
Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

2632

Using Software Engineering Concepts and Techniques
to Leverage Learning: A Novel Approach

Daniel Berleant1, Zhong Gu1, Steve Russell1, James F. Peters2,

Sheela Ramanna3, and Hal Berghel4

1Department of Electrical and Computer Engineering
Iowa State University, Ames, Iowa 50011 /

2Department of Electrical and Computer Engineering, University
 of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada /

3Department of Business Computing, University of Winnipeg
 Winnipeg, Manitoba R3B 2E9, Canada /

4Department of Computer Science, University
of Nevada, Las Vegas, Nevada 89154

This paper describes an approach to integrating software engineering concepts and principles
into the Electrical and Computer Engineering (ECE) and Computer Science (CS) curricula. Our
philosophy is to apply software engineering techniques throughout the ECE/CS curricula to
leverage learning in non-software engineering courses. Our technique is to seek out faculty
interested in innovative teaching techniques, consult with them to identify some way that they
and we feel a course they are teaching could benefit pedagogically from some application of
software engineering, and work with them to make that happen. The chief intended result is to
leverage learning in diverse courses, thereby benefiting pedagogy of non-software engineering
topics. An auxiliary important result is to increase awareness among both students and faculty of
the software engineering body of knowledge.

Many software engineering approaches to understanding and solving problems in the software
life cycle can also address a variety of learning needs across disciplines in ECE and CS. For
example, there are software engineering techniques that can emphasize visualization (benefiting
students who respond to the visual modality), logical sequences (benefiting sequential learners),
summarizations (benefiting global learners), and others. Additionally, general issues of
teamwork and the engineering life cycle can be addressed.

We have applied our approach to a diverse set of electrical engineering and computing courses
at four universities in the US and Canada, and based on those experiences we believe we have
identified a win-win paradigm that can be a model for integration of software engineering
concepts into electrical engineering and computing curricula.

Introduction
Software engineering has rapidly become a major topic in computing education. Departments of
software engineering and degree programs in software engineering are increasing in number,
and guidelines for software engineering education are receiving increasing attention (Barnes
19983; Bagert et al. 19992; Joint Task Force on Computing Curricula 200010). As part of this

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

trend, programs in computing and engineering disciplines such as electrical engineering have
been increasing their students’ foundation of knowledge either by direct or implicit
incorporation of materials from the software engineering life cycle paradigm. This paradigm is
characterized by a feedback loop containing requirements specification-design-measure-test-
maintain steps (Peters and Pedrycz 200018).

Deliberate application of this paradigm can sometimes lead to growing pains in programs in
which this occurs. When software engineering education is viewed as a necessary part of a
curriculum, but different and distinct from other curriculum areas, it can end up in unhealthy
competition for scarce resources. In contrast, we suggest a much more optimistic vision in
which software engineering is made into a positive force for other educational goals and
becomes a tool for helping to teach other topics more efficiently. As a valuable side effect this
will also help familiarize students and faculty with software engineering concepts.

We are taking software engineering education beyond something that existing programs, often
stretched thin already, must add to their list of responsibilities. In particular, we are making
software engineering contribute directly to education in other, non-software engineering
contexts (Peters and Pedrycz 199917; Pedrycz and Peters 1998)15. To do this, we draw upon
software engineering paradigms and frameworks to aid in teaching students a variety of subject
areas that form the traditional bread-and-butter of electrical engineering and computing
curricula. In particular, the application of software engineering benefits pedagogy throughout a
typical curriculum by better integrating software engineering concepts into the curriculum. As a
welcome side effect, this pedagogy will also help to familiarize both students and faculty with
software engineering itself. The result of this novel approach to integrating software
engineering concepts into a curriculum is the infusion of new approaches to realizing
educational goals in both software engineering and non-software engineering areas throughout
the curriculum.

State of the field
The “across the curriculum” paradigm is well recognized. One of the best-known examples is
that of writing across the curriculum, which has been influential in higher education for a
number of years. A number of efforts have specifically addressed computing curricula. Arnow
et al.1 describe teaching distributed computing across the computing curriculum. An NSF-
funded effort toward development of teaching social impact and ethics across the computing
curriculum spans a number of years and institutions (Martin et al. 1996; Huff et al. 1995;
Braxton and Stone).5,9,12 Closer to our present concern of software engineering, Thompson and
Hill (1995) describe teaching functional programming across the curriculum.23 More recently, a
conference was devoted to teaching object orientation across the computing curriculum.14
Grodzinsky et al. (1998) describe using project teams across the computing curriculum.7
Cushing (1997) describes cleanroom software engineering techniques across the curriculum.6
Software engineering as a field has considerably greater breadth than what these efforts are
concerned with (Liu and Peters 199911; Peters and Ramanna 199819; Peters et al. 199820; Peters
et al. 199816).

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

Software engineering as a broad field to be taught across the computing curriculum is described
by Placide (1999), Werth (1998), Horan et al. (1997), and McCauley et al. (1995).8,13,21,25 Such
works have emphasized the opportunities presented in computing curricula to teach software
engineering. In contrast, our approach focuses on using the software engineering body of
knowledge to teach other topics in computing – a process that uses software engineering to
support other educational goals yet facilitates software engineering education as well by
providing opportunities for students and faculty to embed software engineering concepts into
their ways of thinking about many kinds of problems.

A large proportion of university graduates of electrical engineering and computing (and other)
programs ultimately take employment involving software development, yet there is a
continuing shortage of competent software developers (Strigel 1999).22 At the same time,
software quality is receiving increasing attention as software systems occupy increasingly
critical positions in the societal infrastructure (Voas 1999).24 Competence in software
engineering may well be on its way to becoming as essential to the electrical engineering and
computing program graduate as competence in writing is to all graduates. Thus, strategies of
incorporating software engineering across the curriculum continue to form a timely area of
investigation. Our proposed strategy is novel in its focus on applying software engineering
principles to help teach diverse areas including such areas as signal analysis, circuit design and
telecommunication system design. As a consequence, software engineering can benefit other
educational goals, while software education itself benefits because people would be gaining
experience in using software engineering principles in varied contexts. We believe the time is
ripe for this novel pedagogical strategy both for its own benefits as well as for its potential to
serve as a model for analogous efforts in other fields.

Applying the Approach
The feasibility of the approach has been established through an ongoing project in which we
apply software engineering to assist in the pedagogy of diverse courses at Iowa State
University, University of Manitoba, University of Winnipeg, and University of Nevada, Las
Vegas. A review of courses and topics affected is given next, followed by a procedure we have
developed for applying the approach to a particular course.

Table 1 lists courses that we have addressed, and Table 2 lists courses that are soon to be
addressed and for which plans for how to do this are fully in place. These tables show the
diversity of courses to which our approach can be applied. In fact, we hope eventually to
address the full range of courses in electrical engineering and computing curricula (except for
software engineering courses themselves which are automatically addressed by definition).

How the courses were addressed
This section describes the relevant aspects of each of the affected courses and how software
engineering concepts were applied to those aspects. These descriptions could be used as a guide
to applying the approach to courses at other institutions.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

Curriculum,
University

Course

of
Students

Instructor

Subject

CE, ISU Cpr E 489 127 S. Russell Computer networking
EE, ISU EE 424 43 J. Dickerson Digital signal processing
CE, ISU Cpr E 305 78 A. Somani Computer system organization

and design
CE, ISU Cpr E 308 76 J. Davis Operating systems
CE, ISU Cpr E/EE 465 37 W. Black VLSI layout and design
CE, UM 24.374 84 J.F. Peters System engineering principles
CE, UM 24.446 40 J.F. Peters Parallel processing
EE, UM 24.771 30 J.F. Peters Optimal control
Applied
Computing,
UW

91.4901 60
(2 terms)

S. Ramanna

Senior project course

CS, UNLV 470/670 10 H. Berghel Multimedia systems design
CS, UNLV 341&341L 30 H. Berghel Internet programming

Table 1. Courses already addressed.

Table 2. Courses being addressed.

Digital signal processing (Senior level) The lab exercises often rely on fragments of code
developed in previous labs using tools such as Matlab. To facilitate this process, students were
given written instructions at the beginning of the semester on segmenting and commenting their
code to ease its reuse in future labs, and required to comply with them as they developed code.

Computer engineering & problem solving (Freshman level) The syllabus has been updated to
incorporate three software engineering-based changes, which will be taught in spring 2001. The
change is based on teaching teamwork and the importance of good design, and involves two 2-
person teams with each team developing a design for software that controls a robot’s path of
motion, which is passed on to another team to grade, then implement (using a real robot), and

Curriculum,
University

Course

of
Students

Instructor(s)

Subject

CE, ISU Cpr E 184x 72 D. Jacobson Computer engineering &
problem solving

CE &EE,
ISU

Cpr E/EE 491
& 91.4901

20 D. Berleant,
J. Lamont, and
S. Russell

Senior design and project

CE, UM 24.375 (UM) 80 S. Silverman System engineering principles II
CE & EE,
UM

24.765 (UM) 30 J.F. Peters Intelligent systems design

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

finally regrade. This pair of grades, generated by other students in the class, is incorporated into
the grade for the exercise that is ultimately recorded. The implementation step as well as the
two grading steps are intended to provide the opportunity for students to reflect on what makes
a good design.

The second syllabus modification is based on teaching the need for team organization, to handle
the rapid increase in the number of communication paths as team size increases. The class will
be divided into several teams, each with a different organization. After each team performs the
task of summing a rather long list of small integers, the class will discuss their varied
experiences with problem decomposition, team organization and communication.

The third syllabus modification is based on teaching the general structure of the software
engineering life cycle and the effort reduction benefits created by dealing with problems as
early in the life cycle as possible. Small teams will be given specifications for the volume of
containers they are to build out of paper and scotch tape during the class session, following
which they will be asked to generate a design and then implement it in class. Different teams
will be subjected to modest specifications changes at various points in their task (including after
implementation is completed, to incorporate the maintenance phase of the life cycle). This will
be followed by a class discussion focusing on the relationship between how late in the life cycle
the specifications changes are made and the effort required to comply with the change.

Operating systems (Junior level) Students did a model code review exercise. An introductory
lecture communicated evidence to them that such non-execution based testing methods have
been shown to improve the efficiency of software development. The intent was to give them the
motivation to write software for lab exercises ahead of time and the knowledge to be able to
collaborate in reviewing it in lab before trying to compile and run it.

Computer system organization and design (Junior level) This course makes extensive use of
hardware simulation models which are developed and run by the students. This lends a software
development character to the course for which software engineering principles can be
beneficial. An early homework exercise involving model development was replaced with a new
one in which students were given a model incorporating relevant and educational faults
(“bugs”), such that identifying and fixing them would help students in debugging their own
models later. In addition, a lecture and in-class exercise was given on the advantages of good
specifications and design prior to implementation. This discussion emphasized the savings in
overall effort that are achievable by dealing with problems early in the development life cycle
when they are easier to fix, rather than later when fixing them tends to require a much greater
expenditure of effort.

VLSI layout and design (Senior level) Students need to be able to deal with bugs and other
user-unfriendly characteristics of the modeling software they use in labs. This often leads to
problems in finishing the labs. To address this problem, the students were explicitly required to
report such problems – and their solutions – in their lab notebooks. Doing this appears to have
the following positive effects: (1) it makes the students think about the problem, its cause and
its solution, thereby giving them the ability to handle similar problems more efficiently in the

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

future, (2) it impresses on students that thinking about such issues can be useful, and (3) the
instructor and TAs are made aware of the frequently occurring problems and how to deal with
them sooner, which helps them to help the students to deal with them. We concurrently also
developed a Web-based problem reporting system for use in future semesters (at
http://wireless.ee.iastate.edu/CE465/).

Senior design (Senior level) Because the course is organized around teams of students doing
projects from the beginning of the life cycle through the implementation phase, good team
organization is valuable. Also, because the entire life cycle is exercised during the course,
understanding the importance of taking care of problems as early in the life cycle as possible is
valuable. To address these factors, we meet with our senior design groups and explain the
number of communication paths that exist in their team. With this as motivation, we provide a
team organization to control that number of communication paths and show what the new
number is. To address the life cycle factor, we keep the team focused on following the phases
of the life cycle well by having them report at each meeting where they are in the life cycle
(which phase and where in the phase), and insist that they revise previous reports when
appropriate. Thus, when they are working on the design and discover that a specification needs
revision, they must revise the specifications document. This is something that would be easy for
them (and us) to let slide if we were not intent on following a good life cycle model.

Internet programming (Junior level) Students were assigned individual programming
assignments organized by theme so that each weekly programming assignment was built upon
the previous week’s effort. The final month of term, the programming assignment model was
completely changed to a team approach, where each team of 3 or 4 students was given a multi-
module programming assignment with considerable design constraints and encouraged to find
their own optimal way of dividing the level of effort. This approach has the dual advantage of
both encouraging and verifying individual capabilities while at the same adding a real-world,
team-oriented dimension to the software development effort. In order to monitor every
member’s contribution to the team project, final grade is withheld until every team member
assesses the level and nature of contribution of the other members of their team via confidential
communication with instructor.

Multimedia systems design (Senior and Graduate level) In this case, students from computer
science and content-oriented disciplines such as film, art and music, are required to work as
teams on a semester project, with each team demonstrating mastery of the individual
assignment components (e.g., image manipulation and animation; digital audio recording,
rendering and modeling; mixing and editing; analog and digital video capture and editing; and
scripting, scoring and multimedia integration), while concurrently taking on a
leadership/tutorial role in one particular aspect of the project. In this way, the students have the
combined experience of developing a cohesive team project and also communicating technical
expertise to those less skilled. This parallels the actual software development environment in
which every participant is both practitioner and educator.

System engineering principles (Junior Level) This course focuses on an object-oriented
approach to system engineering based on paradigms found in software engineering (capability

http://wireless.ee.iastate.edu/CE465/

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

maturity model, planning, configuration management, cost estimation, process model, feedback
control, visualization, vanilla frameworks, problem analysis, description, identification of
system architectures, detailed design, verification, validation, measurement, testing, reliability,
computer-human interfaces, reengineering, maintainability). It provides an essentially
normative (“how to”) approach to developing systems. It relies on the use of metrics to
measure features of proposed and prototypes of software products, and to gain an understanding
of how one might design maintainable software. These metrics include effort, complexity, cost,
risk, reusability, design-length, and maintainability. The design process is examined in the
context of software configuration management, system description with statecharts,
architectural description with the Communicating Sequential Processes (CSP) language, reverse
engineering (extracting descriptions from code), and forward engineering (adding features to an
existing system and starting from scratch). Design begins with consideration of the architecture
(structure) of system, and moves toward the creation of a working prototype. Rapid prototyping
and incremental design of software are emphasized. Java is used in designing user interfaces.
This course also includes consideration of the design and re-design of software metrics such as
design length and program effort. This form of design is reflected in one of the labs and in two
of the three exams. The focus in designing new software metrics is on adapting a classical
model to the needs and features of object-oriented, software portion of system designs
containing classes and methods. In addition, the labs for this course include a reverse
engineering problem and a number of simple forward engineering problems. A web page for
this course include assignments, laboratories, lectures, and exams (see
http://www.ee.umanitoba.ca/programs/undergrad/c24374/index.html).

Parallel processing (Senior level) This course focuses on the design of parallel processing
systems. Topics include Flynn taxonomy, parallel architectures, parallel processing paradigms,
design process, implementation, speedup, performance metrics, computation models, tasks,
data, communication. The course includes the design and implementation of a system of
hunter and prey robots, which interact with each other and their environment. The
implementation will be a massively parallel system where animats learn to cooperate, find or
avoid each other. The user interface for this system will use Java.

Optimal control (Graduate level). This course focuses on the design, measurement and
optimization of a variety of adaptive linear controllers. Methods and paradigms (planning, cost
estimation, requirements, architectures, measures, testing) from software engineering are used
to organize, prototype and measure controller designs. Methods and theory from fuzzy sets,
rough sets, evolutionary computing, and neural computing are used in various hybrid linear
controllers. The project for this course was to consider approaches to the design adaptive
attitude (yaw, pitch and roll) controllers for a small geocentric satellite. An adaptive pitch
controller is to be designed using a combination of tuner design (gain selecting) based on rough
set theory and a classical PD controller.

Many alternative treatments are feasible
The preceding listing describes what was done in a number of courses, but it is important to
note that in most cases there are numerous alternative ways that a course could be addressed.
Often there are even various alternative ways that a single topic in a course could be addressed.

http://www.ee.umanitoba.ca/programs/undergrad/c24374/index.html

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

To illustrate, one additional course is provided next. For this course, the various possibilities
that were identified as feasible for just a single topic in the course are described (the possibility
that was ultimately used is also noted).

Computer networking (Senior level) Consider the problem of learning to understand a digital
communication protocol. Various software engineering concepts could potentially be used as
pedagogical tools to aid this understanding. A number of them are reviewed now.

The software life cycle begins with a rough account of what the product will do (often called
the requirements analysis or functional requirements). Applied to the problem of teaching
students a new protocol, this suggests beginning by reviewing the point of the protocol, in
essence providing them with a requirements analysis for the protocol. Scenarios and rapid
prototyping might be good choices in illustrating the requirements. A rapid prototype approach
might illustrate the protocol in slow motion, for example. However it should be mentioned in
this regard that current rapid prototyping environments are not without shortcomings and
should be used with a considerable measure of caution, particularly within an educational
setting.4

The next thing in a typical software engineering life cycle would be the detailed requirements,
or specifications. Specifications tell what a piece of software will do but not how it will do it.
Thus specifications in this case would flesh out the point of the protocol with all significant
details. Once the students understand what the protocol does via the specs, they should be in a
better position to understand how it does what it does. Depending on the problem, appropriate
and widely used software engineering techniques useful in communicating the specifications
include data flow diagrams, entity-relationship modeling, finite state machines, and Petri
nets. For the communications protocol problem, finite state machines might be a good choice
due to their ability to describe the problem while being understandable to the students.

Describing how the protocol does what it does corresponds to the design phase of the software
life cycle. The first subphase of design is architectural design in which the software system is
broken down into modules. From the standpoint of a digital communication protocol, the
modules might include one that runs on the sender and one on the receiver. Students would be
better equipped to understand the details of how the communication protocol works if they
understand a modular breakdown of it first. A software engineering approach to doing this
would likely use either data flow diagrams, or Unified Modeling Language (UML) sequence
diagrams as a description language for giving an understandable picture of a communication
protocol. The sequence diagram concept was the one we chose and used in this course. Other
problems might call for transaction analysis, abstract data types, class diagrams with
method descriptions, collaboration graphs, or some combination.

The second design subphase is the detailed design, in which the details are given but not the
actual program code. A stepwise refinement approach to presenting the detailed design might
be helpful. This amounts to presenting something in successively more detail. This could be
done with flow charts or in Program Description Language (PDL), often called pseudocode.
PDL is basically a description that uses control statements of a given programming language,

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

with other aspects of the code described in concise English rather than actual code. Flow charts
might be good for visual students, while PDL might be more suitable for sequential learners or
ones who learn well from printed text. Perhaps presenting a flow chart or PDL, and then
converting it to the other form during a lecture, would be useful.

The reader may notice that while many of the system development methods are specific to
software engineering, some description methodologies (such as state machines and various
forms of diagrams) as well as design methodologies (including prototyping, incremental
development, measurement, and testing) are more generic to engineering. This is good, since
this non-empty intersection of software engineering and traditional engineering methods will
facilitate their understanding and use across a typical university curriculum. The reader may
also notice that it is not necessary to discuss details of the protocol itself as we describe how
software engineering concepts could be brought to bear in teaching the protocol - it is enough
just to know that it is a communication protocol that is under consideration. This seems to be
true for many topics, and significantly facilitates the process of disseminating the strategy of
software engineering throughout the curriculum. From these various alternatives, sequence
diagrams were chosen for use in the course. Future evolution of the course could incorporate
other alternatives as well.

Procedure for leveraging learning with software engineering in a given course
Those wishing to get more ideas for their own courses can find many more details of the Iowa
State portion of the project at http://class.ee.iastate.edu/berleant/home/research/SE/index.htm.

Applying software engineering in diverse courses requires close coordination with the faculty
who teach those courses. We have addressed this by developing a procedure incorporating the
required degree of coordination. While systematic evaluation of this procedure is needed, as it
currently stands it has worked and appears to constitute a strong foundation for any future
refinements. It is given next as a six step process.

Step 1: Recruit interested faculty.
Step 2: In consultation with the instructor, identify promising course topics.
Step 3: Generate topic treatment alternatives.
Start feedback loop

Step 4 (includes loop test): Consult with the faculty to narrow the set of alternatives
under consideration.

Step 5: Develop alternatives still under consideration further.
End feedback loop

Step 6: Use the results to leverage learning.

Evaluation
There are two main aspects to evaluation of this work. One is to measure how satisfactory the
procedure is that applies software engineering to individual courses, and the other is to measure
the benefits in individual courses.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

To evaluate the six-step procedure, each of the steps should be evaluated separately. Since all of
the steps must succeed well for the procedure as a whole to succeed well, evaluating each step
will help identify any steps that constitute bottlenecks and hence should be modified to work
better. Since all of the steps must work for the procedure to work, all of the steps will ideally
work well. Quantitative measures of the success of each step have been planned based on such
raw data as the number of promising course topics identified, the number of alternative
software engineering-based treatments of a topic that are found, etc. Because this aspect of the
research has yet to be carried out, we defer details to future accounts of the work.

To evaluate the success of our approach on individual courses, a somewhat ad hoc approach is
necessary; evaluations can however be done in a well-disciplined manner. Because of the
panoply of ways the software engineering field can address different pedagogical issues in
diverse courses, there is no single assessment method that would apply to all cases. An
evaluation plan is needed for each affected course. Each evaluation plan will be developed in
collaboration with the instructor of the course, in accordance with the following outline.

Start loop

A) Schedule a consultation.
B) Consultation.
C) Recording to a repository of evaluation activities and measurements.

End loop if satisfactory evaluation plan is in place for the course.
D) Perform the evaluation.

Conclusion
The work we have done up to this point has shown the feasibility of the approach, but more
remains to be done. One next step is to evaluate the results on student learning. Another next
step is to facilitate use of the approach in other courses and universities. Eventually we hope to
have workshops to help others adapt the approach to their own situations. Ultimately, we hope
that the approach of integrating software engineering concepts into the curriculum as a tool to
leverage learning in non-software engineering courses will become widely visible and used in
curricula at many universities. We believe that the general paradigm of “across the curriculum”
educational approaches could benefit significantly from a key component of our approach:
teaching and learning of a target discipline (in the present case software engineering) by using it,
in part genuinely altruistically, to support the pedagogical goals of other disciplines.

Bibliography
1. Arnow, D.M., P. Whitlock, and C. Tretkoff, Using Modules to Integrate Distributed Computing in the
Undergraduate CS Curriculum, First Annual Northeastern Small College Computing Conference (CCSCNE 96),
April 19-20, 1996, University of Hartford, CT. Consortium for Computing in Small Colleges.
http://www.sci.brooklyn.cuny.edu/~arnow/ED/CCSCNE96/NSCCC96.PAPER.html.
2. Bagert, D.J., T.B. Hilburn, G. Hislop, M. Lutz, M. McCracken, and S. Mengel, Guidelines for Software
Engineering Education Version 1.0, Technical Report CMU/SEI-99-TR-032, Software Engineering
Institute, Carnegie-Mellon University, 1999.
http://www.sei.cmu.edu/publications/documents/99.reports/99tr032/99tr032abstract.html

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

3. Barnes, B., G. Engel, M. Griss, R. LeBlanc, T. Wasserman, and L. Werth, Draft Software Engineering
Accreditation Criteria, Computer 31 (4) (May 1998) 73-77.
4. Berghel, H., "New Wave Prototyping: The Use and Abuse of Vacuous Prototypes," Interactions, 1:2
(1994), pp. 49-54. http://www.acm.org/~hlb/publications/new-wave/new-wave.html
5. Braxton, S. and D. Stone, ImpactCS, http://www.seas.gwu.edu/~impactcs/index.html, Web site.
6. Cushing, J., Seamless Integration of (Cleanroom) Software Engineering Techniques into a Computer
Science Curriculum, Integrating Recent Research Results: An NSF-CISE Educational Infrastructure
Workshop, July 7-11, 1997, Evergreen State College, Olympia, WA.
http://www.evergreen.edu/user/CISE/cleanroom.html.
7. Grodzinsky, F. S., Project Teams: How to Build, Use, and Evaluate Them in Courses Across the
Computer Science Curriculum, The Consortium for Computing in Small Colleges Third Annual
Northeastern Conference (CCSCNE 98), April 24-25, 1998, Sacred Heart University, Fairfield, CT.
Consortium for Computing in Small Colleges. http://orion.ramapo.edu/~csconf/ccscne/98.
8. Horan, P., A. Goold, and Y. Yang, Integrating Software Engineering Throughout the Computing
Curriculum, technical report TRC97/01, 1997, Deakin University, School of Computing and Mathematics,
Victoria, Australia.
9. Huff, C. R., Martin, C.D. and Project ImpactCS Steering Committee. Computing consequences: A
framework for teaching ethical computing (First Report of the Impact CS Steering Committee).
Communications of the ACM, Vol.38, no.12, p.75-84, Dec., 1995.
10. Joint Task Force on Computing Curricula, Computing Curricula 2001, sponsored by IEEE Computer
Society and by ACM, 2000. http://computer.org/education/cc2001/report/index.html.
11. Liu, P. and J.F. Peters, Risk Analysis in Ice-Melting HVDC Transmission Lines, Proc. CCECE’99, Edmonton,
Alberta, May, 1999.
12. Martin, C. D., Huff, C. Gotterbarn, D., Miller, K. and Project ImpactCS Steering Committee,
Implementing a tenth strand in the computer science curriculum (Second Report of the Impact CS Steering
Committee). Communications of the ACM, Vol.39, no.12, p. 75-84, Dec., 1996.
13. McCauley, R. A., C. Archer, N. Dale, R. Mili, J. Roberge, and H. Taylor, The Integration of Software
Engineering Principles Throughout the Undergraduate Computer Science Curriculum, SIGCSE Bulletin
27(1) (1995) 364-365.
14. Ourusoff, N., Organizer, 1st Maine Higher Education Faculty/Student Development Workshop on
“Teaching the O-O Paradigm Across the Computing Curriculum,” May 1999.
http://users.uma.maine.edu/faculty/nourusoff.
15. Pedrycz, W. and J.F. Peters (Eds.), Computational Intelligence and Software Engineering. Singapore: World
Scientific Publishing Co. Pte. Ltd., 1998.
16. Peters, J.F., R. Agatep, S. Cormier, N. Dack, F. Kaikhosrawkani, N. Lao, O. Orenstein, P. Thang, V. Wan, and
W.Y. Wong, Air Traffic Control Trainer Software Development: Concepts, blackboard architecture and Java
prototype. Proc. of the Canadian Conf. on Electrical & Computer Engineering (CCECE’98), Waterloo, Ontario,
25-28 May 1998, 601-604.
17. Peters, J.F. and W. Pedrycz, Computational Intelligence. In: J.G. Webster (Ed.), Encyclopedia of Electrical
and Electronic Engineering. 22 vols. NY: John Wiley & Sons, Inc., 1999,
http://www.wiley.com/ee/engineering.htm.
18. Peters, J.F. and W. Pedrycz, Software Engineering: An Engineering Approach. New York: John Wiley &
Sons, Inc., 2000.
19. Peters, J.F. and S. Ramanna, Time-Constrained Software Cost Control System: Concepts and Roughly Fuzzy
Petri Net Model. In: L.A. Zadeh, K. Hirota, E. Sanchez, P.-Z. Wang, and R.R. Yager (Eds.), Advances in Fuzzy
Systems—Applications and Theory, Vol. 16. Singapore: World Scientific Publishing Co. Pte. Ltd., 1998, 339-369.
20. Peters, J.F., J. Wong, and S. Ramanna, Evolution of Competing Situated Robots: Concepts, and Experiments
with a Java Applet. Proc. SMC’98, San Diego, California, October 1998, 3371-3374.
21. Placide, E., The Merging/Integration of Software Engineering Across the Computer Science
Curriculum, ADMI 99 (The Symposium on Computing at Minority Institutions), June 3-6, Duluth, MN.
http://cs.fdl.cc.mn.us/admi99/1999SCHEDULE121.html.
22. Strigel, W., What’s the Problem: Labor Shortage or Industry Practices?, Guest Editor’s Introduction,
IEEE Software 16 (3) (May/June 1999) 52-54.
23. Thompson, S. and S. Hill, Functional Programming Through the Curriculum, in P. H. Hartel, and R.

http://www.acm.org/~hlb/publications/new-wave/new-wave.html
http://www.wiley.com/ee/engineering.htm

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

Plasmeijer, eds., Functional Programming Languages in Education, Lecture Notes in Computer Science
number 1022, Springer-Verlag, 1995, 85-102. http://www.cs.ukc.ac.uk/pubs/1995/214/index.html.
24. Voas, J., Certification: Reducing the Hidden Costs of Poor Quality, Guest Editor’s Introduction, IEEE
Software 16 (4) (July/August 1999) 22-25.
25. Werth, L.H., Integrating Software Engineering into Introductory Computer Science Courses, Computer
Science Education 8 (1) (March 1998).

DANIEL BERLEANT
Daniel Berleant is an Associate Professor in the Electrical and Computer Engineering Dept. at Iowa State
University, where he has been since 1999. He received the PhD from University of Texas at Austin in
1991. His interests include software engineering, text mining and interaction, arithmetic on random
variable operands, and technology foresight.

ZHONG GU
Zhong Gu received the BS degree and MS degrees in Electrical Engineering in 1995 and 1998,
respectively, from Xidian University. He is now a master's degree candidate in Computer Engineering at
Iowa State University. His research interests include multimedia browsing systems and use of software
engineering techniques to support pedagogy across the EE and CSE curricula. He is a member of the IEEE
Computer Society and the IEEE Communication Society.

STEVE RUSSELL
Steve F. Russell is an Associate Professor of Electrical and Computer Engineering at Iowa State
University. He is a registered professional engineer and is active in research with industry in the areas of
communication systems and signal processing. He spent 13 years in industry prior to joining ISU. Dr.
Russell received the B.S. degree in EE from Montana State in 1966 and a Ph.D. from Iowa State in 1978.

JAMES F. PETERS
James F. Peters is in the Department of Electrical and Computer Engineering, University of Manitoba, in
Winnipeg, Canada. He received his Ph.D. in 1991. He is an IEEE Millenium award recipient. He has
published over 100 papers in software engineering since 1991 and has authored a recent textbook in the
subject.

SHEELA RAMANNA
Sheela Ramanna is an Associate Professor and Head of the Department of Business Computing, University
of Winnipeg, Manitoba, Canada. She received her Ph.D. in 1991. She has published over 50 papers in
software engineering.

HAL BERGHEL
Hal Berghel, PhD, is Professor and Chair of Computer Science at the University of Nevada, Las Vegas.
His interests are in electronic information management and cybermedia, both broadly defined. He currently
has two popular columns, the Digital Village in CACM, and DL Pearls, within the ACM Digital Library.
He has received the ACM Distinguished Service Award, the ACM Outstanding Contribution Award, and is
a Fellow of both the ACM and IEEE. http://www.acm.org/hlb.

	Daniel Berleant1, Zhong Gu1, Steve Russell1, James F. Peters2,
	Sheela Ramanna3, and Hal Berghel4
	1Department of Electrical and Computer Engineering
	Iowa State University, Ames, Iowa 50011 /
	2Department of Electrical and Computer Engineering, University
	of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada /
	3Department of Business Computing, University of Winnipeg
	Winnipeg, Manitoba R3B 2E9, Canada /
	4Department of Computer Science, University
	of Nevada, Las Vegas, Nevada 89154

	Introduction
	State of the field
	Applying the Approach
	Table 1 lists courses that we have addressed, and Table 2 lists courses that are soon to be addressed and for which plans for how to do this are fully in place. These tables show the diversity of courses to which our approach can be applied. In fact, we
	
	
	
	How the courses were addressed

	Evaluation
	
	Start loop
	DANIEL BERLEANT
	STEVE RUSSELL
	JAMES F. PETERS
	SHEELA RAMANNA

