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THE JIKITOU BIOMEDICAL QUESTION ANSWERING SYSTEM: 
FACILITATING THE NEXT STAGE IN THE EVOLUTION OF INFORMATION 
RETRIEVAL by Michael Anton Bauer, 2013 

 

Abstract 

In clinical and biomedical settings researchers often use specialized 

search engines to acquire answers to technical questions or to verify 

experimental results from peer reviewed scientific literature. The outcome of such 

queries typically results in the reading and scanning of multiple Web pages and 

documents. Information retrieval is the science of retrieving relevant items and 

question answering (QA) is a specialized type of information retrieval with the 

aim of returning precise short answers to queries posed as natural language 

questions. In this dissertation I describe and discuss a QA system, named Jikitou 

(www.jikitou.com), which creates a dialog with the user that mimics human 

interaction and utilizes multiple search agents to answer biomedical questions. 

Jikitou is designed to be modular to allow for easy modification and 

evolution of core components. An evaluation system has been devised, which 

allows for the systematic comparison among different algorithms for finding 

relevant answers. The system's architecture can be divided into four subsystems: 

knowledge base, question analysis, answer agents, and user interface. Multiple 

software agents find possible answers to questions, from which the most relevant 

are presented to the user. Relevant information is presented to the user which 

establishes a kind of dialog with the user to obtain feedback to refine the query. 

Answers are automatically marked up and linked to semantically relevant content 



 
 

 
 

in other databases. The additional information is presented in a popup window 

that appears when a marked term is clicked. 

Jikitou addresses two current requirement gaps in biomedical question 

answering, namely, incorporating multimedia information and an ability to interact 

with the user. There is a lack of systems that allow the user to establish context, 

utilize that information in the process, and automatically return the appropriate 

answer. Jikitou returns answers to biological questions rather than lists of 

documents, which reduces the need to read entire documents. In addition to 

addressing current gaps, the system demonstrates an architecture framework 

that can continually evolve, maintaining itself as a valuable tool to researchers 

not only for question answering but also for other information retrieval needs. 
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Chapter 1: Introduction 

We live in an age where we have access to more information than ever 

before. This can be a double edged sword. The access to information allows for 

more informed and empowered researchers. On the other hand finding relevant 

information becomes an increasingly more difficult task. Clinical and biomedical 

researchers often use search engines to find short answers to biological 

questions or to quickly get validation of genomic and proteomic experimental 

results. Google (1) and PubMed (2) are well known and successful information 

retrieval systems, but once the results are returned in the form of a list of 

documents or sites, it is left to the user to scan the resulting list and linked pages 

for the relevant information. A simple search can quickly become a time 

consuming task when one must manually find the answer due to the number of 

hits returned using these traditional kinds of information retrieval systems. There 

is a need for intelligent information retrieval systems that can summarize relevant 

textual information while also incorporating multiple sources of information from 

reliable sources to satisfy a user’s query. 

1.1 Background 

Question answering (QA) systems are an extension of information 

retrieval in which precise short answers are built and returned to the user in 

response to queries posed as a natural language question (3-5) . Currently there 

are few such QA systems specific to the genomic and proteomic domains. Thus, 
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there is a need for systems that are able to return short answers extracted from 

PubMed articles and other such sources that accurately answer genomic and 

proteomic questions. Reduction of the amount of irrelevant information returned 

to the user is expected to increase the productivity of researchers in the 

biomedical field. 

There are many reasons why researchers perform literature searches: 

 find gaps and limitations in a field 

 find and compare results 

 validate results against peer's research 

 learn about a field 

A question answering system might allow researchers interested in 

biomolecular interactions to fulfill many of these needs. Potential gaps in a field 

can be found if a particular question cannot be answered. If conflicting answers 

are presented to the user they can quickly get an idea of the controversies and 

conflicting opinions. Performing large scale interactome, proteomic, or genomic 

experiments results in large lists of genes, proteins, and other biomolecules and 

it is often necessary to review the literature to validate results or see what is 

known about them (6, 7). The aim of a question answering system like this is to 

make this task easier. 

Grant et al. (6), for example, present a proteomic study of multi-protein 

complexes in mammalian neuronal synapses. They describe the protocol they 

followed and believe a systematic literature search should be done when you 

have a list of proteins and genes obtained during a proteomic or microarray 
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experiment. The paper states that learning what is already known about the 

proteins that they have identified can provide insight into what the next step 

should be in the research plan. This requires an exhaustive search of the 

literature for the entities of interest. 

The author mentions that performing literature research on even a list of 

just 10 proteins can be a daunting task. Each gene or protein has multiple 

synonyms and it can be time consuming to create a query to encompass all 

possible terms. A method is described that utilizes text mining methods to 

automate the process of finding synonyms and searching the literature 

databases for papers pertinent to a protein in question. They were looking for 

papers that mentioned a mutation in a gene of interest that was associated with a 

human disease. Their method is broad and returns only a small percentage of 

relevant papers. This type of search still requires a large percentage of the 

literature research time to be dedicated to reading and skimming papers that do 

not contain any relevant information. 

1.2 Aims and objectives 

The main hypothesis in this study is that a question answering system can 

provide an improved method for information retrieval that deals with specific 

biological questions. The hypothesis is based on the concept that often the 

relevant information need can be found in a sentence or phrase contained within 

a document rather than having to read the entire document (8). Retrieval of this 

piece of information helps reduce the need for documents to be scanned or read. 
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This thesis will advance the information retrieval field by filling gaps that 

are present in information retrieval and question answering systems. Such gaps 

include the deficiency in the use of multimedia sources to enrich answers and 

interaction with the user to establish context (9, 10). There is also a lack of 

systems that enable users to systematically build and test a QA approach without 

the need to build an entire IR system from the ground up (11). It is the goal of this 

project to address these gaps and limitations. Multimedia sources are linked to 

key words matched in the answers that aid in the understanding of the answer. 

Sources include links to definition of terms, relevant information in other 

databases, and video. Design decisions taken during the development of the 

system allow it to systematically evolve and give other researches a base from 

which they can build novel search strategies immediately (contact the author for 

source code if you are such a researcher). This QA system advances the field 

with an application that returns answers to biomedical questions enhanced with 

data from multimedia sources in addition to providing a QA development tool. 

Specific aims 

The goal of this thesis is to advance QA in the context of building a text 

mining system with a question answering system that returns concise answers to 

genomic and proteomic questions. To achieve this, the following specific aims 

were fulfilled. 
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Aim #1: Build components of a base information retrieval system 

Build the information retrieval base system components that are 

necessary for the QA system. Sub-tasks included the selection of a suitable 

search engine library to incorporate into modules and scripts to provide basic 

search and indexing capabilities. 

Aim #2: Build a QA system onto the base 

Build the question answering system on top of the base information 

retrieval system, also integrating multiple resources together to create a 

knowledge base which different search strategies can access. This approach will 

maximize the likelihood that the most relevant information for a particular 

information need is found using one of the search strategies. 

Aim #3: Build a web interface 

Build a web interface to the QA system. It is through this interface that 

standard users will interact with the system. They will submit their questions and 

answers will be returned to them. The interface will also allow for query 

refinement through user feedback. As well as providing a mechanism for 

presenting the content provided by the HyperGlossary. The requirements of the 

interface are that it be dynamic, responsive, and intuitive. 

Aim #4: Enhance the answers using the HyperGlossary 

Enhance the answers by incorporating a HyperGlossary module to 

connect answers to additional resources. Possible answers to questions can be 

presented to the user enhanced with links to additional information. Passing the 
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answers to the HyperGlossary increases the understandability of the answers 

through the addition of links to semantically relevant information. 

Aim #5: Evaluate the system 

Design and execute a method to evaluate the system. Different search 

strategies should be developed for use within the system and compared. An 

evaluation method that minimizes the need for human judges was desired. 

1.3 Thesis organization 

The rest of this thesis is organized as follows.  

Chapter 2 Literature review 

This chapter gives background information on current state of the art QA 

systems and is essentially a paper that we published in the journal Human 

Genomics entitled “Usability survey of biomedical question answering”.  

Chapter 3 Jikitou design and methods 

Chapter 3 goes into design and describes the methods and algorithms 

chosen for the QA system. I describe the software design paradigms followed 

and the reason for the choices. I continue in the chapter to give background on 

the basic parts of an information retrieval system and our approach to 

implementing these into the system. In this project many existing tools, 

databases and technologies are integrated and their function and use are also 
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described in detail. The chapter concludes with a detailed description of the 

interface and how the user interacts with the system. 

Chapter 4 System evaluation 

Evaluation of the system is explained in Chapter 4. A detailed description 

of the problem with evaluating IR tools is given and two evaluation methods that I 

have chosen to implement are detailed. 

Chapter 5 Results 

Evaluation results are described in this chapter. The results of both 

evaluation methods are further analyzed with additional evaluation measures 

calculated and the results presented. Agreement and disagreements between 

the two methods are highlighted. Performances of the different search strategies 

are compared. 

Chapter 6 Future work 

 This chapter conveys possible future plans for improving the system. 

There are several directions that can be taken to further the research, advance 

the field of IR, and question answering in particular. 

Chapter 7 Conclusions 

 Chapter 7 draws conclusions from the evaluation results as well as 

making a case for how the Jikitou system has advanced the fields of information 

retrieval and question answering.  
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Chapter 2: Literature review 

2.1 Usability survey of biomedical question answering systems 

Based on a paper published in the journal Human Genomics, 2012, 6:17, 

http://www.humgenomics.com/content/6/1/17. 

Summary 

Biologists have access to an ever increasing amount of textual 

information. Increased access to information allows for more informed and 

empowered researchers, while information overload becomes an increasingly 

serious risk. Thus, there is a need for intelligent information retrieval systems that 

can summarize relevant and reliable textual sources to satisfy a user's query. 

Question answering is a specialized type of information retrieval with the aim of 

returning precise short answers to queries posed as natural language questions. 

I present a review and comparison of three biomedical question answering 

systems: askHERMES (http://www.askhermes.org/), EAGLi 

(http://eagl.unige.ch/EAGLi/), and HONQA (http://services.hon.ch/cgi-

bin/QA10/qa.pl). 

Introduction 

There are numerous general purpose search engines available online, but 

as information sources continue to proliferate, specialized and domain-specific 

information retrieval tools become more essential. One such domain is the 

http://www.askhermes.org/
http://eagl.unige.ch/EAGLi/
http://services.hon.ch/cgi-bin/QA10/qa.pl
http://services.hon.ch/cgi-bin/QA10/qa.pl
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clinical and biomedical fields, where the body of scientific knowledge is large and 

increasing. To minimize searching and browsing time while maximizing 

usefulness of that knowledge and data, we are seeing considerable interest in 

biomedical/clinical question answering systems (12). Question answering (QA) is 

a specialized type of information retrieval that returns precise short answers to 

queries posed as natural language questions (3, 13-15). It is the goal of such 

systems to move the burden of skimming multiple documents, which can be quite 

time consuming, from the researcher or clinician to the computer. The recent 

successes of IBM's Watson on Jeopardy highlight the possibilities and potential 

power of QA (16). I present a review of three leading biomedical QA systems, 

askHERMES (17-19), EAGLi (20, 21), and HONQA (22-24), which are all 

publically accessible online. This paper is organized into sections based on key 

usability dimensions used to compare the different systems. 

Information sources 

An important factor for any domain-specific QA system is the accuracy 

and trustworthiness of the sources against which queries are performed. Most 

biomedical QA systems make use of MEDLINE abstracts as an information 

source (25) . Two systems that I reviewed, askHERMES and EAGLi, used 

MEDLINE as a major source of answers. In addition, askHERMES uses 

eMedicine,(26) clinical guidelines, PubMedCentral (27) full text documents, and 

Wikipedia. EAGLi uses Medical Subject Headings to help answer some 

definitional questions. HONQA uses websites that have been certified by Health 
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On the Net Foundation (HON) (28), unlike the other two systems that rely heavily 

on MEDLINE. 

Response time and results 

First of all, the systems vary in their response times and in the form of 

answers returned to the user (in particular, single or multiple sentences). All three 

QA systems return relatively short answers to clinical or biomedical questions 

instead of entire documents. Response time assessment is based on the relative 

amount of time it took each system to respond to a typical query. 

EAGLi is quite slow and may not truly be ready for high volume traffic. In 

response to a question that the system ‘understands,’ a list of possible answers 

is displayed with corresponding levels of confidence indicated. Links to abstracts 

are also provided and grouped by which answers to the question they support. If 

a question is not understood, EAGLi returns a list of abstracts that contained 

some of the query terms. The program also provides a short snippet of text from 

the abstract that contains keywords from the query. Next to the text there are 

links to PubMed and to a page they call a “semantic summary” which displays 

the entire abstract and a list of all the Gene Ontology and SwissProt terms that 

were matched, along with the phrase they were mapped to. A score is given to 

indicate to the user the strength of the mapping. This information gives the user a 

way to understand why the system has determined that a particular abstract 

supports an answer or was given as the answer. A link to a matrix is provided on 

the main results page that can quickly give the user an overview of the terms that 

were matched in the abstracts. This system provides a degree of transparency to 
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the retrieval process that traditional information retrieval systems hide from the 

user. That in turn supports efforts by the user to efficiently figure out how to best 

phrase a query or question to get the most relevant information. 

The askHERMES system responds significantly more quickly than EAGLi 

or HONQA. It warns that it may take up to 60 s, but more often than not, it returns 

results in only a few seconds. Query terms are determined first by identifying 

noun phrases in a question which are then weighted based on several methods. 

The query is subsequently expanded using the Unified Medical Language 

System (UMLS), dictionaries, and thesauruses. Answers that are returned in 

response to a question can be viewed in three different arrangements: clustered 

answers, ranked answers, and content clustered answers. Clustered answers 

are first grouped according to different combinations of query and UMLS query 

expansion terms. They are then sub-clustered by different combinations of 

synonym concepts. This functionality can be useful in answering a complex 

question, such as one about a cause and treatment, which may require reading 

several different passages to find an answer. This is useful because often a 

sufficient answer cannot be found in just one sentence or short passage. Content 

clustered answers provide a third method to view answers. Common labels are 

found for the original clusters, and additional answer passages are found that 

match these labels. This approach allows a passage to be found under multiple, 

easy to read labels. A list of related questions is shown and can be used to 

further refine the one's own query question. The answers returned by the system 

are short passages or phrases from MEDLINE abstracts which are linked back to 
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the original citation. The system classifies questions into several categories 

defined by the National Library of Medicine (NLM) (29), such as diagnosis, 

treatment and prevention, etiology, pharmacological, management, and others. 

This classification aids in identifying query terms to use in retrieval. 

HONQA is about as slow as EAGLi but it does display a status bar so that 

you can better tell whether it is working or has hung. Next to each answer, you 

can indicate whether a response to the question was appropriate or not. This is 

intended to help improve the quality of the answers provided by the system over 

time. Answers are linked to cached versions of the websites from which the 

sentences were obtained. The answers are sentences taken from HON certified 

websites. A health and medical website can apply to be certified, after which the 

HON organization will evaluate the site to see that it meets ‘The HON Code of 

Conduct for medical and health Web sites’ (HONcode) (30). The use of certified 

health websites as a source of knowledge is unique to the HONQA system. It 

was the intent of the designers of HONQA that users with different levels of 

health and biological knowledge be able to benefit from answers that are 

understandable and useful. MEDLINE contains high quality peer reviewed 

literature but can be technically difficult to understand, whereas websites are 

typically designed and geared for a more diverse audience. However, a 

significant problem with using the Internet as a source of health information is the 

lack of oversight of the information that is presented. The HON certification helps 

alleviate the problem of incorrect and possibly dangerous medical information on 

the Internet. Another benefit of using websites as a knowledge source is that 
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there are links to additional information present in most web pages (and absent 

from MEDLINE abstracts) that can often help answer the question if the sentence 

returned does not completely answer it. 

User interface 

EAGLi provides a simple and clean interface which allows users to ask a 

question and either use the PubMed search tool or their specialized relevance 

driven search engine. Most of the items on the page can be hovered over with 

the mouse to display a small tooltip containing a more detailed description of the 

item. The terms that are selected from the question to be used to query are 

displayed on the results page. The system appears to reformulate and 

automatically expand the queries with the addition of Gene Ontology and 

SwissProt terms. 

The interface to askHERMES is also simple and clean with multiple tabs. 

At the top of the results page are links to clinical question answering tools, which 

include utilities to browse questions, classify questions, and generate query 

terms. A question browsing utility allows browsing the NLM collection of clinical 

questions that they used while developing and tuning the system. A question 

classifying utility lets the user submit a question and see in which category the 

question is categorized. An ad hoc question can also be submitted to the query 

term generating utility to get a list of the keywords that would be extracted and 

used by the system to query the database. These utilities can help the user 

understand how the system answers questions that are posed, similar to the 

“Semantic Summary” of EAGLi. 
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HONQA has a very simple and easy-to-understand interface. When 

results are returned, information about how the question was interpreted is 

provided and includes: the number of answers, the language, expected question 

type, and expected medical type. HONQA does some interpretation of the 

question to determine the type and kind of medical information being requested. 

Question types can be definition, factoid, list, and Boolean. The medical types a 

question may be include definition, diagnostic, physiology, and treatment. This 

helps the user determine whether the system understands the intent of their 

question. 

Answer quality 

The askHERMES system returns passages that could potentially answer 

all types of questions. A drawback is the consequently high recall; a large 

number of results are often returned, which tends to defeat the intent of a 

question answering system in reducing the amount of information that must be 

read. HONQA returned fewer answers to many biomedical questions and is 

tuned for medical questions. I observed that HONQA was able to present 

sentences that answered questions to definitional clinical questions. The 

sentences returned by the system were clear and easy to understand, and often, 

following links to the cached source texts for further elaboration was 

unnecessary. The EAGLi system was unique in that, when it understood a 

definitional question, it would return a list of target answers with different levels of 

confidence in addition to supporting abstracts. If a question was not understood, 

it would just return abstracts that contained the query terms without the list of 



15 
 

 
 

possible answers. Thus, while long, complex questions tended to lead to no 

results from EAGLi and HONQA, askHERMES returned results for any size and 

type of question posed. This strategy strongly suggests itself as a general 

architectural feature for future QA systems. 

Summary 

There are considerable interesting differences between the three systems. 

HONQA returns single-sentence answers that are clear and easy to understand. 

Although EAGLi provides single entity answers, it still seems to be often 

necessary to read the abstracts to validate the answers provided. It also presents 

the user with many different ratings and views which can be confusing. With its 

quick responses, askHERMES is currently the most useable of the three 

systems, especially if it is necessary to make multiple queries. Table 2-1 

summarizes the dimensions and comparisons of the different systems. 

Biomedical question answering systems are improving and will be ready for 

prime time, perhaps surprisingly, soon. These three systems demonstrate that 

they are close to becoming valuable tools for the clinical and biomedical fields. 

 



16 
 

 
 

Table 2-1 Question answering system comparison matrix of features for HONQA, 

askHERMES, and the EAGLi systems.  
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Chapter 3: Jikitou design and methods 

This chapter details each part of the system, describing key functions and 

algorithms. It also details the external programs and databases that have been 

integrated into the system and their application. The reader can get an 

explanation of the design concepts and the reasons for their selection. 

3.1 Design rationale 

The system that I have developed is called Jikitou and can be found at the 

web address www.jikitou.com. Jikitou is the Japanese word for “prompt 

answers/direct personal answer”, the tenets that guided the design and 

implementation of the system. Question answering, being an advanced 

information retrieval task, builds upon and combines many basic text-mining 

tasks that in turn use many methods and tools, see Figure 3-1. 

Jikitou incorporates many of the common methods which are used in the 

more mature text-mining tasks of information retrieval, entity recognition, and 

information extraction to find answers (15, 31, 32). Information retrieval is the 

process of identifying text segments relevant to a topic, which is accomplished 

using methods that find similarity between them. Information extraction is the 

process of identifying predefined types of fact from the literature. The facts may 

be specific relationships between biological entities; for example, protein-protein 

interactions or gene-protein interactions. The most commonly used strategies for 

automated information extraction are co-occurrence analysis, template matching, 

http://www.jikitou.com/
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and natural language processing. Entity recognition is the process of identifying 

specific terms of interest. In the case of biomedical text-mining the usual entities 

of interest are genes, proteins, or diseases. 

 
Figure 3-1 The basic text-mining task, common methods to accomplish those task and 

some of the possible advanced tasks that are built using a combination of them. 

Highlighted items show which methods and tasks are used in the Jikitou QA system. 

As mentioned previously a question answering system is an advanced 

information retrieval system. A basic information retrieval system has five main 

components (33) shown in Figure 3-2. Similarly Jikitou contains these 

components, most of which are implemented using Apache Lucy, an open 

source search engine. The rest of this section describe, the basic information 

retrieval components and the Apache Lucy package 
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Figure 3-2 Basic organization of an information retrieval system 

Apache Lucy 

Apache Lucy (34) is a full-text search engine library which is a loose C 

port of Apache Lucene, which is written in Java. Lucy was chosen as the base 

search library used by Jikitou because of the availability of Perl bindings, which 

allow Jikitou to be programmed in Perl and to take advantages of that language 

and still have the benefits that you are afforded with Lucy being written in C. 

Searching 

The actual searches are performed by the Lucy::Search::IndexSearcher 

module which executes a search against a single index. It takes as a parameter 

the directory path of the index of choice. The index is one that would have been 

created in an earlier process and is discussed in more detail in the section on 

indexing later in this chapter. The hits method made available through the 

IndexSearcher can accept a plain query string or a query object. A query object 

is created by using the Lucy::Search::QueryParser, which is used when complex 

queries are desired. 
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Query formation 

This is the process of building a query from the user’s input. The user has 

an information need and inputs an initial string either in natural language or 

Boolean form depending on the system. Query formation in Jikitou takes a user’s 

question and then modifies the query based on feedback from the user through 

the selection of additional terms suggested by the system. Additionally, the query 

may be further modified through the use of the knowledge base for example, and 

through automatic query expansion by including synonyms of terms identified in 

the initial question. 

Jikitou Query Formation 

An important aspect of question answering is the formation of a query that 

can be used to search an index that returns answers that are semantically 

relevant to the question posed by the user. In Jikitou, the Lucy module that is 

used in query formation is a subclass of the Lucy::Search::QueryParser module 

which can take several syntactical constructs to build complex queries which may 

include: 

 Boolean operators ‘AND’, ‘OR’, and ‘AND NOT’ 

 Prepended ‘+’ or ‘-‘ to indicate whether a term is required or 

forbidden in the results 

 Phrases indicated by double quotes 

The module used in Jikitou is named FlatQueryParser and is used to 

transform text produced after question analysis into a query object. 
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FlatQueryParser is a simplified custom search query language which, as of now, 

only supports simple term queries and phrases identified by double quotes. It 

takes a string of text and builds the query object that is then used by the search 

module. The string is tokenized and terms enclosed in double quotes are 

identified as phrases and a phrase query object is created. Terms without quotes 

are turned into individual term query objects. After the string has been completely 

parsed, the query objects are unioned together by adding it as a child of a Lucy 

“OR” query object which is then used by the searcher to retrieve the closest 

matching text. 

Document representation and document weighting 

This is the process by which the documents are converted to a secondary 

representation known as an index. Here is where the terms to be indexed are 

identified. The most basic document representation is a matrix with the 

vocabulary for the collection on one axis and all the documents on the other axis. 

If a term is present in the document it is represented as a 1 and if it is absent it is 

represented with a 0. Most often a term is instead represented with a value that 

represents its relative importance and ability to discriminate between different 

documents. This involves a weighting scheme to assign different values to 

different terms depending on their potential document discriminatory power, 

meaning their ability to distinguish one document from another. The indexed 

terms can be terms in a document set or a subset based on a controlled 

vocabulary or at least the removal of stop words and other common words which 

have very low document discrimination power. It can also be indexed by groups 
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of terms semantically relevant to one another, such as using Latent Semantic 

Indexing (LSI). LSI is based on the principle that terms that are used in similar 

textual context often have similar meanings. 

Parsing and Indexing 

Parsing is the process of analyzing text to determine structure. Parsing 

requires tokenization, which is the process of segmenting text into meaningful 

parts. Parsing can be as simple as finding terms and sentence boundaries or as 

complex as determining grammatical structure. A parser tells the computer what 

it should consider a token from the sequence of bytes it receives as it scans a 

document. The results of parsing are placed in an index. 

 Indexing is a process of converting a corpus into a form that can be 

quickly searched. When a document is indexed the entire corpus does not have 

to be scanned to locate the desired information. The indexing process converts a 

document to an intermediate form that is structured to allow the use of traditional 

data mining techniques to discover relevant information. There are many types of 

intermediate forms, each capturing different levels of semantic information (35). 

The basic difference between the intermediate forms is the minimal text unit, 

which can be a word, phrase, sentence, paragraph, or even an entire document. 

Table 3-1 contains some text units and possible intermediate forms. 

Text Unit Intermediate Form 

Word Bag-of-Words 

 N-grams 

Concept Concept Hierarchy 

 Conceptual Graph 
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 Semantic Graph 

 Conceptual Dependence 

Phrase N-phrase 

 Sentence 

 Multi-term text phrase 

 Trends 

Paragraph Paragraph 

 N-phrases 

 Multi-term text phrase 

 trends 

Document Document 

Table 3-1 Text unit and possible intermediate forms (35). 

Standard Inverted Index  

A standard inverted index has, for each term, a posting list associated with 

the documents in the collection (36). Each term is represented by a value or 

weight. Term weighting during the creation of a document representation is a 

process for giving terms a value for perceived level of importance. In its simplest 

form a 1 is assigned if the term is present in the document and a 0 is assigned if 

the term is not present in the document. The resulting matrix gives a vector for 

each term and the documents it can be found in, or a vector for each document 

and the terms that occur in it. A common weighting scheme is the tf-idf (term 

frequency / inverse document frequency) approach, which is described in more 

detail next. 

The following procedure describes the process of calculating tf-idf and the 

theory behind the weighting scheme. 
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Local weighting – Terms that occur several times in a document have a 

higher probability of being more meaningful indicators of document topic than 

terms that occur just once. A local weighting scheme will give these terms a 

higher weight. This is called term frequency (tf). 

Global weighting – Terms that are used infrequently in the entire corpus 

are likely to be more meaningful indicators of document topic than terms that are 

common or occur frequently. A global weighting scheme gives these terms a 

higher weight. This weight is called inverse document frequency (idf) and is given 

by 

        
 

   
 ( 3.1 ) 

where t is a term and N is the number of documents in the collection. df is the 

document frequency and is defined as the number of documents that contain 

term t. Term frequency-inverse document frequency is then calculated by 

                     ( 3.2 ) 

It is this standard indexing scheme that is used in Jikitou. Each sentence 

in this case is considered a document. The sentences are tokenized where terms 

are located by the space boundaries between them. The terms are then case 

folded (make lower case) so that searches will be case insensitive. Next the 

terms are stemmed which reduces them to their base forms. A Snowball (37) 

stemming library was used. Three fields are indexed; the sentence id, PMID 
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number and the sentence. Only the sentence field is available for full text search. 

Lucy creates a group of flat files that contain the index. 

Query weighting 

It is this process that gives the weights to the terms in the query. The 

weights are often identical to the weights given to the terms in the document. 

Weights can also be assigned based on dialog with the user and the importance 

put on certain terms. 

Similarity measure  

The similarity measure determines similarity between the query vector and 

the document vector. A possible measure is the cosine similarity measure, which 

finds the similarity between a query and a document. A vector is created with the 

tf-idf being the value for each term. The score is then calculated using the dot 

product of each term in the non-judged document q that is present in the judged 

passage d. This value is then normalized by dividing this score by the product of 

the Euclidean distance between q and d. The cosine similarity measure is used 

to compare each Jikitou answer to every relevant judged passage and the 

average score is recorded. Figure 3-3 is a simplified example of some number of 

sentences in an n term vector space. It is the angle between the query and each 
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of the sentence vectors. 

 
Figure 3-3 A diagram of sentences and a query in a vector space where each dimension is 

a different term. Cosine similarity measures the distance between the query vector and the 

different sentence vectors to gauge similarity between them. 

Once the similarity measure has been completed the items of information which 

are most similar to the query are presented to the user in rank order.  

3.2 Jikitou design 

Jikitou was built generally following the Model, View, Controller (MVC) 

framework which compartmentalizes the user’s interaction with the system from 

the information/data in the system. The view encompasses any output from the 

system. The model includes system data and the knowledgebase. It is the 

controller that implements the “business logic” and is responsible for executing 

commands for the model or view. Catalyst, an open-source MVC web framework 

for the Perl language, was implemented in Jikitou. It is a flexible framework which 

facilitates the separation of the application logic from the display of information. 

Figure 3-4 is a simplified diagram of the Jikitou system that shows the Catalyst 
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MVC separation and key technologies and functions that are implemented. 

Catalyst is used on an Apache server using FastCGI, an improved 

implementation of the traditional Common Gateway Interface (CGI). When the 

Apache server is started the entire Catalyst project is brought into main memory 

and multiple FastCGI processes are started, which increases the 

speed/response to request to the application from users. 

 

 
Figure 3-4 A diagram overview of the Jikitou QA components. The separation of the Model, 

View, and Controller is shown with many of the key parts of each shown. 
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Model 

The model is the part of the application that accesses and modifies the 

data. Each module in the system that accesses the different databases is 

considered a component of the model. 

Aspell 

Aspell (38) is an open source spell checker that has been supplemented 

with OpenMedSpell. OpenMedSpell (39) is an open source spelling dictionary of 

50,000 medical terms. The Aspell dictionary of terms has been enhanced with 

these medical terms which include terms for diseases and medications which can 

often be long and difficult to spell. Aspell is used in the autocomplete functionality 

and other modules that make use of it to gain access to its dictionary. 

Natural language processing 

A natural language parser is a program used to determine the 

grammatical structure of a sentence. Natural language processing parses a 

sentence into the different parts of speech (POS) and uses a set of rules to 

identify possible relationships. The advantage of natural language processing is 

the ability to infer the direction of the relationship and distinguish between 

different relationships when more than two entities are present in the same 

sentence for example protein-protein interactions (40, 41). Jikitou uses NLP in a 

couple of ways. It uses the semantic structure to match answers based on the 

semantic distances of terms from the query in the potential answers. Many of the 
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agents use NLP parse structures to help identify POS and potential phrases to 

modify the user’s query. 

Link Grammar Parser 

Jikitou uses a parser called the Link Grammar Parser (42) which is an 

English parser based on link grammar; it takes a sentence and calculates a 

syntactic structure, where pairs of words are connected by labeled links. The 

parser is written in C and has an API that a Perl module in Jikitou uses to gain 

access to its functionality. Figure 3-5 is an example sentence and the resulting 

Link Grammar syntactic tree. 

 
Figure 3-5 The tree is the resulting semantic structure after being sent through the link 

grammar parser. The table contains explanation of some of the labeled links in the 

semantic structure. 
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View 

The view is comprised of parts written using the ExtJS JavaScript library 

(43), plain JavaScript, and HTML. Data returned to the view use JavaScript 

Object Notation (JSON) which is a human readable format for data interchange. 

Passing data in this format provides a good example of the separation of the data 

from the view. The controller passes the data to the view with no instructions on 

how it should be presented to the user. The view can be modified without having 

to deal with changing the model or controller. The specifics on the Jikitou 

interface are described in greater detail later in this chapter. 

Controller 

The controller handles the request to the system. It gathers the required 

data from the model and converts it to a JSON object and sends it to the view to 

be rendered. Jikitou’s controllers are explained in the section about the user 

interface because it is the controller that handles the user requests and it is 

mainly through the interface that request are made. 

3.3 Knowledge base 

A knowledge base is a collection of specialized database that contains 

information that is collected and organized. The knowledge base in Jikitou is the 

repository from which answers are selected and also includes the lexicons used 

to identify domain-relevant terms such as genes. The database consists of 

corpora from multiple domains and includes dictionaries, thesauruses, and a 
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domain specific ontology. The dictionaries and thesauruses allow concepts to be 

identified and connected to terms in the question. The knowledge base is used to 

reformulate some queries with the addition of synonyms and additional concepts. 

The Interaction Sentence Database (ISDB) (44) is used in Jikitou system’s 

knowledge base as the corpus and is thus the source of the answers. Sentences 

are indexed as though they were “documents” to be retrieved because they are a 

minimal textual unit that is often self-contained (8). ISDB contains sentences that 

were taken from PubMed abstracts. The sentences have been analyzed and 

filtered so that all sentences contain at least two biomolecule entities and at least 

one interaction-indicating term. This takes advantage of the fact that entities that 

co-occur in the same sentence are related. Thus these sentences are more likely 

to contain a biological interaction. The size of the database is approximately 4.5 

million sentences. 

3.4 Dictionaries and thesauruses 

Jikitou has incorporated many publically available databases which have 

been locally installed. These are as follows. 

 The Gene Ontology (GO) (45) is a controlled vocabulary for 

describing gene product characteristics. This database helps 

mitigate the inconsistent terminology used to describe gene 

products. The ontology is organized into three categories: cellular 

component, biological process, and molecular function. This 
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database is used in user feedback and query expansion in this 

system.  

 BioThesaurus (46) is a protein entity dictionary that enables the 

retrieval of synonymous names of proteins and the identification of 

ambiguous names shared by multiple proteins. 

 WordNet (47) is a database of nouns, verbs, adjectives, and 

adverbs that are grouped by cognitive relatedness. These groups 

are linked by conceptual-semantic and lexical relations. This 

database is mainly used in identifying synonyms for non-biological 

terms. It can also be an aid in natural language processing which is 

important in answering queries posed in the form of questions. 

 Entrez Gene (48) contains a large and diverse body of gene 

information which includes synonyms, nomenclature, alternative 

ids, and interaction information. 

3.5 Multiple search agent approach 

Studies have shown (35, 49) that there is good reason to have multiple 

document representations and multiple searchers. Das-Gupta concluded, from 

the four document representations that they investigated, that there was low 

overlap between pairwise comparisons of the representations (average of 14% 

overlap) even though performance values differed only slightly. The low overlap 

suggests that the different document representations encode different 

information in the document. Any particular document representation may not be 
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optimal for all information needs. The lack of overlap between representations is 

the reason that this system is designed to have multiple document 

representations. The multiple search agents were implemented for the same 

underlying reason. Different agents formulate the queries differently and in the 

end match to different sets of documents. See Figure 3-6.  

 
Figure 3-6 Representation of an agent based search approach. Each agent has the 

potential of getting a different set of relevant information. 

Software agents are components that are implemented using goal 

concepts that are traditionally reserved for humans. They also interact with their 

environment and with other agents on a user’s behalf. Software agents work with 

each other and the user to accomplish a set of goals. The use of software agents 

nicely fits the way that we think about complex tasks. The following group of 

properties is commonly used to define software agents (50, 51). Software agents 

are persistent, meaning the code is always running and not just executed when 
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needed. They are autonomous in their actions, making decisions and prioritizing 

tasks without human intervention. They have the ability to socialize with the other 

agents to work on common tasks together. The final attribute of software agents 

is that they are reactive and able to adapt to their environment (52). These 

properties of software agent reduce the need for complex descriptions of 

complex software designs. It is easy for people to conceptually see software 

agents as though they were human workers that communicate and work together 

towards the completion of a common goal in a dynamic environment. 

There are several systems for information personalization and information 

extraction that utilize a multi-agent strategy (52-56). Agents are assigned to 

major tasks such as searching data sources, information retrieval, and interacting 

with the user. There are several reasons that make a QA system amenable to a 

multiple-agents based design (53, 54): The information is available in many 

distinct locations, the content is heterogeneous, and this content is constantly 

changing. It also aids in the modularity of the system. New types of analysis and 

sources of data can easily be added through the creation of new agents or 

modification of current agents. 

 In this project, multiple software agents were designed to find possible 

answers to questions from which the most relevant is presented to the user. The 

idea is that, just as when working in a team, each member brings different skills 

to address a problem. Software agents form a convenient and powerful way to 

describe a software abstraction of a system that is somewhat autonomous and 

brings a different set of skills to any particular problem. It is similar to Object 
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Oriented Programming in that pieces of the software are described as being 

objects that can be acted upon and return results in specific ways. Different 

agents use different algorithms and techniques to determine the different 

answers to a query. This multi-model approach takes advantage of the fact that 

different models are better for finding relevant passages to address different 

types of queries/questions. After completing the document retrieval, each agent 

returns its results to a dispatcher, which currently returns the top 50 results from 

each agent but in the future will be tasked with making decisions pertaining to 

which answers to present to the user. 

Agent toolbox 

In Jikitou the agents perform their search using a combination of modules 

that make up the available tools in the toolbox. Agents can share tools and use 

them in different combinations. The available tools fall into two categories: tools 

that aid in refining and the automatic expansion of the query, and tools that help 

re-score and re-rank answers. 
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Figure 3-7 A depiction of the tools used by the agents. A question is submitted to dispatch 

which assigns it to each agent and forks off a new process so that the agents can work in 

parallel. Dispatch then waits for their completion then returns all the answers. 

Automatic Query Refinement Tools 

Two modules were created that aid in automatic query refinement. The 

goal of query expansion is to improve the probability of retrieving relevant content 

through the addition of terms to a user's query. Studies have shown that query 

expansion improves information retrieval results (57-60). Interactive and 

automatic are the two main concepts in query expansion. These two approaches 

to query expansion are supported in Jikitou. Later in this section I discuss 

automatic query expansion and the modules that implement it, which is used by 

several of the agents. 
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Gene Synonyms Module 

The first module identifies possible genes and returns possible synonyms. 

The module takes a string as input. The string is case folded (transformed to 

lower-case) and tokenized. The tokens are then sent to an English dictionary to 

determine if they are actual words. Tokens that are not found in the dictionary are 

used in a query. Sending the terms to a dictionary first helps reduce the number 

of possible misidentified genes that are actually non-gene words. The 

“gene_info” table, located in a local installation of the Entrez Gene database, is 

queried to find possible gene symbols and gene synonyms. These additional 

terms are added to the original user’s query. 

NLP Link Grammar Module 

The second module utilizes natural language processing (NLP). The 

user’s question is submitted to the module where it is parsed using the Link 

Grammar Parser. If a complete linkage can be found, meaning that it is able to 

parse the entire sentence, the linkage tree is stored for additional analysis. If no 

linkage is found then no further analysis is performed by this module. 

Using the linkage tree, two functions are used to identify the different parts 

of speech (POS) using regular expressions. The first function identifies all nouns 

and the second identifies verbs. These POS are identified because they are the 

most informative words which consequently have a greater chance of 

discriminatory power in identifying relevant sentences to answer the question. It 

is also a way to remove words that are common and have low discriminatory 

power. 
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The linkage tree contains labeled links which describe the connections 

among terms. The function that identifies phrases follows these links to build up a 

list of possible phrases to add to the query. It looks for noun phrases and verb 

phases. See Figure 3-11 for an example. Phrases in the query are queried as 

complete strings to look for answers that contain the exact phrase. 

Scorers 

The scoring modules in the toolbox take a list of N sentences returned by 

the search engine and re-ranks the sentences using additional features identified 

between the query and the possible answers. 

LG pre-parsed Sentence Scoring Module 

This scoring method uses the Link Grammar Natural Language Parser to 

determine the semantic distance between terms of interest. Sentences are 

parsed by the Link Grammar Parser and the resulting syntactic tree is 

reassembled into a simple undirected graph. The terms represent the vertices 

and the semantic links the edges between the terms. The original syntactic tree 

is then parsed for semantically important terms such as nouns, verbs, and 

adjectives. These terms are then paired in every combination and returned in an 

array of pairs. The distance by number of vertices between each pair is found 

using the previously described undirected graph. Table 3-2 is an example 

adjacency matrix which is a way to represent a graph in table form. The numbers 

in the table indicate the semantic distance between the words in the sentence 

based on the results of the Link Grammar Parser. Only half the table needs to be 

filled because it is an undirected graph. 
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 macrophage tropomyosin binds to Actin filaments 

macrophage 0      

tropomyosin 1 0     

binds 2 1 0    

to 3 2 1 0   

actin 5 4 3 2 0  

filaments 4 3 2 1 1 0 

Table 3-2 This adjacency matrix contains pairs of keywords found in the semantic tree 

produced by the Link Grammar parser and contains the semantic distance between the 

terms. 

Due to the complexity and length of sentences found in biomedical 

literature, natural language parsing can be a very CPU-intensive process. It was 

determined that it was necessary to preprocess the calculation of the semantic 

distance and to store it in a database to be retrieved at the time of sentence 

ranking. 

Preprocessing of the sentence knowledge base required multi-core 

servers and parallelization of the task to accomplish the processing in a 

reasonable amount of time. A Perl script was written which started the desired 

number of child processes and partitioned the approximately 4.5 million 

sentences into chunks depending on the number of available processors. The 

script then forked off to that number of processes and the new script in each runs 

its own instance of the Link Grammar parser to process a different chunk of data 

and calculate the distances in parallel. 

The server used was an HP ProLiant DL980 with 8 CPUs each having 10 

cores and able to run 2 threads per core, resulting in the ability to run 160 
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processes at a time. Eighty processes were run to process the sentence set. The 

server also had 4 terabytes of main memory which meant that the data could be 

kept in memory without having to write to the hard drive. Using the HP ProLiant 

DL980 Server reduced these times from about 150 hours on a Dell PowerEdge, 

only able to run 8 processes at a time, to 20 hours of processing time. Figure 3-8 

is a graph that shows the difference in processing time between two servers, the 

Dell PowerEdge and the HP ProLiant DL980. 

 
Figure 3-8 Graph showing the preprocessing times of the Dell PowerEdge Vs. the HP 

ProLiant server. Using the HP server resulted in reducing the processing time from many 

days to less than one day. 

The use of high-performance computing enabled the preprocessing of the 

sentences in days instead of weeks. This will be invaluable should the system be 

scaled up to include more sentences. 
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Mutual Information Measure of Gene Co-Expression Scoring Module 

One area of biomedical text mining that has the potential to change the 

way we mine data from textual sources is the integration of high-throughput 

biological data (61). In this module information from high-throughput gene 

expression experiments is used as a resource. Mutual Information Measure 

(MIM) is one way to show the relatedness between two entities and in this case it 

is used to show the relation between the co-expression between two genes. The 

MIM Database of Gene Co-Expressions was created by Wren et al. (62, 63). 

They performed a meta-analysis on all publically available two-channel human 

microarray datasets found at GEO(64) (Gene Expression Omnibus). A local 

installation of the MIM for gene co-expression was created where each row is 

two gene ids, the 3rd being the MIM between them. This scoring module checks 

the question and possible answers returned by a deep question analysis and 

query for genes. If the question and the answer both contain genes the MIM 

Database of Gene Co-Expressions is queried for different combinations of genes 

in the question to genes in the answer. If a gene pair is found in the database the 

sentence is given a boost in its rank by the MIM value. The idea is that if a gene 

or genes in a question have a high co-expression value with a gene or genes in 

the answer, this might increase its relevancy compared to answers that do not 

have pairs of genes with a value or have a pair with a low co-expression value. 

Below in Figure 3-9, the process taken by the MIMAgent to re-rank answers is 

explained in a flowchart. 
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Figure 3-9 A flowchart showing the process used by the MIMAgent. Genes are identified in 

both the question and the answers. All possible combinations are found between the two 

sets and the local MIM database is queried. Answers that contain genes that returned a 

MIM score get a boost in score and upon all answers being processes they are re-ranked 

according to the new scores. 

Dispatch module 

The dispatch module takes a list of modules that represent the agents, the 

user’s question and the number of results to return. Inside the module each of 

the agent modules is dynamically loaded and each is assigned the question and 

the number of results to return. In order to reduce the processing time each 

module is forked and run as an individual process. The dispatch module waits for 

each agent to return its results, compiles the results, and returns them all at 

once. The processing time is dependent on the longest running agent, which 

tends to be the agent that uses the LG scorer module. 
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Agents 

Jikitou enlists the search strategies of four different agents. In the 

following section the tools used to accomplish these different strategies is 

explained. 

Basic Agent (BasicAgent) 

The basic agent does no query processing. The question is submitted to 

the Lucy search module as a string with no query reformulation and its default 

internal cosine based ranking is used to order the answers. During the evaluation 

of the system, this agent is used as the control to compare the different search 

strategies used by the other three agents. 

Deep Question Analysis Agent (DeepQAgent) 

The deep question analysis agent takes the users’ question and performs 

automatic query refinement. It uses the gene synonym module as well as the 

NLP link grammar module. It concatenates the nouns, verbs, gene synonyms 

and phrases and submits them to the Lucy::Search::QueryParser module which 

returns a query object which is then sent to the Lucy::Searcher. Figure 3-10 is a 

flowchart which describes this process and in Figure 3-11 we see an actual 

example of a question being parsed and its resulting parse tree. The tree is then 

used to identify nouns, verbs, and phrases. The process of identifying genes is 

also demonstrated and in the example we see that from 2 genes in the original 

question we get 9 possible synonyms. 
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Figure 3-10 A flowchart depicting the process of deep question analysis which is 

performed by all the agents except the BasicAgent. A question is sent to the module that 

runs the Link Grammar Parser. The syntactic tree is returned and functions identify the 

nouns, verbs and phrases. The question is also sent to the dictionary module that uses 

ASpell to identify terms that are not in the dictionary and they are used to query the local 

install of the Entrez Gene database for possible gene synonyms. 

 
Figure 3-11 An example of a question with its resulting syntactic tree produced by the Link 

Grammar Parser. The nouns, verbs, phrases, and gene synonyms are the results of further 

processing shown in Figure 3-10. 
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Mutual information measure gene co-expression (MIMAgent) 

This agent uses the same query refinements as the deep question 

analysis agent. After the results are returned to the agent it then uses the MIM 

module value to re-rank the results based on genes that are located in the 

question and answer and have an MIM value. 

Link grammar analysis agent (LGAgent) 

This agent also uses deep question analysis but also uses the 

preprocessed link grammar database to re-score the results. Terms found in the 

question are used to find their corresponding distances in the returned answers. 

The LG Agent re-ranks the answers based on the semantic distances of the key 

terms. A naïve method to assess strength of evidence of interaction in a 

sentence is determining the lexical separation of key terms in the sentence. 

Semantic distance is expected to give a more accurate measure of term 

relatedness because we are looking at the meaning of the words as opposed to 

just saying terms are related by observing that they co-occur. 
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Figure 3-12 A UML diagram showing the major modules, controllers, scripts, and function 

that make up the Jikitou QA application. User access to the system can be through the 

web interface or command line interface. The knowledgebase contains all of the database 

resources that are used. The Jikitou utilities contain functions that are common to all 

modules. The evaluation methods access Jikitou in two ways. The cosine similarity 

measure includes the Jikitou modules and calls the necessary functions directly. The SVM 

evaluation method goes through the controller using a web agent to make a request to the 

system. 

3.6 Interface 

An important aspect of any information retrieval is the interface through 

which a user interacts with the system. The goals of the Jikitou interface are to 

be simple, informative and dynamic. Being dynamic, all content is brought to the 
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screen without ever moving to another screen. Asynchronous calls are made to 

the server and content is returned as a JSON object. It is a tab based interface 

with four permanent tabs: “about”, “question”, “answer” and “help”. Figure 3-13 

shows the different components that make up Jikitou’s web interface. The 

interface is made of a main viewport with multiple panels, the main panel being 

the tab panel. In Figure 3-13 we can see the hierarchical structure of the different 

components along with their key subroutines. 

 
Figure 3-13 A diagram of the main components and sub-components of the Jikitou 

interface. Important subroutines are written in the retangles of their respective 

components. 

“About” tab 

The “about” tab displays a description of the project and the Jikitou QA 

system. 
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“Question” tab 

The “question” tab is where the user asks a question and interacts with the 

system to refine the question. The question tab contains three windows. 

 
Figure 3-14 As a user types a question the system suggests additional terms that can be 

added to refine the initial query. 

Main window 

The main window (Figure 3-14) is the form where the user inputs a 

question and can choose a glossary that they would like the answers to be 

parsed against and linked to additional resources. As the user types a drop down 

menu appears with suggestions for the current word they are typing. This action 

is initiated after the first 4 characters have been typed to reduce the amount of 

calls to the server. The suggestions are provided by controllers with two functions 

in Jikitou. The first one takes the currently typed characters and uses Aspell, the 

Open Source spell checker, to check the spelling and to provide spelling 

suggestions for words and these are provided to the user as possible 

completions of what they are trying to type. The other function takes the currently 
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typed characters and queries a local installation of the Gene Ontology for gene 

symbols that start with the characters that the user is typing. These two functions 

combine their results and the user is presented with up to 9 (4 from Aspell, 5 

from Gene Ontology) different suggestions for completing the current word they 

are typing. 

Feedback windows 

A dialog with the user is used for interactive query expansion. If a query 

term is vague the user is presented with a list of possible, more-specific 

alternatives. If there might be too many results, the idea is to identify broad terms 

in a query and try to get the user to indicate more specific terms with which to 

reformulate the query. When a query is too specific and very few or no results 

are found, a broader term may be substituted into the query. One of the problems 

with interactive query expansion has been that users are unable to identify good 

query expansion terms (58). Using the feedback windows the user has the ability 

to quickly gain an understanding of the term and possibly discover other terms 

they might like to include in their query. 

There are two windows for user feedback, one for word synonyms and the 

other for Gene Ontology associations. As the user types these windows are also 

dynamically updated, one with a list of suggestions for synonyms and the other 

with GO concepts. This suggested content might not have been thought of by the 

user to include in their query. The user can then check the boxes of the terms 

that they would like added to their query. The query for both these windows is 
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activated by the pressing of the spacebar, which indicates that the user has 

completed typing a word and now that word can be used in subsequent queries. 

The controller that provides content to the synonym feedback panel has 3 

main functions. The first gets the term frequencies in the sentence database of 

the terms in the query. This provides the user with information about the quality 

of their query. A high term frequency may mean the term they have selected has 

very low ability to provide relevant sentences since it is present in too many 

sentences. On the other hand, a low frequency term may give a hint as to why 

few or no results are being presented. The second takes the term and queries 

the local installation of the WordNet lexical database for possible synonyms. 

Terms that are not found in the word dictionary are then used in a query to 

identify possible gene synonyms. Checking the word dictionary for terms that are 

not English words reduces the number of spurious identification of genes that are 

not really genes. There is a tradeoff between too many irrelevant synonyms 

being presented to the user and some legitimate gene names that look like words 

being missed. The association window is populated by the controller, which 

submits a query to the Gene Ontology database for possible gene associations 

relating biological processes, cellular components, and molecular functions. 

Figure 3-15 shows the feedback presented to the user along with the data 

source. 
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Figure 3-15 .  Shows the dynamic feedback process and sources of the data presented to 

users’ as they type their questions. The WordNet and Gene Ontology databases are 

queried to find synonyms to terms entered. A medical term dictionary has been added to 

provide biomedical domain specific terminology suggestions with autocomplete. The 

Gene Ontology database is used to find associations with biological terms relating to 

biological processes, cellular components, or molecular functions. 

“Answer” tab 

The “answer” tab provides a table of all the sentences that were found to 

be possibly relevant to the user’s question.  Each row contains the rank, the 

sentence, the score and the PMID of the abstract of its origination. If a glossary 

had been selected when submitting the question, terms may be marked and 

appear green. They can be selected and bring up additional content as shown in 

Figure 3-16. More on that functionality, and types of content, is described in the 

next section. 
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Figure 3-16 Connection to the ChemEd Digital Library returns JmolS. This allows you to 

interact with molecules in multiple ways beyond simple measurements, like connecting 

molecular vibrations to IR Spectra. The data is presented in JavaScript overlays, which 

can be opened as well as be minimized. Depicted are a term definition, a plain chemical 

Jmol, a ChemEdDL enhanced Jmol with IR spectra,  and a protein Jmol. 

“Abstract” tab 

Additional tabs are created when a user clicks on an answer. These tabs 

contain the abstract from which the sentence was extracted. The controller that 

populates this tab uses PubMed’s Efetch (65) to download the abstract using the 

PMID. The sentence that has been selected as the answer is highlighted in the 

abstract. 

3.7 HyperGlossary 

The HyperGlossary is an information literacy tool that we developed for a 

chemistry education project and which I integrated with Jikitou. It automates the 

insertion of hyperlinks into the text answers and connects them to textual 
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definitions, multimedia content, and in the case of many molecules, 2D and 3D 

representations. The HyperGlossary takes advantage of authoritative knowledge 

sources on the Internet such as ChemSpider (66) and RCSB Protein Data Bank 

(67). 

After the search results are returned by the agents the answers are 

automatically marked up and linked to semantically relevant content in other 

databases using the HyperGlossary. An overview of the core functionality of the 

HyperGlossary is shown in Figure 3-17. When a user reads a word or phrase in 

an answer that is connected to a glossary term, the information associated with 

the term can be viewed without leaving the original document. The additional 

information is presented in a popup window that appears when a marked term is 

clicked. The types of extra content include 2-dimensional and 3-dimensional 

structures, definitions of terms, and WWW content. 

The answer is not only linked back to the original document, but keywords 

and phrases are linked to additional sources of information. An example is that 

proteins mentioned in the answer are linked to a proteomics database, which, 

when clicked, reveals the structure and the sequence of the protein in a pop-up 

window. This information allows the answers to be more accessible to users of 

varying backgrounds (68). The system brings together traditional text information 

and dedicated biological databases to present a concise answer to the user. 
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Figure 3-17 Answers are automatically marked up based on the selected glossary and 

linked to semantically relevant content in other databases using the HyperGlossary. 

Creating a glossary 

In order to have a glossary geared towards the biomedical field I created a 

protein glossary. The id mapping table for Homo sapiens was downloaded from 

the UniProt website. A script was written that grabbed all the Protein Data Bank 

(PDB) (67) and UniProtKB (69, 70) protein identifiers from the downloaded id 

mapping table. The list of UniProt identifiers was then submitted to UniProt for a 

batch web retrieval of available protein information for each supplied identifier. 

Another script was written that parses the protein information file and retrieves 

the general annotations about the proteins. It is these annotations that are used 

as the definitions in the protein glossary. The UniProt Id is used as the unique 

identifier in the HyperGlossary. A mapping database of the UniProt and PDB 
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identifiers was created and a function added to the HyperGlossary that retrieves 

the PDB id for a protein that is selected and it is the PDB id that is used to 

retrieve the PDB file from the RCSB website (71). This file is submitted to the 

Jmol applet to render the 3D structure of the selected protein. 

JavaScript overlays 

When a marked term is clicked a JavaScript overlay pops up and acts as 

the portal to additional information about the selected term. A number of tabs are 

presented to the user for the different types of content available. The number of 

tabs and types of content that are provided depends on the chosen glossary and 

the type of term. Currently the HyperGlossary contains three types of terms: “no 

type”, “chemical”, and “protein”. Terms of the type protein or chemical have 

associated with them an identifier that not only uniquely identifies them but in the 

case of InChIs (72) also provides structural information. The identifiers can then 

be used to link the term to many more remote information resources. Also they 

themselves can be used in a web applet to view and manipulate the resulting 

molecules. 

Definitions 

Most terms in the HyperGlossary have a definition and this is the first tab 

that is presented when the overlay comes up. They have a citation stating the 

source of the definition and there is the possibility that they have additional fields 

of user defined definitions. It is also possible that while the original definition is 
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the canonical definition the additional fields can contain a rewrite of the definition 

for varying levels of knowledge. 

ChemSpider search 

A ChemSpider (66) tab has been added to the JavaScript overlay. 

ChemSpider is a large database of chemical structures that is free to access over 

the internet. ChemSpider provides several services for accessing information in 

the collection. When a term that is identified as being a chemical is selected the 

term is used to perform a simple search of ChemSpider, which can return a list of 

ChemSpider identifiers. Another search is performed using the 

GetCompoundThumbnail service. The ChemSpider identifiers are used to query 

for the thumbnails of the compounds. Each thumbnail is returned as a 64 bit 

string which must next be decoded. The Perl module MIME::Base64::Perl is used 

to decode the string into a PNG file that is saved to the server. The image is then 

displayed and used as a link to the ChemSpider webpage where additional 

information on the compound can be found. 

3D proteins 

Terms that are in glossaries and are identified as being a chemical or a 

protein have a unique identifier assigned to them. If a chemical term is selected 

and the 3D tab is active, its InChI is queried from the database. Jmol (73)  is an 

open-source java applet for viewing 3D structures of chemicals. This is converted 

to an InChI Key which is used to query ChemEdDL (74) for enhanced Jmols. In 

the event that the Jmol is not available at ChemEdDL the system can generate it 

on the fly locally. The file is created dynamically by first converting the InChI to a 
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SMILES string using Open Babel (75). The SMILES string is then sent to Balloon 

(76) which creates the mol2 file with the 3D coordinates.  The mol2 file is saved 

so that it only needs to be created once. The location of the file is then sent to the 

Jmol applet. This process is represented diagrammatically in Figure 3-18. 

 
Figure 3-18 A flowchart that depicts the process of presenting a Jmol when a term with a 

qualifying ID is selected. In the event that a resource does not have the information 

requested for a chemical term, the hyperglossary has the ability to generate its own 

structure file from the ID.  Open Babel and Balloon, two open source chemistry resources, 

are used to create a Jmol file on the fly. 

2D structure 

If the term selected is a chemical and the 2-D structure tab is selected the 

InChI string is converted to a SMILESS string and submitted to the Java Applet 

JChemPaint (77). The 2-D structure of the molecule is drawn. JChemPaint allows 

the molecule to be edited. The clickable link at the bottom of the window submits 

the SMILES string for the resulting chemical to ChemSpider. JavaScript was 

written to use JChemPaint’s API (getSMILESs()) to grab the SMILES string of the 
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current chemical structure in the applet. The string is sent back to the server 

where the sting is converted to an InChI string using ChemSpider’s Open Babel 

Web Service. The InChI string is then used to query ChemSpider’s database and 

have it return a PNG thumbnail of the compound if it exists in the database. The 

thumbnail is linked back to ChemSpider with additional information on the newly 

created structure. The information is presented in a new tab that can be closed. 

See Figure 3-19. 

 
Figure 3-19 An overview of the process of querying ChemSpider using the JChemPaint 

applet. In the 2D structure tab in the JavaScript overlay for a chemical term, the 

JChemPaint applet allows the user to edit/create a chemical. A link at the bottom of the 

overlay grabs the resulting SMILESs string using JChemPaint API and uses it to query 

ChemSpider. If the resulting string is an actual chemical in the database, the results are 

shown. Otherwise a message saying “no results” is shown.  
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Chapter 4: System evaluation 

An important component to any information retrieval system construction 

is evaluation of the system. In this chapter the strategies used for evaluation of 

Jikitou is described and the rationale behind their implementation. 

4.1 Evaluation methods: User study vs Automated 

There are two common methods used to evaluate an information retrieval 

system evaluation. The first method is to perform a user study. The users can be 

recruited to evaluate the results of a system. In other words judge the relevancy 

of information returned. They can also be users of the system and given a task to 

perform and based on their experience with the system they can fill out a rubric 

on different aspects of the system such as responsiveness of the system or ease 

of use. Preforming a user study does have its drawbacks. Each time changes are 

made to the system the time consuming task of setting up a user study to 

evaluate the results must be redone. The second method to evaluate an 

information retrieval system is to compare results to previously judged answers. 

Using this method we have the ability to quickly evaluate the system as different 

components are tweaked. It lends its self to automation and can easily be 

inserted into a system development pipeline. 

Jikitou is designed to be complete information retrieval system, which in 

addition to a question answering system, includes tools to evaluate the system to 

aid the development of additional agents. To that end an evaluation method that 
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can be automated fits in with the desired capabilities of the system. The rest of 

this chapter describe two automated methods and the resources used. 

4.2 Text Retrieval Conference Resources 

The Text Retrieval Conference (TREC) Genomics Track was a conference 

with the goal of evaluating text retrieval systems aimed at the biomedical field. 

The last two years of the track focused on question-answering in the biomedical 

domain (78, 79). Evaluation of the systems was performed by providing 

participants a list of topics/questions that they would use as queries to submit to 

their systems. The participants then returned their results which were placed in a 

pool of possible answers to the queries. Experts would then judge them for 

relevance while isolating the minimum information that answers the question. 

This pool of judged documents was then used to evaluate the performance of 

systems that contributed to the pool. 

The topics and relevance judgments are still available at the TREC 

Genomics track website (80) and it is this resource that is utilized to evaluate 

Jikitou. The test collection contains 36 questions (see Table 9-1 in appendix A), 

the documents used as the corpus for the TREC participants, and a file with the 

document numbers, character offsets, and spans of the submitted passages that 

have been judged relevant or not. I created a database with one table containing 

the questions and the other table containing the passages, each with a question 

id to identify which question it refers to and its relevancy or not to that question. 

To get the passages a script was written that read the judged passage file, 

http://ir.ohsu.edu/genomics/
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identified the document file, the offset and span, retrieved the text from the file, 

and inserted the passage into the database. 

Due to the fact that Jikitou was not one of the original systems that 

contributed to the pool of possible answers and it is not using the same corpus it 

is not possible evaluate Jikitou in the same manner or really compare it to the 

other TREC participants. Answers returned from Jikitou are not likely to be 

present in the pool of judged passages and therefore we would not know if the 

answer was relevant or not. The relevance judgments are biased towards 

systems that contributed to the pool. 

It is expensive to create a large pool of judged documents, so to take 

advantage of this valuable resource we needed to figure out a new way to 

evaluate Jikitou. Here I present two types of evaluations that were devised to test 

the performance of Jikitou. For both of these evaluations each of 36 questions 

was submitted to Jikitou and the top 50 results returned by each agent were 

analyzed. 

4.3 Similarity-judged vs. Jikitou-produced answers 

When working with and analyzing text we often create vectors as 

described in the parsing and indexing section, where each vector represents a 

string of text which can include a document, sentence, or phrase. Representing 

text in vector form gives us the ability to perform vector bases analyses. The 

cosine similarity measure is an analysis that uses the angle between two vectors 
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and is one way to measure the similarity between them. A useful feature of this 

measure is that the lengths of the documents are normalized.  

In this method I take all the relevant passages for a topic and compare 

them one by one to answers returned from each agent. Each answer is 

compared to every other judged relevant passage for the topic and the average 

score is calculated and recorded. This is repeated against all the non-relevant 

passages as well for comparison. 

The theory is that answers that have a high cosine similarity score will be, 

on average, more closely related to the passages that were judged relevant than 

the passages that are judged not-relevant. This method is a quick way to 

compare the performances of the different agents within the Jikitou system. 

Every time an agent or tool is modified this evaluation can be run to judge how 

performance has been affected. 

4.4 SVM: extending the judged passages 

To take advantage of the pool of judged passages it was necessary to 

decide on a way to extend its judgments to Jikitou’s answers. An issue that often 

arises is the biased effect of the pooled judgments against a new system and 

there has been considerable research with the goal of minimizing that bias in 

pooled judgments (81-83). Two measures proposed are the bref (81)  and 

RankEff (82) measures, both of which take only judged documents into account 

when assessing a system’s performance. The problem with this method when it 

comes to Jikitou is that there is little chance that any of the documents retrieved 
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would have been judged by TREC since the document sources are different. The 

works of Aslam et al. (84)  and Buttcher (85)  discuss methods that extend the 

pool to include the non-judged documents by predicting relevancy. Aslam et al. 

accomplished this by inferring document relevancy by analyzing document 

rankings by several different information retrieval systems. The Buttcher 

approach was to use a classifier to predict the relevancy of non-judged 

documents. They experimented with Kullback-Leibler divergence and support 

vector machines (SVMs), two different classifiers. In this project I decided to use 

SVMs to predict relevancy, described below. 

Using SVMs is a supervised classification method, meaning that an SVM 

needs to be trained on a dataset that has been labeled as to its relevancy. The 

resulting model is then used to tag new documents as either relevant or not 

relevant.  SVM works by trying to draw a hyperplane between a dataset that 

separates the two classes in a high-dimensional space. Usually, the larger the 

distance between the nearest training set data point and the hyperplane, the 

better the classifier. 

The evaluation of Jikitou uses the LIBSVM (86) SVM software library, 

written in C/C++, to perform the training and classification of the relevancy of 

sentences returned by each agent. The first step was to create a set of features 

that would be used by the SVM. This is called the feature space. A database 

table was created that contained the terms from the corpus after stemming and 

their frequency in the corpus, post-stemming. The terms used in the feature 

space were selected from this table with the following criteria: A term had to be 
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longer than three characters and have a term frequency of at least two. This 

resulted in the selection of 120 thousand terms. It was this list of terms which 

constituted the feature space that was then used to train the model. The training 

dataset was built by selecting 2/3 of the TREC passages for a particular topic 

that were judged relevant and not relevant. The returned passages were then 

converted to vectors of features where the value for each term/feature is the IDF-

TF of the term. These vectors were then converted to the correct format using 

the Perl module Algorithm::SVM::DataSet, which assigns a vector a class label. 

The dataset was then submitted to the training algorithm of the SVM. The 

resulting model is written to a file to be used later. This process is repeated for 

each of the 36 topics. The parameters in Table 4-1 were ultimately used in the 

SVM after a process of trial and error found these produced the models with 

relatively high accuracy. 

SVM Parameters 

SVM Type C-SVC 

Kernel Type Linear 

Gamma 0.01674 

C 19.835 

Degree 3 

Table 4-1 The parameters that were used to train the SVM models. 

A Perl script was written that performs all of the tasks of training a model 

and classification. The task that the script performs is controlled by the supplied 

command line arguments when the script is executed. Table 4-2 lists the possible 
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command line arguments. The script can be set to train a model by setting the 

action to “train” and then selecting the SVM parameters to set or to leave blank 

(to use default values) and then set the question id parameter for the question to 

train the model against the TREC-judged relevant and not-relevant passages. 

The script can then be used to predict the relevancy of answers returned by 

Jikitou. This is done by setting the action parameter to “load” and the model 

parameter to the path to the model you would like to use, setting the question id 

parameter to the question you would like to use, and setting the “jikitou” option to 

submit the question to Jikitou. 

Option Values Description 

--action train, load Train a model or load a model 

--model File path Takes a file path to the model 

--option 
validate (v), retrain (r), predict 
(p), Jikitou (j) 

Set to “v” to validate a model 
Set to “r” to retrain the model 
Set to “p” to predict on the 
remaining 1/3 test set  
Set to “j” to predict on results 
returned from Jikitou  

-t 
'C-SVC', 'nu-SVC', 'one-class', 
'epsilon-SVR' and 'nu-SVR' Sets the SVM type 

-k 
'linear', 'polynomial', 'radial' and 
'sigmoid' 

Sets the type of kernel to use 
in the SVM 

-g Float 
Sets the gamma function in 
the kernel function 

-c Float 
Sets the cost a penalty 
parameter 

-d Integer 
Sets the degrees in the kernel 
function 

-i 200-235 

Sets the TREC question to 
either train the model to or 
submit to Jikitou for answers 
to classify 

Table 4-2 svm_eval.pl command line parameters. The user can train a new model with a 

different set of SVM parameters or load a model to classify answers using a particular 

model. 
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Chapter 5: Results 

In this chapter the results of the SVMs and cosine similarity evaluations 

are described. The first section compares the evaluation results of both methods. 

The rest of the chapter uses the evaluation results to compare the performance 

of the agents.  

5.1 Evaluation comparison 

The first objective was to see how the two evaluation methods compare to 

one another. Figure 5-1 is a graph of the results of both evaluation methods. The 

bar graph indicates the number of Jikitou answers that were predicted relevant 

for each question by the SVM classifiers. The two line graphs are the cosine 

similarity measures comparing the Jikitou-produced answers with the TREC 

judged relevant and not-relevant passages. 

Looking at both evaluation methods on a query by query basis we see 

similar trends. On topics that have a low average cosine score between the 

Jikitou answers and the TREC judged relevant passages there appears to be a 

corresponding low number of predicted relevant answers. There are several 

queries where they diverge meaning the SVM did not classify any or very few 

answers as relevant but the average cosine similarity measure for answers as 

compared to the TREC judged relevant passages is relatively high. This can be 

observed with the following question IDs: 214, 216, 217, 221, 229, 233, and 235.  
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Another observation is, for question IDs for which there are no elements 

judged relevant we see that the average cosine score between Jikitou answers 

and the TREC judged relevant passages tends to be higher than the score 

between the Jikitou answers and the judged not-relevant passages. These IDs 

include: 201, 202, 205, 206,207, 208, 209, 210, 219, 220, 222, 223, 224, 225, 

and 233. This agreement suggests that these two evaluation methods are 

actually able to distinguish between relevant and not-relevant answers and may 

provide alternatives to always having a human judge the relevancy of answers in 

the developments and tuning of question answering systems and perhaps in the 

evaluation of other types of information retrieval tools.  
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Figure 5-1 A graph of the results of both evaluation methods. The bar graph indicates the number of answers classified as relevant for 

all agents’ answers by SVM and the 2 line graphs are the cosine similarity scores comparing relevant and not-relevant TREC passages 

with the Jikitou answers.
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The SVM evaluation classified many of the answers as not relevant. Out 

of the 36 questions, 14 questions submitted to Jikitou resulted in the SVM 

classifier classifying all answers returned by all agents as not-relevant (questions 

200, 208, 209, 210, 216, 217, 219, 220, 224, 225, 228, 230, 231, and 233). The 

results of 10 of the questions (202, 205, 206, 207, 221, 222, 223, 226, 229, and 

235) had few answers classified as relevant or only one agent’s answers that 

were classified as relevant. This may be due to inability of the agents to identify 

answers, inability of the SVM classifier to correctly classify, or insufficient 

answers in the database. The remaining 12 questions (200, 203, 204, 211, 212, 

213, 214, 215, 218, 227, 232, and 234) are used in a majority of the following 

analyses. 

5.2 Cosine similarity measure evaluation results 

This section deals with the results of the cosine similarity measure 

between the TREC judged passages and Jikitou-produced answers. First, cosine 

scores of relevant and not-relevant TREC passages with Jikitou-produced 

answers are compared. The rest of the section compares the cosine score of the 

individual agents. 

Cosine score, relevant vs. not-relevant, by rank 

The 36 question were used to retrieve 50 candidate answers each, ranked 

1 to 50. A comparison by rank of the average cosine similarity by rank between 

Jikitou answers and relevant and not-relevant TREC passages shows that the 

cosine scores differ for relevant versus not-relevant passages. To determine if 
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the results of the similarity measure for each of the agents followed a normal 

distribution, a Shapiro-Wilk test of normality was performed in R and the data 

was shown to be normally distributed. Once the data was verified as being 

normally distributed a t-test was performed to see if the difference between the 

two data sets was significant with the null hypothesis being that the means are 

equal. The results of the t-test is a t-statistic value of -4.951 with a p-value of 

<.05. This means we reject the null hypothesis that the means are the same and 

accept the alternative that the means of the datasets are different. Appendix B 

describes the data analysis. 

It is important for an answering system to show a difference between 

relevant and not-relevant passages to be considered effective, see Figure 5-2. 

The size of the difference between the two data sets may not be as large as 

possible due to the fact that even though the not-relevant passages were judged 

not-relevant they were in fact classified by some TREC participant’s IR systems 

as relevant to the query. Nevertheless, out of 50 ranks, 49 had higher cosine 

scores for the relevant condition than for the not-relevant condition. 
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Figure 5-2 A graph showing the average cosine scores comnparing Jikitou answers to 

relevant passages and to Not-relevant passages by rank. 

Agent relevant cosine scores by rank 

Next I looked at the agents individually. The average cosine score of each 

agent by rank gives us an idea of the performance of each agent as the answers 

increase in rank. The cosine scores contributing to the average for each rank are 

the ones classified as relevant by SVM evaluation. We can see in Error! 

eference source not found. a graph that shows the average score over the 36 

questions at each answer rank, for each agent. A moving average with a window 

size of 3 was used to remove some of the volatility of the results. Every point is 

an average of the current rank and the 2 previous ranks. This reduces the 

dataset by 2 data points. Each of the agents still shows volatility but over a 
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smaller range. All four agents do show a general trend downward in score 

similarity with the relevant answers, which we would expect to see due to the fact 

that the most similar answers should also be ranked highest. 

 
Figure 5-3 A graph that shows the average score for all 36 queries at each answer rank for 

the four agents. The cosine scores contributing to the average for each rank are the ones 

classified as relevant by SVM evaluation. A moving average with a window size of 3 was 

used to remove some of the volatility of the results. 

Difference between agent per query 

The results of the cosine similarity to relevant passages evaluation were 

next used to evaluate the performance of the agents on a query by query basis 

over the 12 queries. This analysis uses the 12 questions for which the SVM 

evaluation classified the most answers as relevant. An analysis of variance 

(ANOVA) was performed on each set of query results. When performing an 
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ANOVA the null hypothesis is that the mean results for each agent are equal 

while the alternative hypothesis is that one or more of the agents’ means are 

significantly different, with significance being identified here with a p-value of .05 

or less. Table 5-1 shows the ANOVA results for each set with its p-value. If the 

ANOVA resulted in a significant result the null hypothesis was rejected and the 

alternative accepted. In these cases Tukey’s honest significance test was 

performed in R. It is a multiple comparison of means procedure. The test 

compares the mean of each group to the mean of every other group. This test 

allows us to determine which agents’ means were different from the others. In the 

table each significant result is highlighted in yellow. Appendix D contains the 

complete software output for both the ANOVA and Tukey tests. 

Question ID 
P-Value 
(ANOVA) 

Significant Pair-wise Comparison of Means 
(Tukey) 

200 0.421167  

203 0.258027  

204 

1.11E-05 DeepQAgent-BasicAgent   0.0012299 
MIMAgent-BasicAgent    0.0012299 
LGAgent-BasicAgent     0.0000129 
MIMAgent-DeepQAgent    1.0000000 
LGAgent-DeepQAgent     0.6826629 
LGAgent-MIMAgent       0.6826629 

 

211 

1.25E-26 DeepQAgent-BasicAgent   0.0000000 
MIMAgent-BasicAgent    0.0000000 
LGAgent-BasicAgent     0.0000000 
MIMAgent-DeepQAgent    0.8248632 
LGAgent-DeepQAgent     0.0307114 
LGAgent-MIMAgent       0.2262059 

 

212 

0.003969 DeepQAgent-BasicAgent   0.0085656 
MIMAgent-BasicAgent    0.0085656 
LGAgent-BasicAgent     0.2311872 
MIMAgent-DeepQAgent    1.0000000 
LGAgent-DeepQAgent     0.5624999 
LGAgent-MIMAgent       0.5624999 

 

213 0.205935  
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214 

5.91E-07 DeepQAgent-BasicAgent   0.0591663 
MIMAgent-BasicAgent    0.0591663 
LGAgent-BasicAgent     0.0994347 
MIMAgent-DeepQAgent    1.0000000 
LGAgent-DeepQAgent     0.0000159 
LGAgent-MIMAgent       0.0000159 

 

215 0.216707  

218 

2.61E-13 DeepQAgent-BasicAgent   0.0000000 
MIMAgent-BasicAgent    0.0000000 
LGAgent-BasicAgent     0.0001026 
MIMAgent-DeepQAgent    1.0000000 
LGAgent-DeepQAgent     0.0191799 
LGAgent-MIMAgent       0.0191799 

 

227 0.90762  

232 

1.57E-08 DeepQAgent-BasicAgent   0.0000043 
MIMAgent-BasicAgent    0.0000009 
LGAgent-BasicAgent     0.0000006 
MIMAgent-DeepQAgent    0.9884800 
LGAgent-DeepQAgent     0.9789030 
LGAgent-MIMAgent       0.9998513 

 

234 

9.91E-40 DeepQAgent-BasicAgent   0.0000000 
MIMAgent-BasicAgent    0.0000000 
LGAgent-BasicAgent     0.0000000 
MIMAgent-DeepQAgent    0.9038357 
LGAgent-DeepQAgent     0.9444567 
LGAgent-MIMAgent       0.6026047 

 

Table 5-1 An analysis of variance (ANOVA) was performed on each set of query results 

using the cosine similarity scores to the relevant passages. The table shows the resulting 

ANOVA p-values. If the resulting p-value was deemed significant with a value < 0.05 a 

Tukey’s honest significance test was performed, which is a multiple comparison of means 

procedure to determine which agent or agents was significantly different. All p-values that 

are significant are highlighted. 

5.3 SVM evaluation results 

In this section the quality of the SVM produced models is calculated using 

cross-validation on a separate test set. The results are then used to calculate 

additional measures of accuracy. After that the performances of the Jikitou 

agents are evaluated based on the results of the classification of their answers 

as to their relevancy using the SVM models. 
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SVM performance estimate 

When the SVM evaluation Perl script is run to build an SVM model for a 

particular question, the script is set up to automatically check the accuracy of the 

learned model. First cross validation is performed on the training set where the 

data set was partitioned into 5 subsets and each subset validated against the 

others. The model is written to the file and the accuracy is output. Remember 

that 2/3 of the dataset was used as the training set leaving 1/3 for a test set. So 

in addition to the cross validation the remaining 1/3 of the dataset was used as a 

test set as another way to determine the accuracy of the model. A different model 

was created for each of the 36 TREC questions and the accuracies of the models 

as measured by both the cross validation and the test set results are shown in 

Table 5-2. 

The models were used to predict the relevancy of the answers returned by 

the system. Each agent returned 50 ranked answers to each of the questions 

which were converted to a vector of features as in the training stage and 

classified as being either relevant or not-relevant by the SVM model for that 

question. 
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Question ID Accuracy 
True 

Positive 
False 

Negative 
True 

Negative 
False 

Positive 

200 71.60 28 2 21 9 

201 97.03 24 0 27 3 

202 94.27 28 1 28 2 

203 70.03 30 0 24 6 

204 89.66 23 7 20 10 

205 87.09 28 2 29 1 

206 94.78 22 3 29 1 

207 95.58 8 1 27 3 

208 96.85 12 1 30 0 

209 95.34 30 0 30 0 

210 88.91 30 0 28 2 

211 92.59 8 22 30 0 

212 86.72 29 1 23 7 

213 87.39 23 7 17 13 

214 89.70 21 9 27 3 

215 83.96 26 4 26 4 

216 94.57 23 1 27 3 

217 92.93 26 0 29 1 

218 86.85 26 4 20 10 

219 94.95 15 0 30 0 

220 99.03 11 0 30 0 

221 82.38 30 0 24 6 

222 92.46 30 0 29 1 

223 95.32 10 1 29 1 

224 99.22 3 0 30 0 

225 99.83 1 0 30 0 

226 83.22 17 13 25 5 

227 79.02 28 2 28 2 

228 97.57 11 0 30 0 

229 90.83 29 1 24 6 

230 90.81 28 2 30 0 

231 96.05 10 0 27 3 

232 78.78 22 8 27 3 

233 95.45 13 0 29 1 

234 89.04 29 1 19 11 

235 80.24 30 0 19 11 

Table 5-2 Results of the SVM model analysis of each question. The accuracy column is the 

result of the 5-fold cross validation. The true positive, false negative, true negative and 

false positive columns were determined from the 1/3 of the judged passages that were 

reserved as a test set. The results of the test set were used in additional measures of 

effectiveness of the SVM models. 
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Measures of effectiveness 

The following section describes four different evaluation measures; 

precision, recall, Mathews Correlation Coefficient, and F-measure.  

Precision (Specificity) 

Precision is the ratio of relevant to total retrieved answers. In other words 

of all the items that are retrieved, how many are relevant.  

          
             

                              
 ( 5.1 ) 

Recall (Sensitivity) 

Recall is a measure of a system’s ability to retrieve all possible relevant 

items and is the fraction of all relevant items that are retrieved. Precision and 

recall are measures that are often used in many more sophisticated measures of 

efficiency, and are used later in the chapter to evaluate the Jikitou agents.  

        
             

                              
 ( 5.2 ) 

Mathews Correlation Coefficient 

The Mathews Correlation Coefficient (MCC) is a measure of the quality of 

binary classification. It is a correlation coefficient based on the predicted 

classification and the observed. A perfect prediction has a coefficient value of 1, 

a value of 0 for no better than random prediction, and -1 for complete 
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disagreement between observation and prediction. MCC takes into account true 

positives, false positives, true negatives, and false negatives. 

    
           

√                            
 ( 5.3 ) 

F-Measure 

The F-measure, which is the weighted harmonic mean of precision and 

recall, is a single measure that provides a tradeoff between recall and precision: 

  
 

 
 

         
      

 
      

 

 
                      

                  
        

where αϵ[0,1] and then β ϵ[0,∞]. Setting α=1/2 or 

β=1 equally weights recall and precision and is known as the balanced F 

measure and is denoted F1. 

Measuring SVM models’ effectiveness 

One way to evaluate the effectiveness of an SVM classification is to check 

the quality of the model using measures that incorporate TP, FP, TN, and FN 

values, which are the results of the test set found in Table 5-2, to identify different 

performance qualities of a model. The measures of precision, recall, Mathews 

   
   

 
 ( 5.4 ) 

     
                

                
           ( 5.5 ) 
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Correlation Coefficient, and F-measure were calculated for each of the 36 

models. Figure 5-4 is a graph that has all 4 measures for each question against 

the test set data from TREC. 

 
Figure 5-4 SVM model evaluation measure; precision, recall, Mathews Correlation 

Coefficient, and balanced F-measure overlaid in a single graph. We see that some 

measures like MCC and recall are more volatile. 

Measuring Jikitou’s effectiveness 

Precision and recall are common evaluation measures for information 

retrieval systems. The problem with determining recall for information retrieval 

systems with large corpora is that we do not know how many relevant answers 

are available for each query. The Jikitou answers were classified using the SVM 

classifier to predict their relevancy and since I did not run the entire ISDB 
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collection through each model to determine their relevancy to each question here 

too we do not know the total number of relevant answers in the database. To get 

around this I took the aggregate of relevant items retrieved by each of the four 

different agents as the total relevant set. 

Recall and precision values were calculated for each of the 12 query sets 

that had enough answers judged relevant for the 4 agents. A plot was made for 

each query set where recall is on the x-axis and precision is plotted on the y-axis. 

As the number of retrieved results increases, recall increases but precision 

decreases. The individual query precision-recall results can be found in appendix 

D. 

Interpolated precision-recall 

Interpolating a recall/precision curve is a way to visualize the change in 

precision and recall as the number of ranked results increases. The precision 

value is interpolated for each of the method’s standard recall values (36). The 

interpolated precision at the i-th standard recall is the maximum of the known 

precision values at that recall level or above. To get an idea of overall 

performance I took the average precision at each standard recall level over all 

queries, separately for each agent. Tables that contain the interpolated average 

precision values at the 11 standard recall values for each of the agents can be 

found in Appendix E. A graph (Figure 5-5) for these four curves for average 

interpolated precision versus standard recall was plotted. The line that is closest 

to the upper right hand corner represents the agent that performed the best. 
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Figure 5-5 To get an idea of overall performance we take the average precision at each 

standard recall level for all queries for each agent. The line that is closes to the upper right 

hand corner is the agent that has performed the best by this measure. 

The interpolated precision vs. recall graph shows that the DeepQAgent 

performs generally the best according to this evaluation measure. The MIMAgent 

appears second best. Recall that the DeepQAgent works by using NLP and deep 

question analysis, and the MIMAgent uses the same deep question analysis with 

the addition of using the mutual information measure of genes found in the 
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questions and the answers. By this measure MIM addition reduced the 

performance of the agent. 

Mean Average Precision (MAP) and Geometric Mean Average Precision (GMAP) 

Mean average precision (MAP) and geometric mean average precision 

(GMAP) are two measures that take into account a collection of queries. This 

measure gives us an idea of overall effectiveness of an information retrieval 

system. MAP is calculated using the average precision (AP) over m recall points 

and then taking the mean of AP (MAP) over Q queries. Table 9-22 and Table 

9-23 in appendix G contain the raw AP and MAP values. 
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Figure 5-6 Mean Average Precision (MAP) calculated for each agent. MAP is a measure 

that takes into account a collection of queries. 

Figure 5-6 shows the MAP measure for each of the agents. Although the results 

are not significant we can see that the DeepQAgent and MIMAgent had the 

highest MAP measure.  

GMAP is a measure that emphasizes improvements in queries that have a 

low average precision. Figure 5-7 shows the results of calculating the GMAP and 

again we see that the DeepQAgent and MIMAgent have the highest values. 

Table 9-24 contains the calculated GMAP values. 

 
Figure 5-7 The Geometric Mean Average Precision (GMAP) for each of the agents. GMAP is 

a measure that emphasizes improvements in queries that have a low average precision. 
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F-measure comparison 

The average F-measure was calculated for each of the agents. See Figure 

5-8. As with the previous measures we see that DeepQAgent and MIMAgent 

have the highest F-measures. In this measure comparison we see that the 

LGAgent is third highest and separation from the other agents is not as great as 

compared to the other measures. Table 9-25 in appendix G contains the values 

for the 12 queries for each agent and the average values that were used to 

create Figure 5-8. Also in appendix G is Figure 9-14 which shows the max F-

measure value for each query. 

 
Figure 5-8 The average F-measure for each of the agents. In this case we are using a 

balanced F-measure meaning that recall and precision are weighted equally. 

Agent answer overlap 

Overlap in the sentence sets retrieved for each query was analyzed. Venn 
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amounts of overlap among the different agents. Summing over all the Venn 

diagrams, the BasicAgent and LGAgent have the largest distinct set of answers 

they classified as relevant. The DeepQAgent and MIMAgent have the most 

overlap which is to be expected since the only difference between the two is that 

MIMAgent boosts the scores of answers mentioning genes with an MIM score 

between the query and answer. Often no MIM score exists and in these cases 

they both return the same answer set, thus creating the high degree of overlap 

between the two. Overall, the results show that answers are frequently unique to 

an agent, lending validity to the idea of having multiple search agents tuned to 

get different relevant answers from the knowledge space. 
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Figure 5-9 A Venn diagram for each of the 12 question showing the amount of answer 

overlap for answers classified as relevant. 
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Chapter 6: Future 

There are multiple directions to expand and improve the system. In this 

section I will expand and explain in detail some plans for future research.  

6.1 Additional agents 

New types of agents should be evaluated. The ISDB sentence database 

has already been parsed using the Stanford Parser (87). The Stanford Parser is 

a probabilistic natural language parser which uses knowledge of language 

gained from hand-parsed sentences to assign the most probable structures to 

new sentences. An agent that leverages the syntactic information produced by 

this parser should be created and evaluated. It would also be interesting to 

identify other types of biological data that could be useful in identifying answers 

and design agents accordingly. 

In addition to new agents, we hope to devise a method to combine the 

results from the agents to present the best subset from each agent to the user. 

This would allow for the user to benefit from integrating the information retrieval 

strengths of all of the agents.  

6.2 Additional resources 

There are many additional resources that have been shown to improve 

query results and are being considered for implementation in a future version of 

Jikitou. The list below is a few of the resources and their descriptions: 
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 The Medical Subject Headings (MeSH) (88) terms are a controlled 

vocabulary biomedical lexicon which is organized hierarchically. 

The headings at the highest level are broad, and they become 

more specific as one moves down the hierarchical structure. It is 

freely available from the National Library of Medicine. 

 The Unified Medical Language system (UMLS) (89) includes three 

knowledge sources:  

o The Metathesaurus (90), a multilingual vocabulary database 

that contains information about biomedical concepts, names, 

and the relationships among them. 

o The Semantic Network, a consistent organization of all the 

concepts that are present in the UMLS Metathesaurus which 

provides a set of relationships among the concepts. 

o The Specialist Lexicon, containing information useful for 

natural language processing systems. It contains a general 

English lexicon which includes biomedical terms. Terms 

include multi-word items that form a lexical item. 

Abbreviations and acronyms are also included in this 

resource. Each entry includes syntactic, morphological, and 

orthographic information. 

Another issue facing the knowledge base is that the data can quickly 

become outdated. The knowledge base needs to be updated periodically 

because new terminology and literature are constantly being introduced. It is 
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desirable to automate the process of checking for changes in external databases 

and taking the appropriate actions. 

6.3 Current agent modification 

It would also be useful to experiment with different scoring equations for 

the agents to tune them and seek out their maximum potential. Many of the 

current agents had issues with answers classified as being relevant not being 

ranked above answers that were classified as non-relevant.  

6.4 Future evaluation 

The evaluation system showed that it could be a viable way to evaluate 

the agents. It would be useful to improve the SVM classifier by taking into 

account additional document features such as POS, grammatical relations, and 

bi-grams. The similarity measure for measuring performance could also be 

improved by using a more robust scoring algorithm to replace the cosine 

similarity measure which does not take into account any actual available 

textual/NL clues as to the relatedness of two documents. 

Although the main reason for the design of the evaluation system was to 

avoid user studies, in the future it would be helpful to do one, it would be a way to 

validate or identify weakness in the current automated method. It would also be 

useful to get human relevancy judgments for answers from the Jikitou corpus and 

compare them to SVM classified answers. User studies would also help to 

evaluate Jikitou’s user interface which is really the only way to evaluate the UI.  
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Chapter 7: Conclusions 

Jikitou is a complete information retrieval system, which in addition to a 

question answering system, includes tools for indexing as well as tools to 

evaluate the system. Jikitou is designed to return short answers to biological 

questions. The QA system is intended to decrease the effort required to find 

answers when compared to methods that use traditional information retrieval 

systems (e.g., PubMed). Short answers can eliminate the need to read or scan 

entire documents to obtain desired information. The Jikitou QA system is 

designed to be a tool used by biomedical domain experts as well as useful and 

informative to students. The system has the potential to impact the design of 

future question answering systems, thereby advancing the field. It is not only a 

live information retrieval tool but also an IR research system. Jikitou combines 

multiple natural language processing techniques, data resources and 

technologies to create a unique system to help researchers navigate a 

biomedical corpus. 

7.1 Evaluation 

The evaluation techniques provide a method to extend the use of 

manually pre-judged passages to evaluating systems that were not among the 

original systems that contributed to the pool of passages and indeed use different 

corpuses altogether. The two evaluation methods were shown to validate each 

other where often a higher cosine score trend was observed when more answers 
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were classified as being relevant and a lower cosine score trend was seen when 

more answers where classified as not relevant. They provide a way to identify 

performance differences among agents and agent algorithm variations.  

There were occasions where the two evaluation methods differed. The 

TREC passages were often comprised of multiple sentences so during model 

training the models were tuned to longer answer strings. This may have resulted 

in the shorter Jikitou answers being incorrectly classified as not-relevant because 

of length. The cosine score evaluation normalizes so that the effect of different 

string length was minimized. So the fact that one method controlled for length 

and the other did not may be a reason for seeing a difference in results. 

7.2 Agents 

Jikitou uses an agent based architecture in which different agents search 

the information space using different retrieval strategies. The amount of overlap 

among the agents shows that the agents retrieve significantly different sets of 

relevant information. Although the LGAgent often had the lowest performance 

according to the evaluation measures used, a higher percentage of the answers 

that it returned and that were also deemed relevant were different from the 

answers returned by the other agents. It was able to retrieve answers that the 

other agents missed. This is additional evidence that implementing a multiple 

search strategy is an ideal method to maximize the recall of relevant answers 

from the information space. The LGAgent’s scoring equation should be further 

investigated and tuned to return more relevant answers with higher ranks. The 
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BasicAgent is a good agent to compare to the other agents. For all measures of 

performance and quality it performed well. The DeepQAgent was shown to be 

the best by most of the evaluation measures. It is clear that providing phrase 

queries that take into account key phrases from the questions, and gene 

synonyms increased its performance over the BasicAgent. The MIMAgent was 

basically the DeepQAgent with an added module to use the correlation value of 

gene co-expression. Although not consistently higher, for certain answers, a 

boost was seen in cosine score over the answers from the DeepQAgent, 

meaning that the MIM boost brought back answers that were more closely 

related to the judged relevant passages in those cases. There were occasions 

where using MIM boosted answers up in the rank that were then found to be not 

relevant or had a relatively low cosine scores, however. The next step would be 

to tweak each of the agent’s search algorithms to optimize their performances, 

and compare the difference in evaluation results. 

7.3 User interface 

Jikitou addresses two current gaps in current QA systems through the 

integration of the HyperGlossary. The first gap is answer generation and 

presentation. It is through the HyperGlossary system that the user is connected 

to multimedia information that has the potential to add value to the text answers 

returned by the agents. The second gap is a lack of systems that allow the user 

to choose his or her environment, establish context, have the system take that 

information into account, and automatically return the appropriate answer. 
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The choice of the glossary changes the context per the user’s preference. 

The HyperGlossary gives the user the ability to choose a glossary that allows him 

or her to customize the information that is returned. The HyperGlossary-

enhanced answers make the information more accessible to a wider audience 

and reduces the need to search other resources. This approach can enable 

users with varying levels of knowledge to have access to their choice of glossary 

to aid in the understanding of the answer. The terms in the answer that get 

enhanced are determined by the glossary the user chooses. 

Answers are parsed for keywords that are linked to external sources of 

information. The enhancement of answers is achieved through the use of 

heterogeneous multimedia sources such as ChemSpider, ChemEdDL, and 

RCSB Protein Data Bank. The fusion of the HyperGlossary and Jikitou helped to 

create a unique system to assist researchers in navigating the current 

information deluge. 

7.4 Query refinement 

The system's ability to have a dialog with the user is likely to result in more 

relevant answers being retrieved compared to systems that rely solely on the 

user to supply the query unguided. It is through a dialog with the user that 

essential parameters can be communicated to the system. In Jikitou the dialog is 

created through the terms suggested in the question drop down box as the user 

types and in both feedback panels, all of which are dynamically updated as the 
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user types. These components are used to establish context and help refine the 

question in order to return better answers. 

7.5 Architecture 

The system is designed to be easily updated and improved. This ability is 

achieved with modular components that permit swapping of different algorithms. 

An agent design was adopted not only for algorithmic purposes, but also to keep 

the system modular and allow it to be distributed to increase speed performance. 

Agents can be run in parallel on the same processing unit or could be easily 

assigned to their own unit. The Catalyst framework for Perl was used because it 

facilitates modular code by keeping the application logic separate from the user 

interface code. Ultimately it would be good to keep track of versioned protocols to 

help the system evolve and improve. The ability of agents in the system to evolve 

depends on our ability to understand what happened, through the tracking of 

results of different algorithms. The methods implemented in this system ensure 

that these goals are achieved, such that the system could continually evolve to 

become and stay an invaluable tool to researchers. 

7.6 Summary 

This work has focused on three synergistic contributions. Firstly, Jikitou 

serves as a model QA architecture, one which integrates the important properties 

of agents, the MVC framework, incorporating biological data, NLP, and deep 

question analysis. Other system builders can incorporate these ideas into their 

own designs. Secondly, Jikitou provides a model user interface strategy. The 
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flexible and diverse palette of UI features serves to demonstrate a user-centered 

UI approach that other system builders could borrow. These features include 

dynamic feedback panels, medical term focused autocomplete, and connections 

to a multitude of additional resources through the HyperGlossary. Thirdly, the 

evaluation strategy I designed, which is based on a method suggested by 

Büttcher et. al. (85), includes using the cosine similarity measure as an 

innovative contribution. The approach cleanly trades the noise and subjectivity of 

a user study for the objectivity and reproducibility of a method based on standard 

evaluation data. Other system builders could benefit by using this evaluation 

strategy as well.
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Chapter 9: Appendices 

9.1 Appendix A: Question list 

Q
ID 

Questions 

200 What serum proteins change expression in association with high disease 
activity in lupus?                                 

201 What mutations in the Raf gene are associated with cancer?                                                                

202 What drugs are associated with lysosomal abnormalities in the nervous 
system?                                             

203 What cell or tissue types express receptor binding sites for vasoactive 
intestinal peptide (VIP) on their cell surface?   

204 What nervous system cell or tissue types synthesize neurosteroids in the 
brain?                                           

205 What signs or symptoms of anxiety disorder are related to coronary artery 
disease?                                        

206 What toxicities are associated with zoledronic acid?                                                                      

207 What toxicities are associated with etidronate?                                                                           

208 What biological substances have been used to measure toxicity in 
response to zoledronic acid?                             

209 What biological substances have been used to measure toxicity in 
response to etidronate?                                  

210 What molecular functions are attributed to glycan modification?                                                           

211 What antibodies have been used to detect protein PSD-95?                                                                  

212 What genes are involved in insect segmentation?                                                                           

213 What genes are involved in Drosophila neuroblast development?                                                             

214 What genes are involved axon guidance in C.elegans?                                                                       

215 What proteins are involved in actin polymerization in smooth muscle?                                                      

216 What genes regulate puberty in humans?                                                                                    

217 What proteins in rats perform functions different from those of their human 
homologs?                                     

218 What genes are implicated in regulating alcohol preference?                                                               

219 In what diseases of brain development do centrosomal genes play a role?                                                   

220 What proteins are involved in the activation or recognition mechanism for 
PmrD?                                           

221 Which pahtways are mediated by CD44?                                                                                      
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222 What molecular functions is LITAF involved in?                                                                            

223 Which anaerobic bacterial strains are resistant to Vancomycin?                                                            

224  What genes are involved in the melanogenesis of human lung cancers?                                                       

225  What biological substances induce clpQ expression?                                                                        

226  What proteins make up the murine signal recognition particle?                                                             

227  What genes are induced by LPS in diabetic mice?                                                                           

228  What genes when altered in the host genome improve solubility of 
heterologously expressed proteins?                       

229  What signs or symptoms are caused by human parvovirus infection?                                                          

230  What pathways are involved in Ewing's sarcoma?                                                                            

231  What tumor types are found in zebrafish?                                                                                  

232  What drugs inhibit HIV type 1 infection?                                                                                  

233  What viral genes affect membrane fusion during HIV infection?                                                             

234  What genes make up the NFkappaB signaling pathway?                                                                        

235 Which genes involved in NFkappaB signaling regulate iNOS? 

Table 9-1 A list of the 36 TREC question and their IDs used to evaluate the Jikitou system.
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9.2 Appendix B: Agent relevant cosine scores by rank 

An ANOVA was performed to determine if there was a significant 

difference between agents’ cosine scores by rank. The results of the ANOVA 

were a p-value of .55 which is well above a p-value ≤ .05 so we accept the null 

hypothesis that the means are equal. See Table 9-2. 

Anova: Single Factor 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  BasicAgent 48 5.159888 0.107498 0.000272 
  DeepQAgent 48 5.226204 0.108879 0.000295 
  MIMAgent 48 5.292254 0.110255 0.000354 
  LGAgent 48 5.066484 0.105552 0.000191 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.000581 3 0.000194 0.695602 0.555805 2.652646 

Within Groups 0.052312 188 0.000278 
   

       Total 0.052893 191         
Table 9-2 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using the 

moving average cosine similarity measure (window size of 3)
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9.3 Appendix C: relevant vs. not-relevant data analysis 

Before determining the difference seen between the cosine measure 

scores of the relevant and not-relevant, it was first determined if the data was 

normal. A Shapiro-Wilk test for normality was performed in R. The results are 

shown in Table 9-3. Both test resulted in non-significant results meaning that 

both datasets conform to being normally distributed. 

Shapiro-Wilk normality test 
Dataset W p-vlaue 

Relevant 0.9837 0.7156 

Not-Relevant 0.9699 0.2297 

Table 9-3 The results of the Shapiro-Wilk normality test on relevant and not-relevant 

average cosine score by rank. The results of both test were not significant at the p-value 

of <.05 meaning that both datasets are normally distributed. 

A t-test was then performed in Excel, the results of which can be seen in 

Table 9-4. The t-test was done to determine the difference between the relevant 

and not-relevant average cosine score by rank. The null hypothesis being that 

the difference between the two means is the same. The alternative hypothesis is 

that the means are different. The results of the t-test is a t-statistic value of -4.951 

with a p-value of <.05. This means we reject the null hypothesis and accept the 

alternative that the means of the datasets are different. 

t-Test: Two-Sample Assuming Equal Variances 
  

     NOT Score Average Relevant Score Average 

Mean 0.074790593 0.080031355 
Variance 0.002650613 0.005417105 
Observations 7200 7200 
Pooled Variance 0.004033859 
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Hypothesized Mean Difference 0 
 df 14398 
 t Stat -4.950913491 
 P(T<=t) one-tail 3.73511E-07 
 t Critical one-tail 1.644959466 
 P(T<=t) two-tail 7.47022E-07 
 t Critical two-tail 1.960128762   

Table 9-4 The results of the t-test to determine if the difference between the relevant and 

not-relevant average cosine score by rank. The results of the test is that the difference 

between the two means is significant at a p-value of <.05.
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9.4 Appendix D: Difference among agents per query: data analysis 

To determine the difference between agents by query an ANOVA was 

performed on each query. The ANOVA was done in excel on the 12 different 

queries. 

Anova: Single Factor (QID: 200)   
  SUMMARY 

      Groups Count Sum Average Variance 
  BasicAgent 50 5.9063 0.1181 0.00166 
  DeepQAgent 50 6.4355 0.1287 0.001301 
  MIMAgent 50 6.4355 0.1287 0.001301 
  LGAgent 50 6.3765 0.1275 0.001314 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.003941 3 0.001314 0.942422 0.421167 2.650677 
Within Groups 0.273197 196 0.001394 

   
       Total 0.277138 199         

Table 9-5 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 200. 

Anova: Single Factor (QID: 203)   
  SUMMARY 

      Groups Count Sum Average Variance 
  BasicAgent 50 5.5222 0.1104 0.001745 
  DeepQAgent 50 6.4029 0.1281 0.003948 
  MIMAgent 50 5.5784 0.1116 0.002633 
  LGAgent 50 6.2356 0.1247 0.003623 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 0.012138 3 0.004046 1.354451 0.258027 2.650677 

Within Groups 0.585479 196 0.002987 
   



111 
 

 
 

       Total 0.597617 199         
Table 9-6 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 203. 

Anova: Single Factor (QID: 204)   
  SUMMARY 

      Groups Count Sum Average Variance 
  BasicAgent 50 6.4912 0.1298 0.001845 
  DeepQAgent 50 4.3836 0.0877 0.003979 
  MIMAgent 50 4.3836 0.0877 0.003979 
  LGAgent 50 3.7620 0.0752 0.002701 
  

       
       ANOVA 

      Source of 
Variation SS df MS F 

P-
value F crit 

Between Groups 0.085524631 3 0.02851 9.12019 
1.11E-

05 2.650677 
Within Groups 0.612663654 196 0.00313 

   
       Total 0.698188285 199         

Table 9-7 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 204. 

Anova: Single Factor (QID 211)   

  SUMMARY 
      Groups Count Sum Average Variance 

  BasicAgent 50 7.1505 0.1430 0.002182 
  DeepQAgent 50 3.3587 0.0672 0.002228 
  MIMAgent 50 3.0053 0.0601 0.001955 
  LGAgent 50 2.2203 0.0444 0.000375 
  

       

       ANOVA 
      Source of 

Variation SS df MS F 
P-

value F crit 

Between Groups 0.289520621 3 0.09651 57.27172 
1.25E-

26 2.650677 
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Within Groups 0.330273757 196 0.00169 
   

       Total 0.619794379 199         
Table 9-8 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 211. 

Anova: Single Factor (QID 212)   
  SUMMARY 

      Groups Count Sum Average Variance 
  BasicAgent 50 2.1604 0.0432 0.000446 
  DeepQAgent 50 2.8374 0.0567 0.000439 
  MIMAgent 50 2.8374 0.0567 0.000439 
  LGAgent 50 2.5621 0.0512 0.000463 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.006149338 3 0.00205 4.586946 0.003969 2.650677 
Within Groups 0.087586987 196 0.00045 

   

       Total 0.093736325 199         
Table 9-9 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 212. 

Anova: Single Factor  (QID: 213)   
  SUMMARY 

      Groups Count Sum Average Variance 
  BasicAgent 50 5.29048 0.10581 0.003184 
  DeepQAgent 50 5.50599 0.11012 0.002347 
  MIMAgent 50 5.50599 0.11012 0.002347 
  LGAgent 50 4.50229 0.09005 0.001689 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.013644861 3 0.00455 1.901615 0.130632 2.650677 
Within Groups 0.468793213 196 0.00239 

   
       Total 0.482438074 199         
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Table 9-10 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 213. 

Anova: Single Factor (QID: 214)   
  SUMMARY 

      Groups Count Sum Average Variance 
  BasicAgent 50 8.4648 0.1693 0.002756 
  DeepQAgent 50 9.7057 0.1941 0.001651 
  MIMAgent 50 9.7057 0.1941 0.001651 
  LGAgent 50 7.3301 0.1466 0.0036 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.078268411 3 0.02609 10.80438 
1.33E-

06 2.650677 
Within Groups 0.473283568 196 0.00241 

   
       Total 0.551551979 199         

Table 9-11 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 214. 

Anova: Single Factor (QID: 215)   
  SUMMARY 

      Groups Count Sum Average Variance 
  BasicAgent 50 11.8285 0.2366 0.008375 
  DeepQAgent 50 12.5439 0.2509 0.005165 
  MIMAgent 50 12.5439 0.2509 0.005165 
  LGAgent 50 11.0496 0.2210 0.008444 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.030477598 3 0.01016 1.496779 0.216707 2.650677 
Within Groups 1.330325092 196 0.00679 

   
       Total 1.360802689 199         

Table 9-12 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 215. 
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Anova: Single Factor (QID: 218)   
  SUMMARY 

      Groups Count Sum Average Variance 
  BasicAgent 50 3.0122 0.0602 0.002171 
  DeepQAgent 50 0.7789 0.0156 5.67E-05 
  MIMAgent 50 0.7789 0.0156 5.67E-05 
  LGAgent 50 1.6728 0.0335 0.001416 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.066833442 3 0.02228 24.07964 
2.61E-

13 2.650677 
Within Groups 0.181333739 196 0.00093 

   
       Total 0.248167181 199         

Table 9-13 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 218. 

Anova: Single Factor (QID: 227)   

  SUMMARY 
      Groups Count Sum Average Variance 

  BasicAgent 50 5.7820 0.1156 0.002757 
  DeepQAgent 50 6.0542 0.1211 0.002127 
  MIMAgent 50 6.0542 0.1211 0.002127 
  LGAgent 50 5.8487 0.1170 0.001609 
  

       
       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.001185457 3 0.0004 0.183358 0.90762 2.650677 

Within Groups 0.422397758 196 0.00216 
   

       Total 0.423583215 199         
Table 9-14 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 227. 

Anova: Single Factor (QID: 232)   
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SUMMARY 
      Groups Count Sum Average Variance 

  BasicAgent 50 9.8511 0.1970 0.00796 
  DeepQAgent 50 5.5553 0.1111 0.007579 
  MIMAgent 50 5.2856 0.1057 0.006849 
  LGAgent 50 5.2232 0.1045 0.005756 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 0.304515095 3 0.10151 14.42674 
1.57E-

08 2.650677 

Within Groups 1.379035261 196 0.00704 
   

       Total 1.683550356 199         
Table 9-15 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 232. 

Anova: Single Factor (QID: 234)   

  SUMMARY 
      Groups Count Sum Average Variance 

  BasicAgent 50 2.3226 0.0465 0.000205 
  DeepQAgent 50 9.3194 0.1864 0.003124 
  MIMAgent 50 8.9849 0.1797 0.003412 
  LGAgent 50 9.5928 0.1919 0.002881 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 0.733777139 3 0.24459 101.6831 
9.91E-

40 2.650677 

Within Groups 0.471465642 196 0.00241 
   

       Total 1.205242782 199         
Table 9-16 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using 

question ID 234. 

ANOVA tests that resulted in a significant result at the p-value <.05 level, 

meaning that not all 4 agents had equal means, were then tested using Tukey 
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multiple comparison. This test is used to determine which of the agents were 

significantly different from the others. Questions 204, 211, 212, 214, 218, 232, 

and 234 were found to not have equal means by ANOVA. The complete results 

of the Tukey test can be found in Table 9-17. 

Tukey multiple comparisons of means 95% family-wise confidence 
level Fit 

aov(formula = lm(value ~ variable, data = rdata)) 

Pair-wise Comparison 
diff lwr upr 

Adjusted P-
Value 

204 

    DeepQAgent-BasicAgent -4.22E-02 
-

0.0711 
-

0.0132 
0.0012299 

MIMAgent-BasicAgent  -4.22E-02 
-

0.0711 
-

0.0132 
0.0012299 

LGAgent-BasicAgent  -5.46E-02 
-

0.0836 
-

0.0256 
0.0000129 

MIMAgent-DeepQAgent -5.55E-17 
-

0.0290 
0.0290 1 

LGAgent-DeepQAgent -1.24E-02 
-

0.0414 
0.0165 0.6826629 

LGAgent-MIMAgent -1.24E-02 
-

0.0414 
0.0165 0.6826629 

211 

    
DeepQAgent-BasicAgent 

-0.07583473 
-

0.0971 
-

0.0546 0 

MIMAgent-BasicAgent 
-0.082904 

-
0.1042 

-
0.0616 0 

LGAgent-BasicAgent 
-0.09860406 

-
0.1199 

-
0.0773 0 

MIMAgent-DeepQAgent 
-0.00706927 

-
0.0283 0.0142 0.8248632 

LGAgent-DeepQAgent 
-0.02276933 

-
0.0440 

-
0.0015 0.0307114 

LGAgent-MIMAgent 
-0.01570006 

-
0.0370 0.0056 0.2262059 

212 

    DeepQAgent-BasicAgent 1.35E-02 0.0026 0.0245 0.0085656 
MIMAgent-BasicAgent 1.35E-02 0.0026 0.0245 0.0085656 

LGAgent-BasicAgent 
8.04E-03 

-
0.0029 0.0190 0.2311872 

MIMAgent-DeepQAgent 
1.39E-17 

-
0.0110 0.0110 1 
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LGAgent-DeepQAgent 
-5.51E-03 

-
0.0165 0.0054 0.5624999 

LGAgent-MIMAgent 
-5.51E-03 

-
0.0165 0.0054 0.5624999 

214 
    

DeepQAgent-BasicAgent 
2.48E-02 

-
0.0006 0.0503 0.0591663 

MIMAgent-BasicAgent 
2.48E-02 

-
0.0006 0.0503 0.0591663 

LGAgent-BasicAgent 
-2.27E-02 

-
0.0482 0.0028 0.0994347 

MIMAgent-DeepQAgent 
2.78E-17 

-
0.0255 0.0255 1 

LGAgent-DeepQAgent 
-4.75E-02 

-
0.0730 

-
0.0220 0.0000159 

LGAgent-MIMAgent 
-4.75E-02 

-
0.0730 

-
0.0220 0.0000159 

218 
    

DeepQAgent-BasicAgent 
-4.47E-02 

-
0.0604 

-
0.0289 0 

MIMAgent-BasicAgent 
-4.47E-02 

-
0.0604 

-
0.0289 0 

LGAgent-BasicAgent 
-2.68E-02 

-
0.0426 

-
0.0110 0.0001026 

MIMAgent-DeepQAgent 
3.47E-18 

-
0.0158 0.0158 1 

LGAgent-DeepQAgent 1.79E-02 0.0021 0.0336 0.0191799 
LGAgent-MIMAgent 1.79E-02 0.0021 0.0336 0.0191799 

232 

    
DeepQAgent-BasicAgent 

-
0.085916587 

-
0.1294 

-
0.0424 0.0000043 

MIMAgent-BasicAgent 
-

0.091309932 
-

0.1348 
-

0.0478 0.0000009 

LGAgent-BasicAgent 
-

0.092559525 
-

0.1360 
-

0.0491 0.0000006 

MIMAgent-DeepQAgent 
-

0.005393344 
-

0.0489 0.0381 0.98848 

LGAgent-DeepQAgent 
-

0.006642938 
-

0.0501 0.0368 0.978903 

LGAgent-MIMAgent 
-

0.001249594 
-

0.0447 0.0422 0.9998513 

234 
    DeepQAgent-BasicAgent 0.139937421 0.1145 0.1654 0 

MIMAgent-BasicAgent 0.133247255 0.1078 0.1587 0 
LGAgent-BasicAgent 0.145404328 0.1200 0.1708 0 
MIMAgent-DeepQAgent - - 0.0187 0.9038357 
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0.006690166 0.0321 

LGAgent-DeepQAgent 
0.005466908 

-
0.0200 0.0309 0.9444567 

LGAgent-MIMAgent 
0.012157073 

-
0.0133 0.0376 0.6026047 

Table 9-17 Tukey’s honest significance test was performed in R, which is a multiple 

comparison of means procedure. The test compares the means of each group to the mean 

of every other group. This test allows us to determine which agent or agents’ means was 

different from the other. 
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9.5 Appendix E: Individual query precision vs. recall graphs 

 
Figure 9-1 Precision-recall graph for query 200. 

 
Figure 9-2 Precision-recall graph for query 203. 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

o
n

 

Recall 

200 Precision Recall 

BasicAgent DeepQAgent MIMAgent LGAgent

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

ci
si

o
n

 

Recall 

203 Precision Recall 

BasicAgent DeepQAgent MIMAgent LGAgent



120 
 

 
 

 
Figure 9-3 Precision-recall graph for query 204. 

 
Figure 9-4 Precision-recall graph for query 211. 
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Figure 9-5 Precision-recall graph for query 212. 

 
Figure 9-6 Precision-recall graph for query 213. 
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Figure 9-7 Precision-recall graph for query 214. 

 
Figure 9-8 Precision-recall graph for query 215. 

 
Figure 9-9 Precision-recall graph for query 218. 
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Figure 9-10 Precision-recall graph for query 227. 

 
Figure 9-11 Precision-recall graph for query 232. 

 
Figure 9-12 Precision-recall graph for query 234. 
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9.6 Appendix F: Calculation of the interpolated average precision 

. BasicQA  

Std Recall 200 203 204 211 212 113 214 215 218 227 232 234 Average 

0 1.000 0.750 1.000 0.500 1.000 1.000 1.000 0.600 0.909 0.273 0.188 1.000 0.768 

0.1 0.857 0.667 0.933 0.500 0.800 1.000 1.000 0.500 0.909 0.273 0.188 0.533 0.680 

0.2 0.682 0.611 0.864 0.410 0.696 1.000 0.455 0.500 0.800 0.273 0.162 0.490 0.578 

0.3 0.682 0.556 0.771 0.000 0.676 1.000 0.455 0.394 0.800 0.128 0.000 0.000 0.455 

0.4 0.645 0.525 0.000 0.000 0.659 0.976 0.455 0.394 0.800 0.128 0.000 0.000 0.382 

0.5 0.628 0.500 0.000 0.000 0.000 0.976 0.455 0.375 0.000 0.128 0.000 0.000 0.255 

0.6 0.000 0.000 0.000 0.000 0.000 0.940 0.333 0.000 0.000 0.000 0.000 0.000 0.106 

0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.241 0.000 0.000 0.000 0.000 0.000 0.020 

0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.209 0.000 0.000 0.000 0.000 0.000 0.017 

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.209 0.000 0.000 0.000 0.000 0.000 0.017 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 9-18 Calculation of the eleven-point interpolated average precision for the BasicQAgent. 
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 DeepQAgent  

Std Recall 200 203 204 211 212 113 214 215 218 227 232 234 Average 

0 1.000 0.375 1.000 0.750 1.000 1.000 0.286 0.529 1.000 0.200 0.333 1.000 0.706 

0.1 1.000 0.350 1.000 0.692 0.478 1.000 0.286 0.529 0.882 0.200 0.258 1.000 0.640 

0.2 0.909 0.349 1.000 0.692 0.478 1.000 0.286 0.529 0.882 0.200 0.258 1.000 0.632 

0.3 0.773 0.349 0.977 0.647 0.478 0.960 0.250 0.435 0.882 0.200 0.258 1.000 0.601 

0.4 0.633 0.000 0.977 0.640 0.000 0.921 0.250 0.419 0.857 0.200 0.213 1.000 0.509 

0.5 0.600 0.000 0.960 0.000 0.000 0.900 0.250 0.378 0.000 0.200 0.000 0.980 0.356 

0.6 0.580 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000 0.178 0.000 0.000 0.084 

0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.146 0.000 0.000 0.178 0.000 0.000 0.027 

0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 9-19 Table 9 18 Calculation of the eleven-point interpolated average precision for the DeepQAgent. 
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 MIMAgent  

Sd Recall 200 203 204 211 212 113 214 215 218 227 232 234 Average 

0 1.000 0.333 1.000 1.000 1.000 1.000 0.286 0.529 1.000 0.200 1.000 1.000 0.779 

0.1 1.000 0.270 1.000 0.667 0.478 1.000 0.286 0.529 0.882 0.143 0.600 1.000 0.655 

0.2 0.909 0.270 1.000 0.500 0.478 1.000 0.286 0.529 0.882 0.143 0.556 0.964 0.626 

0.3 0.773 0.000 0.977 0.500 0.478 0.960 0.250 0.435 0.882 0.129 0.296 0.943 0.552 

0.4 0.633 0.000 0.977 0.000 0.000 0.921 0.250 0.419 0.857 0.000 0.268 0.940 0.439 

0.5 0.600 0.000 0.960 0.000 0.000 0.900 0.250 0.378 0.000 0.000 0.000 0.000 0.257 

0.6 0.580 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000 0.000 0.000 0.000 0.069 

0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.146 0.000 0.000 0.000 0.000 0.000 0.012 

0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 9-20 Table 9 18 Calculation of the eleven-point interpolated average precision for the MIMAgent. 
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 LGAgent  

Std Recall 200 203 204 211 212 113 214 215 218 227 232 234 Average 

0 0.526 1.000 1.000 0.581 1.000 1.000 0.286 0.667 0.737 0.200 0.125 1.000 0.677 

0.1 0.526 0.400 1.000 0.581 0.622 1.000 0.286 0.412 0.737 0.143 0.125 1.000 0.569 

0.2 0.526 0.357 0.862 0.581 0.622 1.000 0.286 0.412 0.720 0.143 0.125 1.000 0.553 

0.3 0.420 0.000 0.826 0.581 0.622 0.960 0.286 0.408 0.720 0.129 0.000 0.960 0.493 

0.4 0.420 0.000 0.826 0.000 0.622 0.957 0.286 0.408 0.720 0.000 0.000 0.960 0.433 

0.5 0.000 0.000 0.000 0.000 0.000 0.957 0.238 0.408 0.000 0.000 0.000 0.000 0.134 

0.6 0.000 0.000 0.000 0.000 0.000 0.940 0.000 0.408 0.000 0.000 0.000 0.000 0.112 

0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 9-21 Table 9 18 Calculation of the eleven-point interpolated average precision for the LGAgent. 
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9.7 Appendix G: Average Precision, MAP, GMAP, and F-Measure 

 
Figure 9-13 Average precision for the agents for each of the queries under investigation. 

 
 BasicAgent DeepQAgent MIMAgent LGAgent 
QID AP log-AP AP log-AP AP log-AP AP log-AP 

200 0.651 -0.186 0.727 -0.139 0.727 -0.139 0.375 -0.426 

203 0.541 -0.267 0.280 -0.552 0.200 -0.698 0.352 -0.454 

204 0.818 -0.087 0.985 -0.007 0.985 -0.007 0.854 -0.068 

211 0.335 -0.475 0.615 -0.211 0.542 -0.266 0.448 -0.349 

212 0.694 -0.158 0.459 -0.339 0.459 -0.339 0.534 -0.272 

213 0.984 -0.007 0.951 -0.022 0.951 -0.022 0.970 -0.013 

214 0.287 -0.542 0.171 -0.767 0.171 -0.767 0.154 -0.812 

215 0.377 -0.424 0.391 -0.407 0.391 -0.407 0.356 -0.449 

218 0.754 -0.123 0.859 -0.066 0.859 -0.066 0.636 -0.196 

227 0.123 -0.911 0.123 -0.911 0.123 -0.911 0.098 -1.010 

232 0.110 -0.957 0.206 -0.685 0.340 -0.468 0.073 -1.135 

234 0.549 -0.261 0.997 -0.001 0.957 -0.019 0.972 -0.012 

Table 9-22 Average precision calculated value and the log of the average precision used in 

the MAP and GMAP calculations. 
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MAP 

BasicAgent DeepQAgent MIMAgent LGAgent 

0.518523889 0.563594839 0.55867549 0.48509 

Table 9-23 Values calculated from the Mean Average Precision. 

 

GMAP 

BasicAgent DeepQAgent MIMAgent LGAgent 

0.693117572 0.710124763 0.710051767 0.648444 

Table 9-24 Values calculated for the Geometric Mean Average Precision. 

 

Query BasicAgent DeepQAgent MIMAgent LGAgent 

200 0.577319588 0.597938144 0.597938144 0.432989691 

203 0.505050505 0.303030303 0.242424242 0.282828283 

204 0.452554745 0.700729927 0.700729927 0.598540146 

211 0.327868852 0.524590164 0.409836066 0.459016393 

212 0.50877193 0.385964912 0.385964912 0.543859649 

213 0.74015748 0.708661417 0.708661417 0.74015748 

214 0.3 0.233333333 0.233333333 0.166666667 

215 0.43902439 0.43902439 0.43902439 0.487804878 

218 0.592592593 0.622222222 0.622222222 0.533333333 

227 0.196721311 0.262295082 0.262295082 0.131147541 

232 0.16 0.266666667 0.32 0.16 

234 0.324324324 0.662162162 0.635135135 0.648648649 

Average 0.427032143 0.47555156 0.463130406 0.432082726 

Table 9-25 Values F-measure values and the average value for the 12 queries. 
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Figure 9-14 Max balanced F-measure for individual queries. 
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