
WRF/MM5 User’s Workshop, Boulder, CO, June 22-25, 2004, pp. 225-228.

A Better Understanding of the Effects of
Software Defects in Weather Simulation

Dongping Xu
Department of Electrical and

Computer Engineering
Iowa State University

Ames, IA 50011
xdp@iastate.edu

Daniel Berleant
Department of Electrical

and Computer Engineering
Iowa State University

Ames, IA 50011
berleant@iastate.edu

ABSTRACT

We investigate the impact of bugs in a well-known
weather simulation system, MM5. The findings help fill a
gap in knowledge about the dependability of this widely
used system, leading to both new understanding and
further questions.

In the research reported here, bugs were artificially added
to MM5. Their effects were analyzed to statistically
understand the effects of bugs on MM5. In one analysis,
different source files were compared with respect to their
susceptibility to bugs, allowing conclusions regarding for
which files software testing is likely to be particularly
valuable. In another analysis, we compare the effects of
bugs on sensitivity analysis to their effects on forecasting.
The results have implications for the use of MM5 and
perhaps for weather and climate simulation more generally.

1. MOTIVATION
Computer simulation is widely used, including in
transportation, digital system design, aerospace
engineering, weather prediction, and many other diverse
fields. Simulation results have significant impact on
decision-making and will continue to in the coming years.
However complex simulation programs, like other large
software systems, have defects. These adversely affect the
match between the model that the software is intended to
simulate, and what the software actually does. Simulation
programs produce quantitative outputs and thus typify
software for which bugs can lead to insidious numerical
errors. Weather simulators exemplify this danger because
of the large amount of code they contain, often with
insufficient comments; the complex interactions among
sections of code modeling different aspects of the domain;
and the plausibility that outputs can have even if they
contain significant error. These incorrect results may
escape notice even as they influence the decisions that they
are intended to support. This is an important dependability
issue for complex simulation systems. Hence, investigating
the effects of bugs in a simulation system can illuminate
the robustness of its outputs to the presence of bugs. This
in turn yields better understanding of important quality

issues, like trustworthiness of the outputs, and important
quality control issues, like software testing strategy.

The artificial generation of bugs and observation of their
effects is termed mutation analysis. We have done a
mutation analysis of MM5, an influential weather
simulator available from the National Center for
Atmospheric Research (NCAR). The results obtained
illuminate important aspects of this software system. We
focus on (1) what sections of the code are most likely to
have undetected bugs that cause erroneous results, and
hence are particularly important to test thoroughly; and (2)
the relative dependability of the software for sensitivity
analysis as compared to point prediction, and consequently
for forecasting vs. sensitivity analyses.

2. CONNECTION TO RELATED WORK
Model Error. Errors in a simulation program can be from
errors in the model underlying the system [1], or errors in
the implementation of a correct underlying model. The
current work deals with the latter, but the two are related.
Software Mutation Testing. This is the process of taking
a software system and injecting errors (i.e. adding bugs) to
it to see how its behavior changes [4][5][6]. Typically,
many different buggy versions will be tested and the
responses summarized statistically. The present work tests
several thousand versions of MM5, each with one unique
bug injected.
Sensitivity Analysis. A software system’s sensitivity

i
os
∆
∆

= is the amount of change in its output ∆o that

occurs due to a change in input by amount ∆i [2][3]. In
contrast, examining the change in output due to changes in
actual software code (rather than in input parameters) is
termed software mutation testing. The work reported here
uses both, because one of the questions we focus on is,
“How do software mutations affect sensitivity analyses?”
Ensemble Forecasting [7]. A sophisticated form of
sensitivity analysis in which the system is run many times,
each on its own set of perturbed input parameters, and each
therefore giving its own forecast as output. The set of
forecasts is then statistically characterized. This enables

Gene Takle
Department of Geological
and Atmospheric Sciences

Iowa State University
Ames, IA 50011

gstakle@iastate.edu

Zaitao Pan
Department of Earth &
Atmospheric Sciences
St. Louis University

 St. Louis, MO 63103
panz@eas.slu.edu

conclusions such as forecasts that are relatively resistant to
inaccurate specification of initial conditions (using
ensemble means), and forecasts containing distribution
functions describing the probabilities of different values
for a forecasted quantity.
3. APPROACH
Two related studies were performed. In the first,
simulation results were obtained from numerous variants
of MM5. Each variant had a different mutation (“bug”),
deliberately inserted into code within a selected subset of
its Fortran source code files. The set of 24-hour forecasts
produced by these variants for region of the U.S. midwest
with a time step of 4 minutes allows comparison of the
abilities of the source code files to resist erroneous outputs
despite the presence of bugs. That in turn has implications
for software testing strategy.

In the second study, the same mutated variants were used
but the initial conditions were slightly different. The
simulation results for this perturbed initial state were
compared to the results obtained in the first study for each
variant. This gives evidence about whether sensitivity
analyses (in which the ratio of output change to input
change is computed) tend to be affected by bugs less or
more compared to forecasts (in which a single weather
prediction scenario is computed). If less, the dependability
of MM5 for studies using sensitivity analysis is increased
relative to its dependability for forecasting. If more, MM5
would be relatively more dependable for forecasting.
3.1 Study #1: Effects of Bugs on Forecasts
Several thousand different mutations were tested. For each,
the MM5 weather simulator was compiled and run using a
typical American midwest weather scenario for
initialization. Effects of the mutation on the final state of
the forecast were recorded. Each mutation was then
classified into one of three categories (Figure 1).

Figure 1. The three possible effects of a mutation (bolded).

The “Fail to complete” category includes cases where (1)
the simulator terminated (“crashed”) prior to providing a
24-hour forecast, or (2) the simulator did not terminate.
The “Results affected” category includes cases in which
one or more members of a set of 11 important output
parameters had a different forecasted value than it had in
the original, unmutated version of MM5.

Each source code file c in which mutations were made was
analyzed as follows. Define

rc = # of mutations in the “Results affected” category; and
fc = # of mutations in the “Fail to complete” category.

A dependability metric, dc, for rating source code file c
was defined as

dc=fc/(rc+fc).

Value dc estimates the likelihood that a bug inadvertently
introduced during software development will be detected,
therefore removed, and hence not affect results
subsequently. Thus low dc for a file suggests a need to
compensate with extra effort in testing and debugging.

The “Results not affected” category, which has no
influence on dc, contains mutations for which (1) the
mutated code cannot have an effect (meaning the code,
despite its presence, has no function), (2) the mutated code
would fall into one of the previous two categories given
other initial conditions, or (3) the mutation affected some
output but not the output parameters we examined for
effects. Mutations in case (1) do not impact the
dependability issues of interest here, and therefore are
ignorable. Of mutations in case (2), there is no reason to
expect that their effects, when triggered by other initial
conditions, would cause other than random changes to the
various dc. Those in case (3) are in a gray area. If their
effects can be considered insignificant relative to effects on
the output parameters that were analyzed, they can be
ignored. Otherwise, had they been detected, dc would have
been lower. Thus the dc values calculated in this work are
upper bounds relative to an alternate view of the software
outputs that classifies all outputs as equally important.
3.2 Study #2: Comparing Effects on
Forecasts to Effects on Sensitivity Analyses
The results of study #1 provide data on the effects of bugs
on forecasts. By introducing a perturbation to the initial
data and then obtaining data parallel to the data of study
#1, there will be two sets of data that can be compared.
The perturbation in the initial data can be summarized as a
number ∆i. The resulting change in the output of the
unmutated software can be summarized as a number ∆o.
For each mutated version m that runs to completion under
the two input conditions, there are two corresponding
output scenarios whose difference can be summarized as a
number ∆om. Sensitivities (changes in outputs divided by
changes in inputs) can now be calculated.
Let s be the sensitivity of the original, unmutated software:
s=∆o/∆i.
Let sm be the sensitivity of the software as modified by
mutation m:
sm=∆om/∆i.
To compare the effect of a mutation m on forecasting to its
effect on sensitivity analysis, we must define measures for
the magnitudes of its effects on forecasting and on
sensitivity analysis, and compare those measures. We
define the magnitude of its effect on forecasting as

Results not affected

Results affected

One bug in one file

Runs successfully

Fail to complete

o
oo

F m
m

−
=

where om is a number derived from the output parameters
of the software as modified by mutation m, and o is an
analogous number for the unmutated software. Thus, Fm
describes the change in the forecast due to mutation m, as a
proportion of the nominally correct output o.
The magnitude of mutation m’s effect on sensitivity is
analogously defined as

s
ss

S m
m

−
=

where s and sm are as defined earlier.
For a given mutation, if Fm>Sm, then the mutation affected
the forecast more than the sensitivity analysis. On the other
hand, if Fm<Sm then the opposite is true. Considering the
mutations m collectively, if Fm>Sm for most of them, this
suggests that the MM5 software resists the deleterious
effects of bugs on sensitivity analysis better than it resists
their effects on forecasting. On the other hand, if Fm<Sm,
that suggests the opposite.
Meteorological uses of sensitivity analysis include
predicting the effects of interventions on climate, and
doing ensemble forecasting. Because the present study
relied on 24-hour forecasts, study #2 provides data
relevant to ensemble forecasting. The next section
summarizes the results.

4. RESULTS
Results related to study #1 on the effects of bugs on
forecasts are given in section 4.1. Results related to study
#2, which builds on study #1 with additional investigation
of sensitivity analyses are given in section 4.2. Some
caveats are given in section 4.3.

4.1 The Effects of Bugs on Forecasts
It is useful to be able to compare source code files based
on the likelihood of each that an important bug in it will be
readily detected. Such comparisons would help focus
software testing activities on files for which undetected
bugs are most likely to reside. This motivated defining the
metric dc for the dependability of source code file c in
section 3.1.

Low values of dc mean that a bug is relatively likely to
allow a simulation to complete but with error in its output.
High values of dc mean that a bug is relatively likely to
cause the program to crash without giving output. Thus, a
low value of dc indicates that file c is relatively likely to
contain undetected bugs and therefore that file c is a good
candidate for careful testing to find bugs. Values of dc for a
number of important files in MM5 are shown in Figure 2.

Conclusion: of the files tested, bugs in exmoiss.f, hadv.f,
init.f, mrfpbl.f, param.f, and vadv.f are more likely than
bugs in the others to have insidious rather than obvious

effects. Hence these files might be expected to benefit
from correspondingly thorough testing.

4.2 Effects on Forecasts Vs. Effects on
Sensitivity Analyses
MM5 and other weather and climate simulation systems
are useful for both forecasting and for sensitivity analysis.
It is therefore an interesting question about MM5 which,
forecasts or sensitivity analysis results, are more resistant
to bugs which, as noted earlier, are undoubtedly present.

Likelihood a serious bug will be evident

0
0.2
0.4
0.6
0.8

1
1.2

ex
mois

s
ha

dv ini
t

kfp
ara2

kfp
ara

lex
moiss

mrfp
bl

pa
ram

pa
ram

r
so

lve va
dv

trid
i2

source code file name
d_

c

Figure 2. Values of dc for some MM5 source code files. Lower
values suggest files that are good candidates for focusing
testing effort on.

To answer this question, the metrics described in section
3.2 were used. Instead of a composite number
summarizing 11 output parameters, for this study we used
8 output parameters and analyzed each separately. Because
a total of 10,893 different mutations were tested on both
the base and perturbed inputs, and 8 output parameters
were observed for each mutation, a total of 87,144
different sensitivities (i.e., values of Sm as defined in
section 3.2) were observed. Similarly, the same number of
forecasted parameter values (i.e., values of Fm as defined
in section 3.2) were observed. Although most were
unaffected by the mutation, 12,835 were affected (first two
rows of Table 1).

Perturbation to the input conditions was done as follows.
Some variables in the file init.f were changed by 0.0001%.
The variables chosen for this were the prognostic 3D
variables (UA, UB, VA, VB, TA, TB, QVA, QVB) for
each grid in the domain (these variables are described e.g.
in http://www.mmm.ucar.edu/mm5 /documents/mm5-
code-pdf/sec6.pdf.). The percentage of perturbation was
chosen to be close to the smallest percentage for which the
program produced significant changes to the output.
For many mutations and observed output parameters, the
sensitivities and forecasted values of an observed output
parameter r were exactly the same as for the unmutated
program, so for each such mutation m and parameter r,
Fm(r)=Sm(r). For other mutations and parameters, the
change caused by that mutation to the forecast was greater

than the change to the sensitivity. For those, Fm(r)>Sm(r).
Finally, for the remaining mutations and parameters, the
situation was reversed and Fm(r)<Sm(r). In order to
determine whether MM5’s forecasts or sensitivity analyses
were more resistant to bugs, we simply compare the
quantity of parameter/mutation pairs for which Fm(r)>Sm(r)
to the number for which Fm(r)<Sm(r). If more pairs have
Fm(r)>Sm(r) than have Fm(r)<Sm(r), then forecasts are more
likely to be affected by bugs than sensitivity analyses and
therefore MM5 is observed to be more dependable for
sensitivity analyses than forecasts. If fewer pairs, then the
opposite is observed: MM5 would be observed to be more
dependable for forecasts. Results will be presented at the
meeting.

4.3 Details, Caveats, and Needs for Further
Work
Study #1. The results of this study on the effects of bugs
on forecasts required mutations to be applied to a number
of different source files. A number of different types of
mutations were applied, each designed to be plausible as a
kind of bug a human programmer might accidentally make.
As examples, loops can suffer from “off-by-one” bugs,
additions can be programmed into calculations when
subtractions should be, multiplication and division can be
incorrectly substituted similarly, and so on. Table 2 shows
the types of mutations that were used. Each was applied
opportunistically to a source file at each point in it where
the source code would permit such a mutation. Thus, for
example, off-by-one bugs can be applied to points in the
code where loop control variables were tested.

This process of using a number of different, seemingly
plausible bug types leads to two caveats.

1) The proportion of each bug type in one source file
may not match the proportion in another source
file. The question this leads to is whether
differences observed across source code files
(Figure 2) could be due in part to differences in
the effects of mutations across different bug
types. (Similarly, differences in effects of
different bug types could be due in part to
differences across the source files containing
them.) Appropriate statistical analyses should be
able to separate the effects due to source code file
from those due to bug type.

2) Although the bug types used have intuitive appeal
as mistakes that human programmers might make,
there is no claim that all such mistakes are
captured by the set of bug types used for
mutations in this (or any) work. In particular,
humans can make diffuse mistakes that cover a
number of lines of code, and these are hard to
mimic when generating mutations artificially.
Mutation analyses have historically assumed that

automatically generated mutations are similar in
their effects to human programmer errors,
however.

Another limitation of the study is its reliance on a single
weather forecasting scenario. While within the range of
typical forecasting problems, it is possible that other initial
conditions could lead to different results for the
dependability metrics of the source files. This could in
principle be addressed by seeing if similar results are
obtained for a set of diverse forecasting problems.
Study #2. This study comparing the ability of sensitivity
analyses and forecasts to resist the effects of bugs relied on
a particular perturbation to the input conditions, a
particular weather scenario (as in the other study), and a
particular time period of 24 hours. Each of these may
potentially have an influence on the results.
The perturbation to the input conditions was chosen to be
small in order to stay within the linear response region of
the simulation system. However weather simulation is
well-known to be mathematically chaotic. Thus, there may
be legitimate doubt about whether in fact this experiment
did stay within the linear response region (or even if trying
to do so is worth doing). The questions this raises is
whether different input perturbations might lead to
different assessments of which resists bugs better, weather
forecasts or sensitivity analyses. The solution here is more
extensive testing that includes and compares different
input perturbations.
The relative abilities of forecasts vs. sensitivity analyses to
resist bugs may also potentially depend on the time period
of the simulation. While 24 hours incorporates both day
and night, thereby exercising varied portions of the system,
other time periods are also of interest. This suggests
additional testing that incorporates a range of different
time periods.
Finally, as in the other study, more extensive testing could
usefully include different weather scenarios.

5. REFERENCES
[1] Allen, M.R., J.A. Kettleborough and D.A. Stainforth, 2002:

Model error in weather and climate forecasting, Proc. 2002
ECMWF Predictability Seminar, ECMWF, Reading, UK

[2] Alpert, P., M. Tsidulko and U. Stein, 1995: Can sensitivity
studies yield absolute comparisons for the effects of several
processes? J. Atmos. Sci., 52: 597-601.

[3] Berleant, D. and B. Liu, 1997: Is sensitivity analysis more
fault tolerant than point prediction? Simulation in the
Medical Sciences: Proceedings of the 1997 Western
MultiConference, pp. 196-199.

[4] Fenton, N.E. and M. Neil, 1999: A critique of software
defect prediction models, Software Engineering 25 (5): 675-
689.

[5] Madeira, H., D. Costa, and M. Vieira, 2000: The emulation
of software faults by software fault injection. In Proceedings
of the International Conference on Dependable Systems and
Networks, IEEE, pp. 417-426.

[6] Voas, J. and J. Payne, 2000: Dependability certification of
software components, Journal of Systems and Software 52
(2-3): 165-172.

[7] Workshop on Ensemble Weather Forecasting in the Short to
Medium Range, Quebec, Sept. 18-20, 2003.
http://www.cdc.noaa.gov/~hamill/ef_workshop_2003.html.

