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ABSTRACT 

We investigate the impact of bugs in a well-known 
weather simulation system, MM5. The findings help fill a 
gap in knowledge about the dependability of this widely 
used system, leading to both new understanding and 
further questions.  

In the research reported here, bugs were artificially added 
to MM5. Their effects were analyzed to statistically 
understand the effects of bugs on MM5. In one analysis, 
different source files were compared with respect to their 
susceptibility to bugs, allowing conclusions regarding for 
which files software testing is likely to be particularly 
valuable. In another analysis, we compare the effects of 
bugs on sensitivity analysis to their effects on forecasting. 
The results have implications for the use of MM5 and 
perhaps for weather and climate simulation more generally. 

1. MOTIVATION 
Computer simulation is widely used, including in 
transportation, digital system design, aerospace 
engineering, weather prediction, and many other diverse 
fields. Simulation results have significant impact on 
decision-making and will continue to in the coming years. 
However complex simulation programs, like other large 
software systems, have defects. These adversely affect the 
match between the model that the software is intended to 
simulate, and what the software actually does. Simulation 
programs produce quantitative outputs and thus typify 
software for which bugs can lead to insidious numerical 
errors. Weather simulators exemplify this danger because 
of the large amount of code they contain, often with 
insufficient comments; the complex interactions among 
sections of code modeling different aspects of the domain; 
and the plausibility that outputs can have even if they 
contain significant error. These incorrect results may 
escape notice even as they influence the decisions that they 
are intended to support. This is an important dependability 
issue for complex simulation systems. Hence, investigating 
the effects of bugs in a simulation system can illuminate 
the robustness of its outputs to the presence of bugs. This 
in turn yields better understanding of important quality 

issues, like trustworthiness of the outputs, and important 
quality control issues, like software testing strategy.  

 

The artificial generation of bugs and observation of their 
effects is termed mutation analysis. We have done a 
mutation analysis of MM5, an influential weather 
simulator available from the National Center for 
Atmospheric Research (NCAR). The results obtained 
illuminate important aspects of this software system. We 
focus on (1) what sections of the code are most likely to 
have undetected bugs that cause erroneous results, and 
hence are particularly important to test thoroughly; and (2) 
the relative dependability of the software for sensitivity 
analysis as compared to point prediction, and consequently 
for forecasting vs. sensitivity analyses. 

2. CONNECTION TO RELATED WORK 
Model Error. Errors in a simulation program can be from 
errors in the model underlying the system [1], or errors in 
the implementation of a correct underlying model. The 
current work deals with the latter, but the two are related.  
Software Mutation Testing. This is the process of taking 
a software system and injecting errors (i.e. adding bugs) to 
it to see how its behavior changes [4][5][6]. Typically, 
many different buggy versions will be tested and the 
responses summarized statistically. The present work tests 
several thousand versions of MM5, each with one unique 
bug injected. 
Sensitivity Analysis. A software system’s sensitivity 
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occurs due to a change in input by amount ∆i [2][3]. In 
contrast, examining the change in output due to changes in 
actual software code (rather than in input parameters) is 
termed software mutation testing. The work reported here 
uses both, because one of the questions we focus on is, 
“How do software mutations affect sensitivity analyses?” 
Ensemble Forecasting [7]. A sophisticated form of 
sensitivity analysis in which the system is run many times, 
each on its own set of perturbed input parameters, and each 
therefore giving its own forecast as output. The set of 
forecasts is then statistically characterized. This enables 
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conclusions such as forecasts that are relatively resistant to 
inaccurate specification of initial conditions (using 
ensemble means), and forecasts containing distribution 
functions describing the probabilities of different values 
for a forecasted quantity.  
3. APPROACH 
Two related studies were performed. In the first, 
simulation results were obtained from numerous variants 
of MM5. Each variant had a different mutation (“bug”), 
deliberately inserted into code within a selected subset of 
its Fortran source code files. The set of 24-hour forecasts 
produced by these variants for region of the U.S. midwest 
with a time step of 4 minutes allows comparison of the 
abilities of the source code files to resist erroneous outputs 
despite the presence of bugs. That in turn has implications 
for software testing strategy. 

In the second study, the same mutated variants were used 
but the initial conditions were slightly different. The 
simulation results for this perturbed initial state were 
compared to the results obtained in the first study for each 
variant. This gives evidence about whether sensitivity 
analyses (in which the ratio of output change to input 
change is computed) tend to be affected by bugs less or 
more compared to forecasts (in which a single weather 
prediction scenario is computed). If less, the dependability 
of MM5 for studies using sensitivity analysis is increased 
relative to its dependability for forecasting. If more, MM5 
would be relatively more dependable for forecasting.  
3.1 Study #1: Effects of Bugs on Forecasts 
Several thousand different mutations were tested. For each, 
the MM5 weather simulator was compiled and run using a 
typical American midwest weather scenario for 
initialization. Effects of the mutation on the final state of 
the forecast were recorded. Each mutation was then 
classified into one of three categories (Figure 1). 

 
Figure 1. The three possible effects of a mutation (bolded). 

The “Fail to complete” category  includes cases where (1) 
the simulator terminated (“crashed”) prior to providing a 
24-hour forecast, or (2) the simulator did not terminate. 
The “Results affected” category includes cases in which 
one or more members of a set of 11 important output 
parameters had a different forecasted value than it had in 
the original, unmutated version of MM5.  

Each source code file c in which mutations were made was 
analyzed as follows. Define  

rc = # of mutations in the “Results affected” category; and   
fc = # of mutations in the “Fail to complete” category. 

A dependability metric, dc, for rating source code file c 
was defined as 

dc=fc/(rc+fc). 

Value dc estimates the likelihood that a bug inadvertently 
introduced during software development will be detected,  
therefore removed, and hence not affect results 
subsequently. Thus low dc for a file suggests a need to 
compensate with extra effort in testing and debugging. 

The “Results not affected” category, which has no 
influence on dc, contains mutations for which (1) the 
mutated code cannot have an effect (meaning the code, 
despite its presence, has no function), (2) the mutated code 
would fall into one of the previous two categories given 
other initial conditions, or (3) the mutation affected some 
output but not  the output parameters we examined for 
effects. Mutations in case (1) do not impact the 
dependability issues of interest here, and therefore are 
ignorable. Of mutations in case (2), there is no reason to 
expect that their effects, when triggered by other initial 
conditions, would cause other than random changes to the 
various dc. Those in case (3) are in a gray area. If their 
effects can be considered insignificant relative to effects on 
the output parameters that were analyzed, they can be 
ignored. Otherwise, had they been detected, dc would have 
been lower. Thus the dc values calculated in this work are 
upper bounds relative to an alternate view of the software 
outputs that classifies all outputs as equally important.  
3.2 Study #2: Comparing Effects on 
Forecasts to Effects on Sensitivity Analyses 
The results of study #1 provide data on the effects of bugs 
on forecasts. By introducing a perturbation to the initial 
data and then obtaining data parallel to the data of study 
#1, there will be two sets of data that can be compared. 
The perturbation in the initial data can be summarized as a 
number ∆i. The resulting change in the output of the 
unmutated software can be summarized as a number ∆o. 
For each mutated version m that runs to completion under 
the two input conditions, there are two corresponding 
output scenarios whose difference can be summarized as a 
number ∆om. Sensitivities (changes in outputs divided by 
changes in inputs) can now be calculated. 
Let s be the sensitivity of the original, unmutated software: 
s=∆o/∆i. 
Let sm be the sensitivity of the software as modified by 
mutation m: 
sm=∆om/∆i. 
To compare the effect of a mutation m on forecasting to its 
effect on sensitivity analysis, we must define measures for 
the magnitudes of its effects on forecasting and on 
sensitivity analysis, and compare those measures. We 
define the magnitude of its effect on forecasting as 

Results not affected 

Results affected 

One bug in one file 

Runs successfully 

Fail to complete 
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where om is a number derived from the output parameters 
of the software as modified by mutation m, and o is an 
analogous number for the unmutated software. Thus, Fm 
describes the change in the forecast due to mutation m, as a 
proportion of the nominally correct output o. 
The magnitude of mutation m’s effect on sensitivity is 
analogously defined as  
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where s and sm are as defined earlier.  
For a given mutation, if Fm>Sm, then the mutation affected 
the forecast more than the sensitivity analysis. On the other 
hand, if Fm<Sm then the opposite is true. Considering the  
mutations m collectively, if Fm>Sm for most of them, this 
suggests that the MM5 software resists the deleterious 
effects of bugs on sensitivity analysis better than it resists 
their effects on forecasting. On the other hand, if Fm<Sm, 
that suggests the opposite. 
Meteorological uses of sensitivity analysis include 
predicting the effects of interventions on climate, and 
doing ensemble forecasting. Because the present study 
relied on 24-hour forecasts, study #2 provides data 
relevant to ensemble forecasting. The next section 
summarizes the results. 

4.  RESULTS 
Results related to study #1 on the effects of bugs on 
forecasts are given in section 4.1. Results related to study 
#2, which builds on study #1 with additional investigation 
of sensitivity analyses are given in section 4.2. Some 
caveats are given in section 4.3. 

4.1 The Effects of Bugs on Forecasts 
It is useful to be able to compare source code files based 
on the likelihood of each that an important bug in it will be 
readily detected. Such comparisons would help focus 
software testing activities on files for which undetected 
bugs are most likely to reside. This motivated defining the 
metric dc for the dependability of source code file c in 
section 3.1.  

Low values of dc mean that a bug is relatively likely to 
allow a simulation to complete but with error in its output. 
High values of dc mean that a bug is relatively likely to 
cause the program to crash without giving output. Thus, a 
low value of dc indicates that file c is relatively likely to 
contain undetected bugs and therefore that file c is a good 
candidate for careful testing to find bugs. Values of dc for a 
number of important files in MM5 are shown in Figure 2. 

Conclusion: of the files tested, bugs in exmoiss.f, hadv.f, 
init.f, mrfpbl.f, param.f, and vadv.f are more likely than 
bugs in the others to have insidious rather than obvious 

effects. Hence these files might be expected to benefit 
from correspondingly thorough testing. 

4.2 Effects on Forecasts Vs. Effects on 
Sensitivity Analyses 
MM5 and other weather and climate simulation systems 
are useful for both forecasting and for sensitivity analysis. 
It is therefore an interesting question about MM5 which, 
forecasts or sensitivity analysis results, are more resistant 
to bugs which, as noted earlier, are undoubtedly present.  
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Figure 2. Values of dc for some MM5 source code files. Lower 
values suggest files that are good candidates for focusing 
testing effort on. 

To answer this question, the metrics described in section 
3.2 were used. Instead of a composite number 
summarizing 11 output parameters, for this study we used 
8 output parameters and analyzed each separately. Because 
a total of 10,893 different mutations were tested on both 
the base and perturbed inputs, and 8 output parameters 
were observed for each mutation, a total of 87,144 
different sensitivities (i.e., values of Sm as defined in 
section 3.2) were observed. Similarly, the same number of 
forecasted parameter values (i.e., values of Fm as defined 
in section 3.2) were observed. Although most were 
unaffected by the mutation, 12,835 were affected (first two 
rows of Table 1). 

Perturbation to the input conditions was done as follows. 
Some variables in the file init.f were changed by 0.0001%. 
The variables chosen for this were the prognostic 3D 
variables (UA, UB, VA, VB, TA, TB, QVA, QVB) for 
each grid in the domain (these variables are described e.g. 
in http://www.mmm.ucar.edu/mm5 /documents/mm5-
code-pdf/sec6.pdf.). The percentage of perturbation was 
chosen to be close to the smallest percentage for which the 
program produced significant changes to the output. 
For many mutations and observed output parameters, the 
sensitivities and forecasted values of an observed output 
parameter r were exactly the same as for the unmutated 
program, so for each such mutation m and parameter r, 
Fm(r)=Sm(r). For other mutations and parameters, the 
change caused by that mutation to the forecast was greater 



than the change to the sensitivity. For those, Fm(r)>Sm(r). 
Finally, for the remaining mutations and parameters,  the 
situation was reversed and Fm(r)<Sm(r). In order to 
determine whether MM5’s forecasts or sensitivity analyses 
were more resistant to bugs, we simply compare the 
quantity of parameter/mutation pairs for which Fm(r)>Sm(r) 
to the number for which Fm(r)<Sm(r). If more pairs have 
Fm(r)>Sm(r) than have Fm(r)<Sm(r), then forecasts are more 
likely to be affected by bugs than sensitivity analyses and 
therefore MM5 is observed to be more dependable for 
sensitivity analyses than forecasts. If fewer pairs, then the 
opposite is observed: MM5 would be observed to be more 
dependable for forecasts. Results will be presented at the 
meeting. 

4.3 Details, Caveats, and Needs for Further 
Work 
Study #1. The results of this study on the effects of bugs 
on forecasts required mutations to be applied to a number 
of different source files. A number of different types of 
mutations were applied, each designed to be plausible as a 
kind of bug a human programmer might accidentally make. 
As examples, loops can suffer from “off-by-one” bugs, 
additions can be programmed into calculations when 
subtractions should be, multiplication and division can be 
incorrectly substituted similarly, and so on. Table 2 shows 
the types of mutations that were used. Each was applied 
opportunistically to a source file at each point in it where 
the source code would permit such a mutation. Thus, for 
example, off-by-one bugs can be applied to points in the 
code where loop control variables were tested.  

This process of using a number of different, seemingly 
plausible bug types leads to two caveats.  

1) The proportion of each bug type in one source file 
may not match the proportion in another source 
file. The question this leads to is whether 
differences observed across source code files 
(Figure 2) could be due in part to differences in 
the effects of mutations across different bug 
types. (Similarly, differences in effects of 
different bug types could be due in part to 
differences across the source files containing 
them.) Appropriate statistical analyses should be 
able to separate the effects due to source code file 
from those due to bug type.  

2) Although the bug types used have intuitive appeal 
as mistakes that human programmers might make, 
there is no claim that all such mistakes are 
captured by the set of bug types used for 
mutations in this (or any) work. In particular, 
humans can make diffuse mistakes that cover a 
number of lines of code, and these are hard to 
mimic when generating mutations artificially. 
Mutation analyses have historically assumed that 

automatically generated mutations are similar in 
their effects to human programmer errors, 
however.  

Another limitation of the study is its reliance on a single 
weather forecasting scenario. While within the range of 
typical forecasting problems, it is possible that other initial 
conditions could lead to different results for the 
dependability metrics of the source files. This could in 
principle be addressed by seeing if similar results are 
obtained for a set of diverse forecasting problems. 
Study #2. This study comparing the ability of sensitivity 
analyses and forecasts to resist the effects of bugs relied on 
a particular perturbation to the input conditions, a 
particular weather scenario (as in the other study), and a 
particular time period of 24 hours. Each of these may 
potentially have an influence on the results. 
The perturbation to the input conditions was chosen to be 
small in order to stay within the linear response region of 
the simulation system. However weather simulation is 
well-known to be mathematically chaotic. Thus, there may 
be legitimate doubt about whether in fact this experiment 
did stay within the linear response region (or even if trying 
to do so is worth doing). The questions this raises is 
whether different input perturbations might lead to 
different assessments of which resists bugs better, weather 
forecasts or sensitivity analyses. The solution here is more 
extensive testing that includes and compares different 
input perturbations. 
The relative abilities of forecasts vs. sensitivity analyses to 
resist bugs may also potentially depend on the time period 
of the simulation. While 24 hours incorporates both day 
and night, thereby exercising varied portions of the system, 
other time periods are also of interest. This suggests 
additional testing that incorporates a range of different 
time periods. 
Finally, as in the other study, more extensive testing could 
usefully include different weather scenarios.  
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