplements the column and row constraints. 

To obtain a linear correlation constraint, we start with a standard formula for 

correlation (Equation 1): 

22
yx

yxxy

σσ

µµµ
ρ

−
=                                                         (1) 

where ρ is the Pearson correlation coefficient of the marginals x & y, µx & µy are the 

expectations (means) of x & y, and σx
2 & σy

2 are the variances of x & y. Pearson 

correlation is the most common variety of correlation, and is usually meant by the term 

“correlation” when the variety is unstated. If ρ is known, then the only term in Equation 

(1) which depends on the joint density function is µxy. Solving for that term, and naming 
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the result Eρ to indicate it is the expectation (of xy) derived from a particular value of 

correlation ρ, gives Equation (2). 

22)( yxyxxyE σσρµµµρρ +==                                                               (2) 

The values of the symbols on the right hand side of Equation (2) can be given 

directly as problem inputs if available. If not available, an estimate of the value of the 

right hand side of Equation (2), which can be made arbitrarily accurate by discretizing 

sufficiently finely, is obtained by modeling the distribution of the probability associated 

with each interval in the discretizations of the marginals as an impulse at its midpoint. 

Alternatively, the right hand side can be bounded, and expressed as an interval, making 

the analysis somewhat more complex, and the effects on the envelopes weaker [4]. As an 

example, for the marginals of Tables 1 & 3, the following values might be provided: 

µx=13.5, µy=9.8, σx
2=158.8, and σy

2=138.192; these were computed using midpoints as 

just described, e.g., 

 µy=65*0.031+27*0.031+21*0.063+15*0.125+9*0.25+3*0.5=9.8. 

Then, by Equation (2), Eρ(0.9)=265.62, Eρ (–0.9)= –1.024, Eρ (– 0.7)=28.603, Eρ(0)= 

132.3, etc.  

The value of µxy may also be computed from the joint density function of x & y, 

and thus from a joint tableau, because such a tableau is a discrete representation of a joint 

density function. Hence, 

∑==
ji jiijxyt p

,
yxE µ         (3) 

where bolding indicates intervals, the result is named Et to indicate that it is an interval 

for the expectation derived from a joint tableau, and xi & yj are the intervals in the 

discretized marginals corresponding to the interior cell containing probability pij. For 
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example, in Table 3, p33 has marginal intervals x3=[8.0,10.0] & y3=[12.0,18.0], and 

evaluating Equation (3) on all of the pij of Table 3 yields Et=[23.55, 160.91]. 

  We have now computed µxy in two different ways, naming them Eρ, and Et. To 

enforce the constraint that the joint density function, as discretized by the pij and their 

associated intervals, is consistent with problem input ρ, the two computations must yield 

consistent answers. Consistency requires that the numerical value of Eρ must be in 

interval Et. The consistency requirement is a constraint which can augment the row and 

column constraints in the LP subroutine calls, consequently tending to reduce the space 

of feasible joint density functions. Fewer feasible joint density functions tends to reduce 

the range of values possible for cumulative probability of failure F at any given value of 

time t, tending in turn to reduce the separation between left and right envelopes. 

Building on examples given in the preceding paragraphs, the joint probability 

scenario expressed by the pij in Table 3 is consistent with ρ=0 because 

Eρ(0)=132.3∈Et=[23.55, 160.91], and also with ρ= –0.7 because Eρ(–0.7)=28.603∈Et, 

but not with ρ=–0.9 because Eρ(–0.9)=–1.024∉Et. If ρ is specified as –0.7, the envelopes 

around the Cdf for the time to failure of the first component to fail are closer together 

than the envelopes when the problem is not constrained by a value for correlation, as a 

comparison of Figures 4(b) & 4(e) shows.  

3  Further Comparisons 

The present section explores some problem variations.  

Dependency structure. If marginals are assumed to be s-independent, the result 

in principle is a specific Cdf. However, DEnv discretizes the inputs, and converts the 

information lost by discretization into envelopes around the output [1]. The separation of 
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these envelopes increases when the dependency relationship between the inputs is 

unspecified, because that lack of information propagates to the results. Figures 4(a) & 

4(b) show the different separations for the time to the first component failure, while 

Figures 5(a) & 5(b) show it for the time for both components to fail.  

 Number of failures. Because it takes longer for both components to fail than for 

one to fail, Cdf Fboth will tend to be to the right of Cdf Fone. A comparison of Figures 4(a) 

& 5(a) shows this for the case of independent marginals, while Figures 4(b) & 5(b) show 

it for the case of unspecified dependency between the marginals. The graphs of Figure 5 

are based on values for ts (see e.g. Tables 1 & 3), which result from the max operation 

(see Step 2 of Section 2). In contrast, the graphs for Figure 4 are based on values of tf, 

resulting from the min operation. However the density functions whose discretizations 

produce the marginals used as inputs for Figures 4 & 5 are the same. 

Level of discretization. Unsurprisingly, the separation of the result envelopes can 

be significantly affected by the coarseness of the discretization. To illustrate, we 

compared the results for the 6x6 discretization shown in Tables 1 & 3 with a 12x12 

discretization, obtained by splitting each marginal cell interval in these tables into two 

smaller intervals of equal width and assigning half the probability of the original to each. 

A comparison between 6x6 & 12x12 discretizations is shown for s-independent 

marginals by Figures 4(a) & 4(c), and for marginals of unspecified dependency in Figures 

4(b) & 4(d). 

The influence of discretization level on the effectiveness of correlation values as a 

constraint on envelopes can be substantial. A comparison between Figures 4(e) and 4(f) 

illustrates that. In 4(e), derived using the 6x6 discretization condition, the correlation was 



 21

–0.7. However, under the 12x12 discretization condition, a correlation of –0.7 was 

inconsistent with the row and column constraints. The reason is that finer discretization 

typically reduces the space of possible joint density functions between marginals. The 

reason is that more finely discretized marginals lead to more interior cells, smaller pij, and 

narrower intervals for xiyj (see Equation 3), in turn providing tighter control over the 

distribution of probabilities over intervals in the joint density functions than would occur 

for coarser discretizations. The consequence is a narrower interval for Et, and hence 

stronger correlation constraints, perhaps strong enough to rule out some correlation 

values entirely. Figure 4(f) shows the results under the 12x12 discretization condition 

when the correlation was specified as –0.6 instead of –0.7.  

In general, finer discretization tends to provide better (narrower) envelopes. 

However, finer discretization increases computation time [3]. The quality of a 

discretization may vary not only for different numbers of histogram bars, but also for 

different bar widths and placements on the horizontal axis. For example, the bar widths 

might be equal, or equal for a logarithmically scaled horizontal axis, or chosen arbitrarily 

and unequally. Some of these horizontal axis partitions yield discretizations which 

represent the pdf more closely than others. Hall and Lawry [14] discuss such issues 

further. 

4  Conclusion 

The failure properties of 2-component systems are well understood when the dependency 

relationship between the individual component failures is assumed. However, such an 

assumption can be problematic. We show that the problem can also be analyzed when no 

dependency relationship is assumed between the individual component failures, and 
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when only the correlation is known. Results are in the form of left and right envelopes 

bounding all cumulative distributions consistent with the limited problem specifications. 

The DEnv algorithm also offers the additional benefit of accounting for the weakening of 

results which ensues from information loss due to discretization. 

These results suggest a number of paths for further investigation. One potentially 

important set of questions revolves around use of partial information about the 

dependency relationship to narrow the envelopes. We have discussed correlation here, 

but the joint density function might usefully be constrained in other ways as well. One 

approach is to identify assumptions which capture the intent of ruling out joint density 

functions which are “strange,” in the sense of being unlikely to occur in practice. Ruling 

out such density functions might enable the envelopes to be narrowed significantly.  

Other open questions include extension of the technique to systems of three or 

more components requiring joint tableaus of three or more dimensions, decision-making 

applications of the results, and extensions to additional related problems. 
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Figure 1. Left and right envelopes bounding a space of possible cumulative distributions. 

The x-axis represents time, and the cumulative probability )(tF  represents ).( ttp failure ≤  
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Figure 2. Four different density functions (dotted lines) and their identical discretizations as 

a 2-bar histogram (adapted from [1]). 
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Figure 3. User interface of Statool, a software tool for performing the DEnv algorithm. 
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Figure 4. Bounds around the Cdf for time to first component failure under several 

conditions.  
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Figure 5. Bounds around the cumulative probability that both components will fail by time 

.t   


