

THE JIKITOU BIOMEDICAL QUESTION ANSWERING SYSTEM:

FACILITATINGTHE NEXT STAGE IN

THE EVOLUTION OF INFORMATION RETRIEVAL

A Dissertation Submitted
to the Graduate School

University of Arkansas at Little Rock

in Partial Fulfillment of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY

in Bioinformatics

from the Bioinformatics Graduate Program of

the University of Arkansas at Little Rock and

the University of Arkansas for Medical Sciences

January 2013

Michael Anton Bauer

B.S., Computer Science, New Mexico Institute of Mining and Technology,

2005

B.S., Biology, New Mexico Institute of Mining and Technology, 2005

M.Sc., Bioinformatics, University of Arkansas at Little Rock and

University of Arkansas for Medical Sciences, 2008

© Copyright by
Michael Anton Bauer

2013

This thesis, The Jikitou Biomedical Question Answering System: Facilitating

the Next Stage in the Evolution of Information Retrieval, by Michael Anton

Bauer is approved by:

Thesis Advisor:

Daniel Berleant, Ph.D.

Professor of Information Science

Thesis Committee:

Robert E. Belford, Ph.D.
Associate Professor of Chemistry

Alan J. Tackett, Ph.D.
Associate Professor of Biochemistry

William R. Hogan, M.D.
Associate Professor and Chief in Division
of Biomedical Informatics

Radhakrishnan Nagarajan, Ph.D.
Associate Professor, Division of
Biomedical Informatics at the University of
Kentucky

External Member:

Jonathan D. Wren, Ph.D.
Assistant Member of the Arthritis
and Clinical Immunology Research
Program at the Oklahoma Medical
Research Foundation

Program Coordinator:
Elizabeth Peirce, Ph.D.
Associate Professor, Chair of Information
Science

Graduate Dean:

Patrick J. Pellicane, Ph.D.
Professor of Construction Management

Fair Use

This thesis is protected by the Copyright Laws of the United States (Public

Law 94-553, revised in 1976). Consistent with fair use as defined in the

Copyright Laws, brief quotations from this material are allowed with proper

acknowledgment. Use of this material for financial gain without the author’s

express written permission is not allowed.

Duplication

I authorize the Head of Interlibrary Loan or the Head of Archives at the

Ottenheimer Library at the University of Arkansas at Little Rock to arrange

for duplication of this thesis for educational or scholarly purposes when so

requested by a library user. The duplication will be at the user’s expense.

Signature

I refuse permission for this thesis to be duplicated in whole or in part.

Signature

THE JIKITOU BIOMEDICAL QUESTION ANSWERING SYSTEM:
FACILITATING THE NEXT STAGE IN THE EVOLUTION OF INFORMATION
RETRIEVAL by Michael Anton Bauer, 2013

Abstract

In clinical and biomedical settings researchers often use specialized

search engines to acquire answers to technical questions or to verify

experimental results from peer reviewed scientific literature. The outcome of such

queries typically results in the reading and scanning of multiple Web pages and

documents. Information retrieval is the science of retrieving relevant items and

question answering (QA) is a specialized type of information retrieval with the

aim of returning precise short answers to queries posed as natural language

questions. In this dissertation I describe and discuss a QA system, named Jikitou

(www.jikitou.com), which creates a dialog with the user that mimics human

interaction and utilizes multiple search agents to answer biomedical questions.

Jikitou is designed to be modular to allow for easy modification and

evolution of core components. An evaluation system has been devised, which

allows for the systematic comparison among different algorithms for finding

relevant answers. The system's architecture can be divided into four subsystems:

knowledge base, question analysis, answer agents, and user interface. Multiple

software agents find possible answers to questions, from which the most relevant

are presented to the user. Relevant information is presented to the user which

establishes a kind of dialog with the user to obtain feedback to refine the query.

Answers are automatically marked up and linked to semantically relevant content

in other databases. The additional information is presented in a popup window

that appears when a marked term is clicked.

Jikitou addresses two current requirement gaps in biomedical question

answering, namely, incorporating multimedia information and an ability to interact

with the user. There is a lack of systems that allow the user to establish context,

utilize that information in the process, and automatically return the appropriate

answer. Jikitou returns answers to biological questions rather than lists of

documents, which reduces the need to read entire documents. In addition to

addressing current gaps, the system demonstrates an architecture framework

that can continually evolve, maintaining itself as a valuable tool to researchers

not only for question answering but also for other information retrieval needs.

Dedication

This dissertation is dedicated to my loving wife Akemi and three daughters

Kana, Sana, and Mana who supported me throughout the entire endeavor.

Acknowledgments

There are a number of individuals that I would like to acknowledge for their

help and encouragement. I would first like to acknowledge my parents Mark and

Lorna Bauer for their love and support and belief in me. They were a strong

driving force that kept me pushing on when it felt like there was no end in sight.

I would like to recognize and express my gratitude to my advisor Dr.

Daniel Berleant for his guidance throughout both my masters and PhD. His ability

to provide guidance, while at the same time still allowing me to take the lead in

my education where the perfect balance, which I feel will prove to make me a

better researcher. I would also like to acknowledge my dissertation committee

members Drs. William Hogan, Radhakrishnan Nagarajan, and Alan Tackett for

their guidance. With a special thanks to Drs. Jonathan Wren and Robert Beflord.

Dr. Wren provided me with the idea of designing a question answering system

and provided invaluable advice and suggestion throughout the dissertation. And

Dr. Belford whom I started working with on the HyperGlossary project provided

excellent support which has led to my intellectual growth.

I would also like to acknowledge my classmate and dear friend Shweta

Chavan for all her support whether if it was proofreading, being there when ever

needed to bounce ideas off of, or just having the support of someone going

through the same process to be able to talk to during the tough times. I will

always treasure the times we were able to take a break and play ping pong.

I would like to give a very special acknowledgement to my wife Akemi who

has supported my educational endeavors since undergraduate school and whose

support really made it all possible. Her understanding of late hours and

weekends in the office made my ability to focus much easier. She was truly my

rock and I cannot thank her enough.

x

Table of Contents

Chapter 1: Introduction .. 1

1.1 Background ... 1

1.2 Aims and objectives ... 3

Specific aims .. 4

1.3 Thesis organization ... 6

Chapter 2 Literature review .. 6

Chapter 3 Jikitou design and methods .. 6

Chapter 4 System evaluation .. 7

Chapter 5 Results ... 7

Chapter 6 Future work .. 7

Chapter 7 Conclusions ... 7

Chapter 2: Literature review .. 8

2.1 Usability survey of biomedical question answering systems.......... 8

Summary .. 8

Introduction ... 8

Information sources .. 9

Response time and results ... 10

User interface ... 13

Answer quality .. 14

xi

Summary .. 15

Chapter 3: Jikitou design and methods ... 17

3.1 Design rationale ... 17

Apache Lucy ... 19

Searching ... 19

Query formation .. 20

Document representation and document weighting 21

Query weighting .. 25

Similarity measure .. 25

3.2 Jikitou design ... 26

Model .. 28

View .. 30

Controller .. 30

3.3 Knowledge base .. 30

3.4 Dictionaries and thesauruses .. 31

3.5 Multiple search agent approach ... 32

Agent toolbox .. 35

Dispatch module ... 42

Agents .. 43

3.6 Interface ... 46

“About” tab .. 47

“Question” tab ... 48

xii

“Answer” tab ... 51

“Abstract” tab .. 52

3.7 HyperGlossary ... 52

Creating a glossary ... 54

JavaScript overlays ... 55

Chapter 4: System evaluation.. 59

4.1 Evaluation methods: User study vs Automated 59

4.2 Text Retrieval Conference Resources ... 60

4.3 Similarity-judged vs. Jikitou-produced answers 61

4.4 SVM: extending the judged passages ... 62

Chapter 5: Results ... 67

5.1 Evaluation comparison .. 67

5.2 Cosine similarity measure evaluation results 70

Cosine score, relevant vs. not-relevant, by rank 70

Agent relevant cosine scores by rank ... 72

Difference between agent per query ... 73

5.3 SVM evaluation results .. 75

SVM performance estimate .. 76

Measures of effectiveness .. 78

Measuring SVM models’ effectiveness ... 79

Measuring Jikitou’s effectiveness ... 80

Agent answer overlap ... 85

xiii

Chapter 6: Future .. 88

6.1 Additional agents ... 88

6.2 Additional resources .. 88

6.3 Current agent modification ... 90

6.4 Future evaluation ... 90

Chapter 7: Conclusions ... 91

7.1 Evaluation .. 91

7.2 Agents ... 92

7.3 User interface .. 93

7.4 Query refinement ... 94

7.5 Architecture ... 95

7.6 Summary ... 95

Chapter 8: List of references ... 97

Chapter 9: Appendices .. 105

9.1 Appendix A: Question list ... 105

9.2 Appendix B: Agent relevant cosine scores by rank 107

9.3 Appendix C: relevant vs. not-relevant data analysis 108

9.4 Appendix D: Difference among agents per query: data analysis 110

9.5 Appendix E: Individual query precision vs. recall graphs 119

9.6 Appendix F: Calculation of the interpolated average precision .. 125

9.7 Appendix G: Average Precision, MAP, GMAP, and F-Measure 129

1

Chapter 1: Introduction

We live in an age where we have access to more information than ever

before. This can be a double edged sword. The access to information allows for

more informed and empowered researchers. On the other hand finding relevant

information becomes an increasingly more difficult task. Clinical and biomedical

researchers often use search engines to find short answers to biological

questions or to quickly get validation of genomic and proteomic experimental

results. Google (1) and PubMed (2) are well known and successful information

retrieval systems, but once the results are returned in the form of a list of

documents or sites, it is left to the user to scan the resulting list and linked pages

for the relevant information. A simple search can quickly become a time

consuming task when one must manually find the answer due to the number of

hits returned using these traditional kinds of information retrieval systems. There

is a need for intelligent information retrieval systems that can summarize relevant

textual information while also incorporating multiple sources of information from

reliable sources to satisfy a user’s query.

1.1 Background

Question answering (QA) systems are an extension of information

retrieval in which precise short answers are built and returned to the user in

response to queries posed as a natural language question (3-5) . Currently there

are few such QA systems specific to the genomic and proteomic domains. Thus,

2

there is a need for systems that are able to return short answers extracted from

PubMed articles and other such sources that accurately answer genomic and

proteomic questions. Reduction of the amount of irrelevant information returned

to the user is expected to increase the productivity of researchers in the

biomedical field.

There are many reasons why researchers perform literature searches:

 find gaps and limitations in a field

 find and compare results

 validate results against peer's research

 learn about a field

A question answering system might allow researchers interested in

biomolecular interactions to fulfill many of these needs. Potential gaps in a field

can be found if a particular question cannot be answered. If conflicting answers

are presented to the user they can quickly get an idea of the controversies and

conflicting opinions. Performing large scale interactome, proteomic, or genomic

experiments results in large lists of genes, proteins, and other biomolecules and

it is often necessary to review the literature to validate results or see what is

known about them (6, 7). The aim of a question answering system like this is to

make this task easier.

Grant et al. (6), for example, present a proteomic study of multi-protein

complexes in mammalian neuronal synapses. They describe the protocol they

followed and believe a systematic literature search should be done when you

have a list of proteins and genes obtained during a proteomic or microarray

3

experiment. The paper states that learning what is already known about the

proteins that they have identified can provide insight into what the next step

should be in the research plan. This requires an exhaustive search of the

literature for the entities of interest.

The author mentions that performing literature research on even a list of

just 10 proteins can be a daunting task. Each gene or protein has multiple

synonyms and it can be time consuming to create a query to encompass all

possible terms. A method is described that utilizes text mining methods to

automate the process of finding synonyms and searching the literature

databases for papers pertinent to a protein in question. They were looking for

papers that mentioned a mutation in a gene of interest that was associated with a

human disease. Their method is broad and returns only a small percentage of

relevant papers. This type of search still requires a large percentage of the

literature research time to be dedicated to reading and skimming papers that do

not contain any relevant information.

1.2 Aims and objectives

The main hypothesis in this study is that a question answering system can

provide an improved method for information retrieval that deals with specific

biological questions. The hypothesis is based on the concept that often the

relevant information need can be found in a sentence or phrase contained within

a document rather than having to read the entire document (8). Retrieval of this

piece of information helps reduce the need for documents to be scanned or read.

4

This thesis will advance the information retrieval field by filling gaps that

are present in information retrieval and question answering systems. Such gaps

include the deficiency in the use of multimedia sources to enrich answers and

interaction with the user to establish context (9, 10). There is also a lack of

systems that enable users to systematically build and test a QA approach without

the need to build an entire IR system from the ground up (11). It is the goal of this

project to address these gaps and limitations. Multimedia sources are linked to

key words matched in the answers that aid in the understanding of the answer.

Sources include links to definition of terms, relevant information in other

databases, and video. Design decisions taken during the development of the

system allow it to systematically evolve and give other researches a base from

which they can build novel search strategies immediately (contact the author for

source code if you are such a researcher). This QA system advances the field

with an application that returns answers to biomedical questions enhanced with

data from multimedia sources in addition to providing a QA development tool.

Specific aims

The goal of this thesis is to advance QA in the context of building a text

mining system with a question answering system that returns concise answers to

genomic and proteomic questions. To achieve this, the following specific aims

were fulfilled.

5

Aim #1: Build components of a base information retrieval system

Build the information retrieval base system components that are

necessary for the QA system. Sub-tasks included the selection of a suitable

search engine library to incorporate into modules and scripts to provide basic

search and indexing capabilities.

Aim #2: Build a QA system onto the base

Build the question answering system on top of the base information

retrieval system, also integrating multiple resources together to create a

knowledge base which different search strategies can access. This approach will

maximize the likelihood that the most relevant information for a particular

information need is found using one of the search strategies.

Aim #3: Build a web interface

Build a web interface to the QA system. It is through this interface that

standard users will interact with the system. They will submit their questions and

answers will be returned to them. The interface will also allow for query

refinement through user feedback. As well as providing a mechanism for

presenting the content provided by the HyperGlossary. The requirements of the

interface are that it be dynamic, responsive, and intuitive.

Aim #4: Enhance the answers using the HyperGlossary

Enhance the answers by incorporating a HyperGlossary module to

connect answers to additional resources. Possible answers to questions can be

presented to the user enhanced with links to additional information. Passing the

6

answers to the HyperGlossary increases the understandability of the answers

through the addition of links to semantically relevant information.

Aim #5: Evaluate the system

Design and execute a method to evaluate the system. Different search

strategies should be developed for use within the system and compared. An

evaluation method that minimizes the need for human judges was desired.

1.3 Thesis organization

The rest of this thesis is organized as follows.

Chapter 2 Literature review

This chapter gives background information on current state of the art QA

systems and is essentially a paper that we published in the journal Human

Genomics entitled “Usability survey of biomedical question answering”.

Chapter 3 Jikitou design and methods

Chapter 3 goes into design and describes the methods and algorithms

chosen for the QA system. I describe the software design paradigms followed

and the reason for the choices. I continue in the chapter to give background on

the basic parts of an information retrieval system and our approach to

implementing these into the system. In this project many existing tools,

databases and technologies are integrated and their function and use are also

7

described in detail. The chapter concludes with a detailed description of the

interface and how the user interacts with the system.

Chapter 4 System evaluation

Evaluation of the system is explained in Chapter 4. A detailed description

of the problem with evaluating IR tools is given and two evaluation methods that I

have chosen to implement are detailed.

Chapter 5 Results

Evaluation results are described in this chapter. The results of both

evaluation methods are further analyzed with additional evaluation measures

calculated and the results presented. Agreement and disagreements between

the two methods are highlighted. Performances of the different search strategies

are compared.

Chapter 6 Future work

 This chapter conveys possible future plans for improving the system.

There are several directions that can be taken to further the research, advance

the field of IR, and question answering in particular.

Chapter 7 Conclusions

 Chapter 7 draws conclusions from the evaluation results as well as

making a case for how the Jikitou system has advanced the fields of information

retrieval and question answering.

8

Chapter 2: Literature review

2.1 Usability survey of biomedical question answering systems

Based on a paper published in the journal Human Genomics, 2012, 6:17,

http://www.humgenomics.com/content/6/1/17.

Summary

Biologists have access to an ever increasing amount of textual

information. Increased access to information allows for more informed and

empowered researchers, while information overload becomes an increasingly

serious risk. Thus, there is a need for intelligent information retrieval systems that

can summarize relevant and reliable textual sources to satisfy a user's query.

Question answering is a specialized type of information retrieval with the aim of

returning precise short answers to queries posed as natural language questions.

I present a review and comparison of three biomedical question answering

systems: askHERMES (http://www.askhermes.org/), EAGLi

(http://eagl.unige.ch/EAGLi/), and HONQA (http://services.hon.ch/cgi-

bin/QA10/qa.pl).

Introduction

There are numerous general purpose search engines available online, but

as information sources continue to proliferate, specialized and domain-specific

information retrieval tools become more essential. One such domain is the

http://www.askhermes.org/
http://eagl.unige.ch/EAGLi/
http://services.hon.ch/cgi-bin/QA10/qa.pl
http://services.hon.ch/cgi-bin/QA10/qa.pl

9

clinical and biomedical fields, where the body of scientific knowledge is large and

increasing. To minimize searching and browsing time while maximizing

usefulness of that knowledge and data, we are seeing considerable interest in

biomedical/clinical question answering systems (12). Question answering (QA) is

a specialized type of information retrieval that returns precise short answers to

queries posed as natural language questions (3, 13-15). It is the goal of such

systems to move the burden of skimming multiple documents, which can be quite

time consuming, from the researcher or clinician to the computer. The recent

successes of IBM's Watson on Jeopardy highlight the possibilities and potential

power of QA (16). I present a review of three leading biomedical QA systems,

askHERMES (17-19), EAGLi (20, 21), and HONQA (22-24), which are all

publically accessible online. This paper is organized into sections based on key

usability dimensions used to compare the different systems.

Information sources

An important factor for any domain-specific QA system is the accuracy

and trustworthiness of the sources against which queries are performed. Most

biomedical QA systems make use of MEDLINE abstracts as an information

source (25) . Two systems that I reviewed, askHERMES and EAGLi, used

MEDLINE as a major source of answers. In addition, askHERMES uses

eMedicine,(26) clinical guidelines, PubMedCentral (27) full text documents, and

Wikipedia. EAGLi uses Medical Subject Headings to help answer some

definitional questions. HONQA uses websites that have been certified by Health

10

On the Net Foundation (HON) (28), unlike the other two systems that rely heavily

on MEDLINE.

Response time and results

First of all, the systems vary in their response times and in the form of

answers returned to the user (in particular, single or multiple sentences). All three

QA systems return relatively short answers to clinical or biomedical questions

instead of entire documents. Response time assessment is based on the relative

amount of time it took each system to respond to a typical query.

EAGLi is quite slow and may not truly be ready for high volume traffic. In

response to a question that the system ‘understands,’ a list of possible answers

is displayed with corresponding levels of confidence indicated. Links to abstracts

are also provided and grouped by which answers to the question they support. If

a question is not understood, EAGLi returns a list of abstracts that contained

some of the query terms. The program also provides a short snippet of text from

the abstract that contains keywords from the query. Next to the text there are

links to PubMed and to a page they call a “semantic summary” which displays

the entire abstract and a list of all the Gene Ontology and SwissProt terms that

were matched, along with the phrase they were mapped to. A score is given to

indicate to the user the strength of the mapping. This information gives the user a

way to understand why the system has determined that a particular abstract

supports an answer or was given as the answer. A link to a matrix is provided on

the main results page that can quickly give the user an overview of the terms that

were matched in the abstracts. This system provides a degree of transparency to

11

the retrieval process that traditional information retrieval systems hide from the

user. That in turn supports efforts by the user to efficiently figure out how to best

phrase a query or question to get the most relevant information.

The askHERMES system responds significantly more quickly than EAGLi

or HONQA. It warns that it may take up to 60 s, but more often than not, it returns

results in only a few seconds. Query terms are determined first by identifying

noun phrases in a question which are then weighted based on several methods.

The query is subsequently expanded using the Unified Medical Language

System (UMLS), dictionaries, and thesauruses. Answers that are returned in

response to a question can be viewed in three different arrangements: clustered

answers, ranked answers, and content clustered answers. Clustered answers

are first grouped according to different combinations of query and UMLS query

expansion terms. They are then sub-clustered by different combinations of

synonym concepts. This functionality can be useful in answering a complex

question, such as one about a cause and treatment, which may require reading

several different passages to find an answer. This is useful because often a

sufficient answer cannot be found in just one sentence or short passage. Content

clustered answers provide a third method to view answers. Common labels are

found for the original clusters, and additional answer passages are found that

match these labels. This approach allows a passage to be found under multiple,

easy to read labels. A list of related questions is shown and can be used to

further refine the one's own query question. The answers returned by the system

are short passages or phrases from MEDLINE abstracts which are linked back to

12

the original citation. The system classifies questions into several categories

defined by the National Library of Medicine (NLM) (29), such as diagnosis,

treatment and prevention, etiology, pharmacological, management, and others.

This classification aids in identifying query terms to use in retrieval.

HONQA is about as slow as EAGLi but it does display a status bar so that

you can better tell whether it is working or has hung. Next to each answer, you

can indicate whether a response to the question was appropriate or not. This is

intended to help improve the quality of the answers provided by the system over

time. Answers are linked to cached versions of the websites from which the

sentences were obtained. The answers are sentences taken from HON certified

websites. A health and medical website can apply to be certified, after which the

HON organization will evaluate the site to see that it meets ‘The HON Code of

Conduct for medical and health Web sites’ (HONcode) (30). The use of certified

health websites as a source of knowledge is unique to the HONQA system. It

was the intent of the designers of HONQA that users with different levels of

health and biological knowledge be able to benefit from answers that are

understandable and useful. MEDLINE contains high quality peer reviewed

literature but can be technically difficult to understand, whereas websites are

typically designed and geared for a more diverse audience. However, a

significant problem with using the Internet as a source of health information is the

lack of oversight of the information that is presented. The HON certification helps

alleviate the problem of incorrect and possibly dangerous medical information on

the Internet. Another benefit of using websites as a knowledge source is that

13

there are links to additional information present in most web pages (and absent

from MEDLINE abstracts) that can often help answer the question if the sentence

returned does not completely answer it.

User interface

EAGLi provides a simple and clean interface which allows users to ask a

question and either use the PubMed search tool or their specialized relevance

driven search engine. Most of the items on the page can be hovered over with

the mouse to display a small tooltip containing a more detailed description of the

item. The terms that are selected from the question to be used to query are

displayed on the results page. The system appears to reformulate and

automatically expand the queries with the addition of Gene Ontology and

SwissProt terms.

The interface to askHERMES is also simple and clean with multiple tabs.

At the top of the results page are links to clinical question answering tools, which

include utilities to browse questions, classify questions, and generate query

terms. A question browsing utility allows browsing the NLM collection of clinical

questions that they used while developing and tuning the system. A question

classifying utility lets the user submit a question and see in which category the

question is categorized. An ad hoc question can also be submitted to the query

term generating utility to get a list of the keywords that would be extracted and

used by the system to query the database. These utilities can help the user

understand how the system answers questions that are posed, similar to the

“Semantic Summary” of EAGLi.

14

HONQA has a very simple and easy-to-understand interface. When

results are returned, information about how the question was interpreted is

provided and includes: the number of answers, the language, expected question

type, and expected medical type. HONQA does some interpretation of the

question to determine the type and kind of medical information being requested.

Question types can be definition, factoid, list, and Boolean. The medical types a

question may be include definition, diagnostic, physiology, and treatment. This

helps the user determine whether the system understands the intent of their

question.

Answer quality

The askHERMES system returns passages that could potentially answer

all types of questions. A drawback is the consequently high recall; a large

number of results are often returned, which tends to defeat the intent of a

question answering system in reducing the amount of information that must be

read. HONQA returned fewer answers to many biomedical questions and is

tuned for medical questions. I observed that HONQA was able to present

sentences that answered questions to definitional clinical questions. The

sentences returned by the system were clear and easy to understand, and often,

following links to the cached source texts for further elaboration was

unnecessary. The EAGLi system was unique in that, when it understood a

definitional question, it would return a list of target answers with different levels of

confidence in addition to supporting abstracts. If a question was not understood,

it would just return abstracts that contained the query terms without the list of

15

possible answers. Thus, while long, complex questions tended to lead to no

results from EAGLi and HONQA, askHERMES returned results for any size and

type of question posed. This strategy strongly suggests itself as a general

architectural feature for future QA systems.

Summary

There are considerable interesting differences between the three systems.

HONQA returns single-sentence answers that are clear and easy to understand.

Although EAGLi provides single entity answers, it still seems to be often

necessary to read the abstracts to validate the answers provided. It also presents

the user with many different ratings and views which can be confusing. With its

quick responses, askHERMES is currently the most useable of the three

systems, especially if it is necessary to make multiple queries. Table 2-1

summarizes the dimensions and comparisons of the different systems.

Biomedical question answering systems are improving and will be ready for

prime time, perhaps surprisingly, soon. These three systems demonstrate that

they are close to becoming valuable tools for the clinical and biomedical fields.

16

Table 2-1 Question answering system comparison matrix of features for HONQA,

askHERMES, and the EAGLi systems.

17

Chapter 3: Jikitou design and methods

This chapter details each part of the system, describing key functions and

algorithms. It also details the external programs and databases that have been

integrated into the system and their application. The reader can get an

explanation of the design concepts and the reasons for their selection.

3.1 Design rationale

The system that I have developed is called Jikitou and can be found at the

web address www.jikitou.com. Jikitou is the Japanese word for “prompt

answers/direct personal answer”, the tenets that guided the design and

implementation of the system. Question answering, being an advanced

information retrieval task, builds upon and combines many basic text-mining

tasks that in turn use many methods and tools, see Figure 3-1.

Jikitou incorporates many of the common methods which are used in the

more mature text-mining tasks of information retrieval, entity recognition, and

information extraction to find answers (15, 31, 32). Information retrieval is the

process of identifying text segments relevant to a topic, which is accomplished

using methods that find similarity between them. Information extraction is the

process of identifying predefined types of fact from the literature. The facts may

be specific relationships between biological entities; for example, protein-protein

interactions or gene-protein interactions. The most commonly used strategies for

automated information extraction are co-occurrence analysis, template matching,

http://www.jikitou.com/

18

and natural language processing. Entity recognition is the process of identifying

specific terms of interest. In the case of biomedical text-mining the usual entities

of interest are genes, proteins, or diseases.

Figure 3-1 The basic text-mining task, common methods to accomplish those task and

some of the possible advanced tasks that are built using a combination of them.

Highlighted items show which methods and tasks are used in the Jikitou QA system.

As mentioned previously a question answering system is an advanced

information retrieval system. A basic information retrieval system has five main

components (33) shown in Figure 3-2. Similarly Jikitou contains these

components, most of which are implemented using Apache Lucy, an open

source search engine. The rest of this section describe, the basic information

retrieval components and the Apache Lucy package

19

Figure 3-2 Basic organization of an information retrieval system

Apache Lucy

Apache Lucy (34) is a full-text search engine library which is a loose C

port of Apache Lucene, which is written in Java. Lucy was chosen as the base

search library used by Jikitou because of the availability of Perl bindings, which

allow Jikitou to be programmed in Perl and to take advantages of that language

and still have the benefits that you are afforded with Lucy being written in C.

Searching

The actual searches are performed by the Lucy::Search::IndexSearcher

module which executes a search against a single index. It takes as a parameter

the directory path of the index of choice. The index is one that would have been

created in an earlier process and is discussed in more detail in the section on

indexing later in this chapter. The hits method made available through the

IndexSearcher can accept a plain query string or a query object. A query object

is created by using the Lucy::Search::QueryParser, which is used when complex

queries are desired.

20

Query formation

This is the process of building a query from the user’s input. The user has

an information need and inputs an initial string either in natural language or

Boolean form depending on the system. Query formation in Jikitou takes a user’s

question and then modifies the query based on feedback from the user through

the selection of additional terms suggested by the system. Additionally, the query

may be further modified through the use of the knowledge base for example, and

through automatic query expansion by including synonyms of terms identified in

the initial question.

Jikitou Query Formation

An important aspect of question answering is the formation of a query that

can be used to search an index that returns answers that are semantically

relevant to the question posed by the user. In Jikitou, the Lucy module that is

used in query formation is a subclass of the Lucy::Search::QueryParser module

which can take several syntactical constructs to build complex queries which may

include:

 Boolean operators ‘AND’, ‘OR’, and ‘AND NOT’

 Prepended ‘+’ or ‘-‘ to indicate whether a term is required or

forbidden in the results

 Phrases indicated by double quotes

The module used in Jikitou is named FlatQueryParser and is used to

transform text produced after question analysis into a query object.

21

FlatQueryParser is a simplified custom search query language which, as of now,

only supports simple term queries and phrases identified by double quotes. It

takes a string of text and builds the query object that is then used by the search

module. The string is tokenized and terms enclosed in double quotes are

identified as phrases and a phrase query object is created. Terms without quotes

are turned into individual term query objects. After the string has been completely

parsed, the query objects are unioned together by adding it as a child of a Lucy

“OR” query object which is then used by the searcher to retrieve the closest

matching text.

Document representation and document weighting

This is the process by which the documents are converted to a secondary

representation known as an index. Here is where the terms to be indexed are

identified. The most basic document representation is a matrix with the

vocabulary for the collection on one axis and all the documents on the other axis.

If a term is present in the document it is represented as a 1 and if it is absent it is

represented with a 0. Most often a term is instead represented with a value that

represents its relative importance and ability to discriminate between different

documents. This involves a weighting scheme to assign different values to

different terms depending on their potential document discriminatory power,

meaning their ability to distinguish one document from another. The indexed

terms can be terms in a document set or a subset based on a controlled

vocabulary or at least the removal of stop words and other common words which

have very low document discrimination power. It can also be indexed by groups

22

of terms semantically relevant to one another, such as using Latent Semantic

Indexing (LSI). LSI is based on the principle that terms that are used in similar

textual context often have similar meanings.

Parsing and Indexing

Parsing is the process of analyzing text to determine structure. Parsing

requires tokenization, which is the process of segmenting text into meaningful

parts. Parsing can be as simple as finding terms and sentence boundaries or as

complex as determining grammatical structure. A parser tells the computer what

it should consider a token from the sequence of bytes it receives as it scans a

document. The results of parsing are placed in an index.

 Indexing is a process of converting a corpus into a form that can be

quickly searched. When a document is indexed the entire corpus does not have

to be scanned to locate the desired information. The indexing process converts a

document to an intermediate form that is structured to allow the use of traditional

data mining techniques to discover relevant information. There are many types of

intermediate forms, each capturing different levels of semantic information (35).

The basic difference between the intermediate forms is the minimal text unit,

which can be a word, phrase, sentence, paragraph, or even an entire document.

Table 3-1 contains some text units and possible intermediate forms.

Text Unit Intermediate Form

Word Bag-of-Words

 N-grams

Concept Concept Hierarchy

 Conceptual Graph

23

 Semantic Graph

 Conceptual Dependence

Phrase N-phrase

 Sentence

 Multi-term text phrase

 Trends

Paragraph Paragraph

 N-phrases

 Multi-term text phrase

 trends

Document Document

Table 3-1 Text unit and possible intermediate forms (35).

Standard Inverted Index

A standard inverted index has, for each term, a posting list associated with

the documents in the collection (36). Each term is represented by a value or

weight. Term weighting during the creation of a document representation is a

process for giving terms a value for perceived level of importance. In its simplest

form a 1 is assigned if the term is present in the document and a 0 is assigned if

the term is not present in the document. The resulting matrix gives a vector for

each term and the documents it can be found in, or a vector for each document

and the terms that occur in it. A common weighting scheme is the tf-idf (term

frequency / inverse document frequency) approach, which is described in more

detail next.

The following procedure describes the process of calculating tf-idf and the

theory behind the weighting scheme.

24

Local weighting – Terms that occur several times in a document have a

higher probability of being more meaningful indicators of document topic than

terms that occur just once. A local weighting scheme will give these terms a

higher weight. This is called term frequency (tf).

Global weighting – Terms that are used infrequently in the entire corpus

are likely to be more meaningful indicators of document topic than terms that are

common or occur frequently. A global weighting scheme gives these terms a

higher weight. This weight is called inverse document frequency (idf) and is given

by

 (3.1)

where t is a term and N is the number of documents in the collection. df is the

document frequency and is defined as the number of documents that contain

term t. Term frequency-inverse document frequency is then calculated by

 (3.2)

It is this standard indexing scheme that is used in Jikitou. Each sentence

in this case is considered a document. The sentences are tokenized where terms

are located by the space boundaries between them. The terms are then case

folded (make lower case) so that searches will be case insensitive. Next the

terms are stemmed which reduces them to their base forms. A Snowball (37)

stemming library was used. Three fields are indexed; the sentence id, PMID

25

number and the sentence. Only the sentence field is available for full text search.

Lucy creates a group of flat files that contain the index.

Query weighting

It is this process that gives the weights to the terms in the query. The

weights are often identical to the weights given to the terms in the document.

Weights can also be assigned based on dialog with the user and the importance

put on certain terms.

Similarity measure

The similarity measure determines similarity between the query vector and

the document vector. A possible measure is the cosine similarity measure, which

finds the similarity between a query and a document. A vector is created with the

tf-idf being the value for each term. The score is then calculated using the dot

product of each term in the non-judged document q that is present in the judged

passage d. This value is then normalized by dividing this score by the product of

the Euclidean distance between q and d. The cosine similarity measure is used

to compare each Jikitou answer to every relevant judged passage and the

average score is recorded. Figure 3-3 is a simplified example of some number of

sentences in an n term vector space. It is the angle between the query and each

‖ ‖‖ ‖

∑

√∑

 √∑

(3.3)

26

of the sentence vectors.

Figure 3-3 A diagram of sentences and a query in a vector space where each dimension is

a different term. Cosine similarity measures the distance between the query vector and the

different sentence vectors to gauge similarity between them.

Once the similarity measure has been completed the items of information which

are most similar to the query are presented to the user in rank order.

3.2 Jikitou design

Jikitou was built generally following the Model, View, Controller (MVC)

framework which compartmentalizes the user’s interaction with the system from

the information/data in the system. The view encompasses any output from the

system. The model includes system data and the knowledgebase. It is the

controller that implements the “business logic” and is responsible for executing

commands for the model or view. Catalyst, an open-source MVC web framework

for the Perl language, was implemented in Jikitou. It is a flexible framework which

facilitates the separation of the application logic from the display of information.

Figure 3-4 is a simplified diagram of the Jikitou system that shows the Catalyst

27

MVC separation and key technologies and functions that are implemented.

Catalyst is used on an Apache server using FastCGI, an improved

implementation of the traditional Common Gateway Interface (CGI). When the

Apache server is started the entire Catalyst project is brought into main memory

and multiple FastCGI processes are started, which increases the

speed/response to request to the application from users.

Figure 3-4 A diagram overview of the Jikitou QA components. The separation of the Model,

View, and Controller is shown with many of the key parts of each shown.

28

Model

The model is the part of the application that accesses and modifies the

data. Each module in the system that accesses the different databases is

considered a component of the model.

Aspell

Aspell (38) is an open source spell checker that has been supplemented

with OpenMedSpell. OpenMedSpell (39) is an open source spelling dictionary of

50,000 medical terms. The Aspell dictionary of terms has been enhanced with

these medical terms which include terms for diseases and medications which can

often be long and difficult to spell. Aspell is used in the autocomplete functionality

and other modules that make use of it to gain access to its dictionary.

Natural language processing

A natural language parser is a program used to determine the

grammatical structure of a sentence. Natural language processing parses a

sentence into the different parts of speech (POS) and uses a set of rules to

identify possible relationships. The advantage of natural language processing is

the ability to infer the direction of the relationship and distinguish between

different relationships when more than two entities are present in the same

sentence for example protein-protein interactions (40, 41). Jikitou uses NLP in a

couple of ways. It uses the semantic structure to match answers based on the

semantic distances of terms from the query in the potential answers. Many of the

29

agents use NLP parse structures to help identify POS and potential phrases to

modify the user’s query.

Link Grammar Parser

Jikitou uses a parser called the Link Grammar Parser (42) which is an

English parser based on link grammar; it takes a sentence and calculates a

syntactic structure, where pairs of words are connected by labeled links. The

parser is written in C and has an API that a Perl module in Jikitou uses to gain

access to its functionality. Figure 3-5 is an example sentence and the resulting

Link Grammar syntactic tree.

Figure 3-5 The tree is the resulting semantic structure after being sent through the link

grammar parser. The table contains explanation of some of the labeled links in the

semantic structure.

30

View

The view is comprised of parts written using the ExtJS JavaScript library

(43), plain JavaScript, and HTML. Data returned to the view use JavaScript

Object Notation (JSON) which is a human readable format for data interchange.

Passing data in this format provides a good example of the separation of the data

from the view. The controller passes the data to the view with no instructions on

how it should be presented to the user. The view can be modified without having

to deal with changing the model or controller. The specifics on the Jikitou

interface are described in greater detail later in this chapter.

Controller

The controller handles the request to the system. It gathers the required

data from the model and converts it to a JSON object and sends it to the view to

be rendered. Jikitou’s controllers are explained in the section about the user

interface because it is the controller that handles the user requests and it is

mainly through the interface that request are made.

3.3 Knowledge base

A knowledge base is a collection of specialized database that contains

information that is collected and organized. The knowledge base in Jikitou is the

repository from which answers are selected and also includes the lexicons used

to identify domain-relevant terms such as genes. The database consists of

corpora from multiple domains and includes dictionaries, thesauruses, and a

31

domain specific ontology. The dictionaries and thesauruses allow concepts to be

identified and connected to terms in the question. The knowledge base is used to

reformulate some queries with the addition of synonyms and additional concepts.

The Interaction Sentence Database (ISDB) (44) is used in Jikitou system’s

knowledge base as the corpus and is thus the source of the answers. Sentences

are indexed as though they were “documents” to be retrieved because they are a

minimal textual unit that is often self-contained (8). ISDB contains sentences that

were taken from PubMed abstracts. The sentences have been analyzed and

filtered so that all sentences contain at least two biomolecule entities and at least

one interaction-indicating term. This takes advantage of the fact that entities that

co-occur in the same sentence are related. Thus these sentences are more likely

to contain a biological interaction. The size of the database is approximately 4.5

million sentences.

3.4 Dictionaries and thesauruses

Jikitou has incorporated many publically available databases which have

been locally installed. These are as follows.

 The Gene Ontology (GO) (45) is a controlled vocabulary for

describing gene product characteristics. This database helps

mitigate the inconsistent terminology used to describe gene

products. The ontology is organized into three categories: cellular

component, biological process, and molecular function. This

32

database is used in user feedback and query expansion in this

system.

 BioThesaurus (46) is a protein entity dictionary that enables the

retrieval of synonymous names of proteins and the identification of

ambiguous names shared by multiple proteins.

 WordNet (47) is a database of nouns, verbs, adjectives, and

adverbs that are grouped by cognitive relatedness. These groups

are linked by conceptual-semantic and lexical relations. This

database is mainly used in identifying synonyms for non-biological

terms. It can also be an aid in natural language processing which is

important in answering queries posed in the form of questions.

 Entrez Gene (48) contains a large and diverse body of gene

information which includes synonyms, nomenclature, alternative

ids, and interaction information.

3.5 Multiple search agent approach

Studies have shown (35, 49) that there is good reason to have multiple

document representations and multiple searchers. Das-Gupta concluded, from

the four document representations that they investigated, that there was low

overlap between pairwise comparisons of the representations (average of 14%

overlap) even though performance values differed only slightly. The low overlap

suggests that the different document representations encode different

information in the document. Any particular document representation may not be

33

optimal for all information needs. The lack of overlap between representations is

the reason that this system is designed to have multiple document

representations. The multiple search agents were implemented for the same

underlying reason. Different agents formulate the queries differently and in the

end match to different sets of documents. See Figure 3-6.

Figure 3-6 Representation of an agent based search approach. Each agent has the

potential of getting a different set of relevant information.

Software agents are components that are implemented using goal

concepts that are traditionally reserved for humans. They also interact with their

environment and with other agents on a user’s behalf. Software agents work with

each other and the user to accomplish a set of goals. The use of software agents

nicely fits the way that we think about complex tasks. The following group of

properties is commonly used to define software agents (50, 51). Software agents

are persistent, meaning the code is always running and not just executed when

34

needed. They are autonomous in their actions, making decisions and prioritizing

tasks without human intervention. They have the ability to socialize with the other

agents to work on common tasks together. The final attribute of software agents

is that they are reactive and able to adapt to their environment (52). These

properties of software agent reduce the need for complex descriptions of

complex software designs. It is easy for people to conceptually see software

agents as though they were human workers that communicate and work together

towards the completion of a common goal in a dynamic environment.

There are several systems for information personalization and information

extraction that utilize a multi-agent strategy (52-56). Agents are assigned to

major tasks such as searching data sources, information retrieval, and interacting

with the user. There are several reasons that make a QA system amenable to a

multiple-agents based design (53, 54): The information is available in many

distinct locations, the content is heterogeneous, and this content is constantly

changing. It also aids in the modularity of the system. New types of analysis and

sources of data can easily be added through the creation of new agents or

modification of current agents.

 In this project, multiple software agents were designed to find possible

answers to questions from which the most relevant is presented to the user. The

idea is that, just as when working in a team, each member brings different skills

to address a problem. Software agents form a convenient and powerful way to

describe a software abstraction of a system that is somewhat autonomous and

brings a different set of skills to any particular problem. It is similar to Object

35

Oriented Programming in that pieces of the software are described as being

objects that can be acted upon and return results in specific ways. Different

agents use different algorithms and techniques to determine the different

answers to a query. This multi-model approach takes advantage of the fact that

different models are better for finding relevant passages to address different

types of queries/questions. After completing the document retrieval, each agent

returns its results to a dispatcher, which currently returns the top 50 results from

each agent but in the future will be tasked with making decisions pertaining to

which answers to present to the user.

Agent toolbox

In Jikitou the agents perform their search using a combination of modules

that make up the available tools in the toolbox. Agents can share tools and use

them in different combinations. The available tools fall into two categories: tools

that aid in refining and the automatic expansion of the query, and tools that help

re-score and re-rank answers.

36

Figure 3-7 A depiction of the tools used by the agents. A question is submitted to dispatch

which assigns it to each agent and forks off a new process so that the agents can work in

parallel. Dispatch then waits for their completion then returns all the answers.

Automatic Query Refinement Tools

Two modules were created that aid in automatic query refinement. The

goal of query expansion is to improve the probability of retrieving relevant content

through the addition of terms to a user's query. Studies have shown that query

expansion improves information retrieval results (57-60). Interactive and

automatic are the two main concepts in query expansion. These two approaches

to query expansion are supported in Jikitou. Later in this section I discuss

automatic query expansion and the modules that implement it, which is used by

several of the agents.

37

Gene Synonyms Module

The first module identifies possible genes and returns possible synonyms.

The module takes a string as input. The string is case folded (transformed to

lower-case) and tokenized. The tokens are then sent to an English dictionary to

determine if they are actual words. Tokens that are not found in the dictionary are

used in a query. Sending the terms to a dictionary first helps reduce the number

of possible misidentified genes that are actually non-gene words. The

“gene_info” table, located in a local installation of the Entrez Gene database, is

queried to find possible gene symbols and gene synonyms. These additional

terms are added to the original user’s query.

NLP Link Grammar Module

The second module utilizes natural language processing (NLP). The

user’s question is submitted to the module where it is parsed using the Link

Grammar Parser. If a complete linkage can be found, meaning that it is able to

parse the entire sentence, the linkage tree is stored for additional analysis. If no

linkage is found then no further analysis is performed by this module.

Using the linkage tree, two functions are used to identify the different parts

of speech (POS) using regular expressions. The first function identifies all nouns

and the second identifies verbs. These POS are identified because they are the

most informative words which consequently have a greater chance of

discriminatory power in identifying relevant sentences to answer the question. It

is also a way to remove words that are common and have low discriminatory

power.

38

The linkage tree contains labeled links which describe the connections

among terms. The function that identifies phrases follows these links to build up a

list of possible phrases to add to the query. It looks for noun phrases and verb

phases. See Figure 3-11 for an example. Phrases in the query are queried as

complete strings to look for answers that contain the exact phrase.

Scorers

The scoring modules in the toolbox take a list of N sentences returned by

the search engine and re-ranks the sentences using additional features identified

between the query and the possible answers.

LG pre-parsed Sentence Scoring Module

This scoring method uses the Link Grammar Natural Language Parser to

determine the semantic distance between terms of interest. Sentences are

parsed by the Link Grammar Parser and the resulting syntactic tree is

reassembled into a simple undirected graph. The terms represent the vertices

and the semantic links the edges between the terms. The original syntactic tree

is then parsed for semantically important terms such as nouns, verbs, and

adjectives. These terms are then paired in every combination and returned in an

array of pairs. The distance by number of vertices between each pair is found

using the previously described undirected graph. Table 3-2 is an example

adjacency matrix which is a way to represent a graph in table form. The numbers

in the table indicate the semantic distance between the words in the sentence

based on the results of the Link Grammar Parser. Only half the table needs to be

filled because it is an undirected graph.

39

 macrophage tropomyosin binds to Actin filaments

macrophage 0

tropomyosin 1 0

binds 2 1 0

to 3 2 1 0

actin 5 4 3 2 0

filaments 4 3 2 1 1 0

Table 3-2 This adjacency matrix contains pairs of keywords found in the semantic tree

produced by the Link Grammar parser and contains the semantic distance between the

terms.

Due to the complexity and length of sentences found in biomedical

literature, natural language parsing can be a very CPU-intensive process. It was

determined that it was necessary to preprocess the calculation of the semantic

distance and to store it in a database to be retrieved at the time of sentence

ranking.

Preprocessing of the sentence knowledge base required multi-core

servers and parallelization of the task to accomplish the processing in a

reasonable amount of time. A Perl script was written which started the desired

number of child processes and partitioned the approximately 4.5 million

sentences into chunks depending on the number of available processors. The

script then forked off to that number of processes and the new script in each runs

its own instance of the Link Grammar parser to process a different chunk of data

and calculate the distances in parallel.

The server used was an HP ProLiant DL980 with 8 CPUs each having 10

cores and able to run 2 threads per core, resulting in the ability to run 160

40

processes at a time. Eighty processes were run to process the sentence set. The

server also had 4 terabytes of main memory which meant that the data could be

kept in memory without having to write to the hard drive. Using the HP ProLiant

DL980 Server reduced these times from about 150 hours on a Dell PowerEdge,

only able to run 8 processes at a time, to 20 hours of processing time. Figure 3-8

is a graph that shows the difference in processing time between two servers, the

Dell PowerEdge and the HP ProLiant DL980.

Figure 3-8 Graph showing the preprocessing times of the Dell PowerEdge Vs. the HP

ProLiant server. Using the HP server resulted in reducing the processing time from many

days to less than one day.

The use of high-performance computing enabled the preprocessing of the

sentences in days instead of weeks. This will be invaluable should the system be

scaled up to include more sentences.

0
20
40
60
80

100
120
140
160

HP ProLiant DL980 (60
cores)

Dell (8 cores)

Link Grammar Parser

P
ro

ce
ss

in
g

ti
m

e
 (

H
o

u
rs

)

Servers

HP Proliant Server Vs. Dell
PowerEdge

41

Mutual Information Measure of Gene Co-Expression Scoring Module

One area of biomedical text mining that has the potential to change the

way we mine data from textual sources is the integration of high-throughput

biological data (61). In this module information from high-throughput gene

expression experiments is used as a resource. Mutual Information Measure

(MIM) is one way to show the relatedness between two entities and in this case it

is used to show the relation between the co-expression between two genes. The

MIM Database of Gene Co-Expressions was created by Wren et al. (62, 63).

They performed a meta-analysis on all publically available two-channel human

microarray datasets found at GEO(64) (Gene Expression Omnibus). A local

installation of the MIM for gene co-expression was created where each row is

two gene ids, the 3rd being the MIM between them. This scoring module checks

the question and possible answers returned by a deep question analysis and

query for genes. If the question and the answer both contain genes the MIM

Database of Gene Co-Expressions is queried for different combinations of genes

in the question to genes in the answer. If a gene pair is found in the database the

sentence is given a boost in its rank by the MIM value. The idea is that if a gene

or genes in a question have a high co-expression value with a gene or genes in

the answer, this might increase its relevancy compared to answers that do not

have pairs of genes with a value or have a pair with a low co-expression value.

Below in Figure 3-9, the process taken by the MIMAgent to re-rank answers is

explained in a flowchart.

42

Figure 3-9 A flowchart showing the process used by the MIMAgent. Genes are identified in

both the question and the answers. All possible combinations are found between the two

sets and the local MIM database is queried. Answers that contain genes that returned a

MIM score get a boost in score and upon all answers being processes they are re-ranked

according to the new scores.

Dispatch module

The dispatch module takes a list of modules that represent the agents, the

user’s question and the number of results to return. Inside the module each of

the agent modules is dynamically loaded and each is assigned the question and

the number of results to return. In order to reduce the processing time each

module is forked and run as an individual process. The dispatch module waits for

each agent to return its results, compiles the results, and returns them all at

once. The processing time is dependent on the longest running agent, which

tends to be the agent that uses the LG scorer module.

43

Agents

Jikitou enlists the search strategies of four different agents. In the

following section the tools used to accomplish these different strategies is

explained.

Basic Agent (BasicAgent)

The basic agent does no query processing. The question is submitted to

the Lucy search module as a string with no query reformulation and its default

internal cosine based ranking is used to order the answers. During the evaluation

of the system, this agent is used as the control to compare the different search

strategies used by the other three agents.

Deep Question Analysis Agent (DeepQAgent)

The deep question analysis agent takes the users’ question and performs

automatic query refinement. It uses the gene synonym module as well as the

NLP link grammar module. It concatenates the nouns, verbs, gene synonyms

and phrases and submits them to the Lucy::Search::QueryParser module which

returns a query object which is then sent to the Lucy::Searcher. Figure 3-10 is a

flowchart which describes this process and in Figure 3-11 we see an actual

example of a question being parsed and its resulting parse tree. The tree is then

used to identify nouns, verbs, and phrases. The process of identifying genes is

also demonstrated and in the example we see that from 2 genes in the original

question we get 9 possible synonyms.

44

Figure 3-10 A flowchart depicting the process of deep question analysis which is

performed by all the agents except the BasicAgent. A question is sent to the module that

runs the Link Grammar Parser. The syntactic tree is returned and functions identify the

nouns, verbs and phrases. The question is also sent to the dictionary module that uses

ASpell to identify terms that are not in the dictionary and they are used to query the local

install of the Entrez Gene database for possible gene synonyms.

Figure 3-11 An example of a question with its resulting syntactic tree produced by the Link

Grammar Parser. The nouns, verbs, phrases, and gene synonyms are the results of further

processing shown in Figure 3-10.

45

Mutual information measure gene co-expression (MIMAgent)

This agent uses the same query refinements as the deep question

analysis agent. After the results are returned to the agent it then uses the MIM

module value to re-rank the results based on genes that are located in the

question and answer and have an MIM value.

Link grammar analysis agent (LGAgent)

This agent also uses deep question analysis but also uses the

preprocessed link grammar database to re-score the results. Terms found in the

question are used to find their corresponding distances in the returned answers.

The LG Agent re-ranks the answers based on the semantic distances of the key

terms. A naïve method to assess strength of evidence of interaction in a

sentence is determining the lexical separation of key terms in the sentence.

Semantic distance is expected to give a more accurate measure of term

relatedness because we are looking at the meaning of the words as opposed to

just saying terms are related by observing that they co-occur.

46

Figure 3-12 A UML diagram showing the major modules, controllers, scripts, and function

that make up the Jikitou QA application. User access to the system can be through the

web interface or command line interface. The knowledgebase contains all of the database

resources that are used. The Jikitou utilities contain functions that are common to all

modules. The evaluation methods access Jikitou in two ways. The cosine similarity

measure includes the Jikitou modules and calls the necessary functions directly. The SVM

evaluation method goes through the controller using a web agent to make a request to the

system.

3.6 Interface

An important aspect of any information retrieval is the interface through

which a user interacts with the system. The goals of the Jikitou interface are to

be simple, informative and dynamic. Being dynamic, all content is brought to the

47

screen without ever moving to another screen. Asynchronous calls are made to

the server and content is returned as a JSON object. It is a tab based interface

with four permanent tabs: “about”, “question”, “answer” and “help”. Figure 3-13

shows the different components that make up Jikitou’s web interface. The

interface is made of a main viewport with multiple panels, the main panel being

the tab panel. In Figure 3-13 we can see the hierarchical structure of the different

components along with their key subroutines.

Figure 3-13 A diagram of the main components and sub-components of the Jikitou

interface. Important subroutines are written in the retangles of their respective

components.

“About” tab

The “about” tab displays a description of the project and the Jikitou QA

system.

48

“Question” tab

The “question” tab is where the user asks a question and interacts with the

system to refine the question. The question tab contains three windows.

Figure 3-14 As a user types a question the system suggests additional terms that can be

added to refine the initial query.

Main window

The main window (Figure 3-14) is the form where the user inputs a

question and can choose a glossary that they would like the answers to be

parsed against and linked to additional resources. As the user types a drop down

menu appears with suggestions for the current word they are typing. This action

is initiated after the first 4 characters have been typed to reduce the amount of

calls to the server. The suggestions are provided by controllers with two functions

in Jikitou. The first one takes the currently typed characters and uses Aspell, the

Open Source spell checker, to check the spelling and to provide spelling

suggestions for words and these are provided to the user as possible

completions of what they are trying to type. The other function takes the currently

49

typed characters and queries a local installation of the Gene Ontology for gene

symbols that start with the characters that the user is typing. These two functions

combine their results and the user is presented with up to 9 (4 from Aspell, 5

from Gene Ontology) different suggestions for completing the current word they

are typing.

Feedback windows

A dialog with the user is used for interactive query expansion. If a query

term is vague the user is presented with a list of possible, more-specific

alternatives. If there might be too many results, the idea is to identify broad terms

in a query and try to get the user to indicate more specific terms with which to

reformulate the query. When a query is too specific and very few or no results

are found, a broader term may be substituted into the query. One of the problems

with interactive query expansion has been that users are unable to identify good

query expansion terms (58). Using the feedback windows the user has the ability

to quickly gain an understanding of the term and possibly discover other terms

they might like to include in their query.

There are two windows for user feedback, one for word synonyms and the

other for Gene Ontology associations. As the user types these windows are also

dynamically updated, one with a list of suggestions for synonyms and the other

with GO concepts. This suggested content might not have been thought of by the

user to include in their query. The user can then check the boxes of the terms

that they would like added to their query. The query for both these windows is

50

activated by the pressing of the spacebar, which indicates that the user has

completed typing a word and now that word can be used in subsequent queries.

The controller that provides content to the synonym feedback panel has 3

main functions. The first gets the term frequencies in the sentence database of

the terms in the query. This provides the user with information about the quality

of their query. A high term frequency may mean the term they have selected has

very low ability to provide relevant sentences since it is present in too many

sentences. On the other hand, a low frequency term may give a hint as to why

few or no results are being presented. The second takes the term and queries

the local installation of the WordNet lexical database for possible synonyms.

Terms that are not found in the word dictionary are then used in a query to

identify possible gene synonyms. Checking the word dictionary for terms that are

not English words reduces the number of spurious identification of genes that are

not really genes. There is a tradeoff between too many irrelevant synonyms

being presented to the user and some legitimate gene names that look like words

being missed. The association window is populated by the controller, which

submits a query to the Gene Ontology database for possible gene associations

relating biological processes, cellular components, and molecular functions.

Figure 3-15 shows the feedback presented to the user along with the data

source.

51

Figure 3-15 . Shows the dynamic feedback process and sources of the data presented to

users’ as they type their questions. The WordNet and Gene Ontology databases are

queried to find synonyms to terms entered. A medical term dictionary has been added to

provide biomedical domain specific terminology suggestions with autocomplete. The

Gene Ontology database is used to find associations with biological terms relating to

biological processes, cellular components, or molecular functions.

“Answer” tab

The “answer” tab provides a table of all the sentences that were found to

be possibly relevant to the user’s question. Each row contains the rank, the

sentence, the score and the PMID of the abstract of its origination. If a glossary

had been selected when submitting the question, terms may be marked and

appear green. They can be selected and bring up additional content as shown in

Figure 3-16. More on that functionality, and types of content, is described in the

next section.

52

Figure 3-16 Connection to the ChemEd Digital Library returns JmolS. This allows you to

interact with molecules in multiple ways beyond simple measurements, like connecting

molecular vibrations to IR Spectra. The data is presented in JavaScript overlays, which

can be opened as well as be minimized. Depicted are a term definition, a plain chemical

Jmol, a ChemEdDL enhanced Jmol with IR spectra, and a protein Jmol.

“Abstract” tab

Additional tabs are created when a user clicks on an answer. These tabs

contain the abstract from which the sentence was extracted. The controller that

populates this tab uses PubMed’s Efetch (65) to download the abstract using the

PMID. The sentence that has been selected as the answer is highlighted in the

abstract.

3.7 HyperGlossary

The HyperGlossary is an information literacy tool that we developed for a

chemistry education project and which I integrated with Jikitou. It automates the

insertion of hyperlinks into the text answers and connects them to textual

53

definitions, multimedia content, and in the case of many molecules, 2D and 3D

representations. The HyperGlossary takes advantage of authoritative knowledge

sources on the Internet such as ChemSpider (66) and RCSB Protein Data Bank

(67).

After the search results are returned by the agents the answers are

automatically marked up and linked to semantically relevant content in other

databases using the HyperGlossary. An overview of the core functionality of the

HyperGlossary is shown in Figure 3-17. When a user reads a word or phrase in

an answer that is connected to a glossary term, the information associated with

the term can be viewed without leaving the original document. The additional

information is presented in a popup window that appears when a marked term is

clicked. The types of extra content include 2-dimensional and 3-dimensional

structures, definitions of terms, and WWW content.

The answer is not only linked back to the original document, but keywords

and phrases are linked to additional sources of information. An example is that

proteins mentioned in the answer are linked to a proteomics database, which,

when clicked, reveals the structure and the sequence of the protein in a pop-up

window. This information allows the answers to be more accessible to users of

varying backgrounds (68). The system brings together traditional text information

and dedicated biological databases to present a concise answer to the user.

54

Figure 3-17 Answers are automatically marked up based on the selected glossary and

linked to semantically relevant content in other databases using the HyperGlossary.

Creating a glossary

In order to have a glossary geared towards the biomedical field I created a

protein glossary. The id mapping table for Homo sapiens was downloaded from

the UniProt website. A script was written that grabbed all the Protein Data Bank

(PDB) (67) and UniProtKB (69, 70) protein identifiers from the downloaded id

mapping table. The list of UniProt identifiers was then submitted to UniProt for a

batch web retrieval of available protein information for each supplied identifier.

Another script was written that parses the protein information file and retrieves

the general annotations about the proteins. It is these annotations that are used

as the definitions in the protein glossary. The UniProt Id is used as the unique

identifier in the HyperGlossary. A mapping database of the UniProt and PDB

55

identifiers was created and a function added to the HyperGlossary that retrieves

the PDB id for a protein that is selected and it is the PDB id that is used to

retrieve the PDB file from the RCSB website (71). This file is submitted to the

Jmol applet to render the 3D structure of the selected protein.

JavaScript overlays

When a marked term is clicked a JavaScript overlay pops up and acts as

the portal to additional information about the selected term. A number of tabs are

presented to the user for the different types of content available. The number of

tabs and types of content that are provided depends on the chosen glossary and

the type of term. Currently the HyperGlossary contains three types of terms: “no

type”, “chemical”, and “protein”. Terms of the type protein or chemical have

associated with them an identifier that not only uniquely identifies them but in the

case of InChIs (72) also provides structural information. The identifiers can then

be used to link the term to many more remote information resources. Also they

themselves can be used in a web applet to view and manipulate the resulting

molecules.

Definitions

Most terms in the HyperGlossary have a definition and this is the first tab

that is presented when the overlay comes up. They have a citation stating the

source of the definition and there is the possibility that they have additional fields

of user defined definitions. It is also possible that while the original definition is

56

the canonical definition the additional fields can contain a rewrite of the definition

for varying levels of knowledge.

ChemSpider search

A ChemSpider (66) tab has been added to the JavaScript overlay.

ChemSpider is a large database of chemical structures that is free to access over

the internet. ChemSpider provides several services for accessing information in

the collection. When a term that is identified as being a chemical is selected the

term is used to perform a simple search of ChemSpider, which can return a list of

ChemSpider identifiers. Another search is performed using the

GetCompoundThumbnail service. The ChemSpider identifiers are used to query

for the thumbnails of the compounds. Each thumbnail is returned as a 64 bit

string which must next be decoded. The Perl module MIME::Base64::Perl is used

to decode the string into a PNG file that is saved to the server. The image is then

displayed and used as a link to the ChemSpider webpage where additional

information on the compound can be found.

3D proteins

Terms that are in glossaries and are identified as being a chemical or a

protein have a unique identifier assigned to them. If a chemical term is selected

and the 3D tab is active, its InChI is queried from the database. Jmol (73) is an

open-source java applet for viewing 3D structures of chemicals. This is converted

to an InChI Key which is used to query ChemEdDL (74) for enhanced Jmols. In

the event that the Jmol is not available at ChemEdDL the system can generate it

on the fly locally. The file is created dynamically by first converting the InChI to a

57

SMILES string using Open Babel (75). The SMILES string is then sent to Balloon

(76) which creates the mol2 file with the 3D coordinates. The mol2 file is saved

so that it only needs to be created once. The location of the file is then sent to the

Jmol applet. This process is represented diagrammatically in Figure 3-18.

Figure 3-18 A flowchart that depicts the process of presenting a Jmol when a term with a

qualifying ID is selected. In the event that a resource does not have the information

requested for a chemical term, the hyperglossary has the ability to generate its own

structure file from the ID. Open Babel and Balloon, two open source chemistry resources,

are used to create a Jmol file on the fly.

2D structure

If the term selected is a chemical and the 2-D structure tab is selected the

InChI string is converted to a SMILESS string and submitted to the Java Applet

JChemPaint (77). The 2-D structure of the molecule is drawn. JChemPaint allows

the molecule to be edited. The clickable link at the bottom of the window submits

the SMILES string for the resulting chemical to ChemSpider. JavaScript was

written to use JChemPaint’s API (getSMILESs()) to grab the SMILES string of the

58

current chemical structure in the applet. The string is sent back to the server

where the sting is converted to an InChI string using ChemSpider’s Open Babel

Web Service. The InChI string is then used to query ChemSpider’s database and

have it return a PNG thumbnail of the compound if it exists in the database. The

thumbnail is linked back to ChemSpider with additional information on the newly

created structure. The information is presented in a new tab that can be closed.

See Figure 3-19.

Figure 3-19 An overview of the process of querying ChemSpider using the JChemPaint

applet. In the 2D structure tab in the JavaScript overlay for a chemical term, the

JChemPaint applet allows the user to edit/create a chemical. A link at the bottom of the

overlay grabs the resulting SMILESs string using JChemPaint API and uses it to query

ChemSpider. If the resulting string is an actual chemical in the database, the results are

shown. Otherwise a message saying “no results” is shown.

59

Chapter 4: System evaluation

An important component to any information retrieval system construction

is evaluation of the system. In this chapter the strategies used for evaluation of

Jikitou is described and the rationale behind their implementation.

4.1 Evaluation methods: User study vs Automated

There are two common methods used to evaluate an information retrieval

system evaluation. The first method is to perform a user study. The users can be

recruited to evaluate the results of a system. In other words judge the relevancy

of information returned. They can also be users of the system and given a task to

perform and based on their experience with the system they can fill out a rubric

on different aspects of the system such as responsiveness of the system or ease

of use. Preforming a user study does have its drawbacks. Each time changes are

made to the system the time consuming task of setting up a user study to

evaluate the results must be redone. The second method to evaluate an

information retrieval system is to compare results to previously judged answers.

Using this method we have the ability to quickly evaluate the system as different

components are tweaked. It lends its self to automation and can easily be

inserted into a system development pipeline.

Jikitou is designed to be complete information retrieval system, which in

addition to a question answering system, includes tools to evaluate the system to

aid the development of additional agents. To that end an evaluation method that

60

can be automated fits in with the desired capabilities of the system. The rest of

this chapter describe two automated methods and the resources used.

4.2 Text Retrieval Conference Resources

The Text Retrieval Conference (TREC) Genomics Track was a conference

with the goal of evaluating text retrieval systems aimed at the biomedical field.

The last two years of the track focused on question-answering in the biomedical

domain (78, 79). Evaluation of the systems was performed by providing

participants a list of topics/questions that they would use as queries to submit to

their systems. The participants then returned their results which were placed in a

pool of possible answers to the queries. Experts would then judge them for

relevance while isolating the minimum information that answers the question.

This pool of judged documents was then used to evaluate the performance of

systems that contributed to the pool.

The topics and relevance judgments are still available at the TREC

Genomics track website (80) and it is this resource that is utilized to evaluate

Jikitou. The test collection contains 36 questions (see Table 9-1 in appendix A),

the documents used as the corpus for the TREC participants, and a file with the

document numbers, character offsets, and spans of the submitted passages that

have been judged relevant or not. I created a database with one table containing

the questions and the other table containing the passages, each with a question

id to identify which question it refers to and its relevancy or not to that question.

To get the passages a script was written that read the judged passage file,

http://ir.ohsu.edu/genomics/

61

identified the document file, the offset and span, retrieved the text from the file,

and inserted the passage into the database.

Due to the fact that Jikitou was not one of the original systems that

contributed to the pool of possible answers and it is not using the same corpus it

is not possible evaluate Jikitou in the same manner or really compare it to the

other TREC participants. Answers returned from Jikitou are not likely to be

present in the pool of judged passages and therefore we would not know if the

answer was relevant or not. The relevance judgments are biased towards

systems that contributed to the pool.

It is expensive to create a large pool of judged documents, so to take

advantage of this valuable resource we needed to figure out a new way to

evaluate Jikitou. Here I present two types of evaluations that were devised to test

the performance of Jikitou. For both of these evaluations each of 36 questions

was submitted to Jikitou and the top 50 results returned by each agent were

analyzed.

4.3 Similarity-judged vs. Jikitou-produced answers

When working with and analyzing text we often create vectors as

described in the parsing and indexing section, where each vector represents a

string of text which can include a document, sentence, or phrase. Representing

text in vector form gives us the ability to perform vector bases analyses. The

cosine similarity measure is an analysis that uses the angle between two vectors

62

and is one way to measure the similarity between them. A useful feature of this

measure is that the lengths of the documents are normalized.

In this method I take all the relevant passages for a topic and compare

them one by one to answers returned from each agent. Each answer is

compared to every other judged relevant passage for the topic and the average

score is calculated and recorded. This is repeated against all the non-relevant

passages as well for comparison.

The theory is that answers that have a high cosine similarity score will be,

on average, more closely related to the passages that were judged relevant than

the passages that are judged not-relevant. This method is a quick way to

compare the performances of the different agents within the Jikitou system.

Every time an agent or tool is modified this evaluation can be run to judge how

performance has been affected.

4.4 SVM: extending the judged passages

To take advantage of the pool of judged passages it was necessary to

decide on a way to extend its judgments to Jikitou’s answers. An issue that often

arises is the biased effect of the pooled judgments against a new system and

there has been considerable research with the goal of minimizing that bias in

pooled judgments (81-83). Two measures proposed are the bref (81) and

RankEff (82) measures, both of which take only judged documents into account

when assessing a system’s performance. The problem with this method when it

comes to Jikitou is that there is little chance that any of the documents retrieved

63

would have been judged by TREC since the document sources are different. The

works of Aslam et al. (84) and Buttcher (85) discuss methods that extend the

pool to include the non-judged documents by predicting relevancy. Aslam et al.

accomplished this by inferring document relevancy by analyzing document

rankings by several different information retrieval systems. The Buttcher

approach was to use a classifier to predict the relevancy of non-judged

documents. They experimented with Kullback-Leibler divergence and support

vector machines (SVMs), two different classifiers. In this project I decided to use

SVMs to predict relevancy, described below.

Using SVMs is a supervised classification method, meaning that an SVM

needs to be trained on a dataset that has been labeled as to its relevancy. The

resulting model is then used to tag new documents as either relevant or not

relevant. SVM works by trying to draw a hyperplane between a dataset that

separates the two classes in a high-dimensional space. Usually, the larger the

distance between the nearest training set data point and the hyperplane, the

better the classifier.

The evaluation of Jikitou uses the LIBSVM (86) SVM software library,

written in C/C++, to perform the training and classification of the relevancy of

sentences returned by each agent. The first step was to create a set of features

that would be used by the SVM. This is called the feature space. A database

table was created that contained the terms from the corpus after stemming and

their frequency in the corpus, post-stemming. The terms used in the feature

space were selected from this table with the following criteria: A term had to be

64

longer than three characters and have a term frequency of at least two. This

resulted in the selection of 120 thousand terms. It was this list of terms which

constituted the feature space that was then used to train the model. The training

dataset was built by selecting 2/3 of the TREC passages for a particular topic

that were judged relevant and not relevant. The returned passages were then

converted to vectors of features where the value for each term/feature is the IDF-

TF of the term. These vectors were then converted to the correct format using

the Perl module Algorithm::SVM::DataSet, which assigns a vector a class label.

The dataset was then submitted to the training algorithm of the SVM. The

resulting model is written to a file to be used later. This process is repeated for

each of the 36 topics. The parameters in Table 4-1 were ultimately used in the

SVM after a process of trial and error found these produced the models with

relatively high accuracy.

SVM Parameters

SVM Type C-SVC

Kernel Type Linear

Gamma 0.01674

C 19.835

Degree 3

Table 4-1 The parameters that were used to train the SVM models.

A Perl script was written that performs all of the tasks of training a model

and classification. The task that the script performs is controlled by the supplied

command line arguments when the script is executed. Table 4-2 lists the possible

65

command line arguments. The script can be set to train a model by setting the

action to “train” and then selecting the SVM parameters to set or to leave blank

(to use default values) and then set the question id parameter for the question to

train the model against the TREC-judged relevant and not-relevant passages.

The script can then be used to predict the relevancy of answers returned by

Jikitou. This is done by setting the action parameter to “load” and the model

parameter to the path to the model you would like to use, setting the question id

parameter to the question you would like to use, and setting the “jikitou” option to

submit the question to Jikitou.

Option Values Description

--action train, load Train a model or load a model

--model File path Takes a file path to the model

--option
validate (v), retrain (r), predict
(p), Jikitou (j)

Set to “v” to validate a model
Set to “r” to retrain the model
Set to “p” to predict on the
remaining 1/3 test set
Set to “j” to predict on results
returned from Jikitou

-t
'C-SVC', 'nu-SVC', 'one-class',
'epsilon-SVR' and 'nu-SVR' Sets the SVM type

-k
'linear', 'polynomial', 'radial' and
'sigmoid'

Sets the type of kernel to use
in the SVM

-g Float
Sets the gamma function in
the kernel function

-c Float
Sets the cost a penalty
parameter

-d Integer
Sets the degrees in the kernel
function

-i 200-235

Sets the TREC question to
either train the model to or
submit to Jikitou for answers
to classify

Table 4-2 svm_eval.pl command line parameters. The user can train a new model with a

different set of SVM parameters or load a model to classify answers using a particular

model.

66

67

Chapter 5: Results

In this chapter the results of the SVMs and cosine similarity evaluations

are described. The first section compares the evaluation results of both methods.

The rest of the chapter uses the evaluation results to compare the performance

of the agents.

5.1 Evaluation comparison

The first objective was to see how the two evaluation methods compare to

one another. Figure 5-1 is a graph of the results of both evaluation methods. The

bar graph indicates the number of Jikitou answers that were predicted relevant

for each question by the SVM classifiers. The two line graphs are the cosine

similarity measures comparing the Jikitou-produced answers with the TREC

judged relevant and not-relevant passages.

Looking at both evaluation methods on a query by query basis we see

similar trends. On topics that have a low average cosine score between the

Jikitou answers and the TREC judged relevant passages there appears to be a

corresponding low number of predicted relevant answers. There are several

queries where they diverge meaning the SVM did not classify any or very few

answers as relevant but the average cosine similarity measure for answers as

compared to the TREC judged relevant passages is relatively high. This can be

observed with the following question IDs: 214, 216, 217, 221, 229, 233, and 235.

68

Another observation is, for question IDs for which there are no elements

judged relevant we see that the average cosine score between Jikitou answers

and the TREC judged relevant passages tends to be higher than the score

between the Jikitou answers and the judged not-relevant passages. These IDs

include: 201, 202, 205, 206,207, 208, 209, 210, 219, 220, 222, 223, 224, 225,

and 233. This agreement suggests that these two evaluation methods are

actually able to distinguish between relevant and not-relevant answers and may

provide alternatives to always having a human judge the relevancy of answers in

the developments and tuning of question answering systems and perhaps in the

evaluation of other types of information retrieval tools.

6
9

Figure 5-1 A graph of the results of both evaluation methods. The bar graph indicates the number of answers classified as relevant for

all agents’ answers by SVM and the 2 line graphs are the cosine similarity scores comparing relevant and not-relevant TREC passages

with the Jikitou answers.

70

The SVM evaluation classified many of the answers as not relevant. Out

of the 36 questions, 14 questions submitted to Jikitou resulted in the SVM

classifier classifying all answers returned by all agents as not-relevant (questions

200, 208, 209, 210, 216, 217, 219, 220, 224, 225, 228, 230, 231, and 233). The

results of 10 of the questions (202, 205, 206, 207, 221, 222, 223, 226, 229, and

235) had few answers classified as relevant or only one agent’s answers that

were classified as relevant. This may be due to inability of the agents to identify

answers, inability of the SVM classifier to correctly classify, or insufficient

answers in the database. The remaining 12 questions (200, 203, 204, 211, 212,

213, 214, 215, 218, 227, 232, and 234) are used in a majority of the following

analyses.

5.2 Cosine similarity measure evaluation results

This section deals with the results of the cosine similarity measure

between the TREC judged passages and Jikitou-produced answers. First, cosine

scores of relevant and not-relevant TREC passages with Jikitou-produced

answers are compared. The rest of the section compares the cosine score of the

individual agents.

Cosine score, relevant vs. not-relevant, by rank

The 36 question were used to retrieve 50 candidate answers each, ranked

1 to 50. A comparison by rank of the average cosine similarity by rank between

Jikitou answers and relevant and not-relevant TREC passages shows that the

cosine scores differ for relevant versus not-relevant passages. To determine if

71

the results of the similarity measure for each of the agents followed a normal

distribution, a Shapiro-Wilk test of normality was performed in R and the data

was shown to be normally distributed. Once the data was verified as being

normally distributed a t-test was performed to see if the difference between the

two data sets was significant with the null hypothesis being that the means are

equal. The results of the t-test is a t-statistic value of -4.951 with a p-value of

<.05. This means we reject the null hypothesis that the means are the same and

accept the alternative that the means of the datasets are different. Appendix B

describes the data analysis.

It is important for an answering system to show a difference between

relevant and not-relevant passages to be considered effective, see Figure 5-2.

The size of the difference between the two data sets may not be as large as

possible due to the fact that even though the not-relevant passages were judged

not-relevant they were in fact classified by some TREC participant’s IR systems

as relevant to the query. Nevertheless, out of 50 ranks, 49 had higher cosine

scores for the relevant condition than for the not-relevant condition.

72

Figure 5-2 A graph showing the average cosine scores comnparing Jikitou answers to

relevant passages and to Not-relevant passages by rank.

Agent relevant cosine scores by rank

Next I looked at the agents individually. The average cosine score of each

agent by rank gives us an idea of the performance of each agent as the answers

increase in rank. The cosine scores contributing to the average for each rank are

the ones classified as relevant by SVM evaluation. We can see in Error!

eference source not found. a graph that shows the average score over the 36

questions at each answer rank, for each agent. A moving average with a window

size of 3 was used to remove some of the volatility of the results. Every point is

an average of the current rank and the 2 previous ranks. This reduces the

dataset by 2 data points. Each of the agents still shows volatility but over a

0.065

0.07

0.075

0.08

0.085

0.09

0.095

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

C
o

si
n

e
 S

co
re

Rank

Relevant Passages Vs. Not Relevant Passage
by Rank

Relevant Score Not relevant Score

73

smaller range. All four agents do show a general trend downward in score

similarity with the relevant answers, which we would expect to see due to the fact

that the most similar answers should also be ranked highest.

Figure 5-3 A graph that shows the average score for all 36 queries at each answer rank for

the four agents. The cosine scores contributing to the average for each rank are the ones

classified as relevant by SVM evaluation. A moving average with a window size of 3 was

used to remove some of the volatility of the results.

Difference between agent per query

The results of the cosine similarity to relevant passages evaluation were

next used to evaluate the performance of the agents on a query by query basis

over the 12 queries. This analysis uses the 12 questions for which the SVM

evaluation classified the most answers as relevant. An analysis of variance

(ANOVA) was performed on each set of query results. When performing an

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

C
o

si
n

e
 S

co
re

Cosine Score by Rank
Moving Average (size 3)

BasicAgent DeepQAgent MIMAgent LGAgent

74

ANOVA the null hypothesis is that the mean results for each agent are equal

while the alternative hypothesis is that one or more of the agents’ means are

significantly different, with significance being identified here with a p-value of .05

or less. Table 5-1 shows the ANOVA results for each set with its p-value. If the

ANOVA resulted in a significant result the null hypothesis was rejected and the

alternative accepted. In these cases Tukey’s honest significance test was

performed in R. It is a multiple comparison of means procedure. The test

compares the mean of each group to the mean of every other group. This test

allows us to determine which agents’ means were different from the others. In the

table each significant result is highlighted in yellow. Appendix D contains the

complete software output for both the ANOVA and Tukey tests.

Question ID
P-Value
(ANOVA)

Significant Pair-wise Comparison of Means
(Tukey)

200 0.421167

203 0.258027

204

1.11E-05 DeepQAgent-BasicAgent 0.0012299
MIMAgent-BasicAgent 0.0012299
LGAgent-BasicAgent 0.0000129
MIMAgent-DeepQAgent 1.0000000
LGAgent-DeepQAgent 0.6826629
LGAgent-MIMAgent 0.6826629

211

1.25E-26 DeepQAgent-BasicAgent 0.0000000
MIMAgent-BasicAgent 0.0000000
LGAgent-BasicAgent 0.0000000
MIMAgent-DeepQAgent 0.8248632
LGAgent-DeepQAgent 0.0307114
LGAgent-MIMAgent 0.2262059

212

0.003969 DeepQAgent-BasicAgent 0.0085656
MIMAgent-BasicAgent 0.0085656
LGAgent-BasicAgent 0.2311872
MIMAgent-DeepQAgent 1.0000000
LGAgent-DeepQAgent 0.5624999
LGAgent-MIMAgent 0.5624999

213 0.205935

75

214

5.91E-07 DeepQAgent-BasicAgent 0.0591663
MIMAgent-BasicAgent 0.0591663
LGAgent-BasicAgent 0.0994347
MIMAgent-DeepQAgent 1.0000000
LGAgent-DeepQAgent 0.0000159
LGAgent-MIMAgent 0.0000159

215 0.216707

218

2.61E-13 DeepQAgent-BasicAgent 0.0000000
MIMAgent-BasicAgent 0.0000000
LGAgent-BasicAgent 0.0001026
MIMAgent-DeepQAgent 1.0000000
LGAgent-DeepQAgent 0.0191799
LGAgent-MIMAgent 0.0191799

227 0.90762

232

1.57E-08 DeepQAgent-BasicAgent 0.0000043
MIMAgent-BasicAgent 0.0000009
LGAgent-BasicAgent 0.0000006
MIMAgent-DeepQAgent 0.9884800
LGAgent-DeepQAgent 0.9789030
LGAgent-MIMAgent 0.9998513

234

9.91E-40 DeepQAgent-BasicAgent 0.0000000
MIMAgent-BasicAgent 0.0000000
LGAgent-BasicAgent 0.0000000
MIMAgent-DeepQAgent 0.9038357
LGAgent-DeepQAgent 0.9444567
LGAgent-MIMAgent 0.6026047

Table 5-1 An analysis of variance (ANOVA) was performed on each set of query results

using the cosine similarity scores to the relevant passages. The table shows the resulting

ANOVA p-values. If the resulting p-value was deemed significant with a value < 0.05 a

Tukey’s honest significance test was performed, which is a multiple comparison of means

procedure to determine which agent or agents was significantly different. All p-values that

are significant are highlighted.

5.3 SVM evaluation results

In this section the quality of the SVM produced models is calculated using

cross-validation on a separate test set. The results are then used to calculate

additional measures of accuracy. After that the performances of the Jikitou

agents are evaluated based on the results of the classification of their answers

as to their relevancy using the SVM models.

76

SVM performance estimate

When the SVM evaluation Perl script is run to build an SVM model for a

particular question, the script is set up to automatically check the accuracy of the

learned model. First cross validation is performed on the training set where the

data set was partitioned into 5 subsets and each subset validated against the

others. The model is written to the file and the accuracy is output. Remember

that 2/3 of the dataset was used as the training set leaving 1/3 for a test set. So

in addition to the cross validation the remaining 1/3 of the dataset was used as a

test set as another way to determine the accuracy of the model. A different model

was created for each of the 36 TREC questions and the accuracies of the models

as measured by both the cross validation and the test set results are shown in

Table 5-2.

The models were used to predict the relevancy of the answers returned by

the system. Each agent returned 50 ranked answers to each of the questions

which were converted to a vector of features as in the training stage and

classified as being either relevant or not-relevant by the SVM model for that

question.

77

Question ID Accuracy
True

Positive
False

Negative
True

Negative
False

Positive

200 71.60 28 2 21 9

201 97.03 24 0 27 3

202 94.27 28 1 28 2

203 70.03 30 0 24 6

204 89.66 23 7 20 10

205 87.09 28 2 29 1

206 94.78 22 3 29 1

207 95.58 8 1 27 3

208 96.85 12 1 30 0

209 95.34 30 0 30 0

210 88.91 30 0 28 2

211 92.59 8 22 30 0

212 86.72 29 1 23 7

213 87.39 23 7 17 13

214 89.70 21 9 27 3

215 83.96 26 4 26 4

216 94.57 23 1 27 3

217 92.93 26 0 29 1

218 86.85 26 4 20 10

219 94.95 15 0 30 0

220 99.03 11 0 30 0

221 82.38 30 0 24 6

222 92.46 30 0 29 1

223 95.32 10 1 29 1

224 99.22 3 0 30 0

225 99.83 1 0 30 0

226 83.22 17 13 25 5

227 79.02 28 2 28 2

228 97.57 11 0 30 0

229 90.83 29 1 24 6

230 90.81 28 2 30 0

231 96.05 10 0 27 3

232 78.78 22 8 27 3

233 95.45 13 0 29 1

234 89.04 29 1 19 11

235 80.24 30 0 19 11

Table 5-2 Results of the SVM model analysis of each question. The accuracy column is the

result of the 5-fold cross validation. The true positive, false negative, true negative and

false positive columns were determined from the 1/3 of the judged passages that were

reserved as a test set. The results of the test set were used in additional measures of

effectiveness of the SVM models.

78

Measures of effectiveness

The following section describes four different evaluation measures;

precision, recall, Mathews Correlation Coefficient, and F-measure.

Precision (Specificity)

Precision is the ratio of relevant to total retrieved answers. In other words

of all the items that are retrieved, how many are relevant.

 (5.1)

Recall (Sensitivity)

Recall is a measure of a system’s ability to retrieve all possible relevant

items and is the fraction of all relevant items that are retrieved. Precision and

recall are measures that are often used in many more sophisticated measures of

efficiency, and are used later in the chapter to evaluate the Jikitou agents.

 (5.2)

Mathews Correlation Coefficient

The Mathews Correlation Coefficient (MCC) is a measure of the quality of

binary classification. It is a correlation coefficient based on the predicted

classification and the observed. A perfect prediction has a coefficient value of 1,

a value of 0 for no better than random prediction, and -1 for complete

79

disagreement between observation and prediction. MCC takes into account true

positives, false positives, true negatives, and false negatives.

√
 (5.3)

F-Measure

The F-measure, which is the weighted harmonic mean of precision and

recall, is a single measure that provides a tradeoff between recall and precision:

where αϵ[0,1] and then β ϵ[0,∞]. Setting α=1/2 or

β=1 equally weights recall and precision and is known as the balanced F

measure and is denoted F1.

Measuring SVM models’ effectiveness

One way to evaluate the effectiveness of an SVM classification is to check

the quality of the model using measures that incorporate TP, FP, TN, and FN

values, which are the results of the test set found in Table 5-2, to identify different

performance qualities of a model. The measures of precision, recall, Mathews

 (5.4)

 (5.5)

80

Correlation Coefficient, and F-measure were calculated for each of the 36

models. Figure 5-4 is a graph that has all 4 measures for each question against

the test set data from TREC.

Figure 5-4 SVM model evaluation measure; precision, recall, Mathews Correlation

Coefficient, and balanced F-measure overlaid in a single graph. We see that some

measures like MCC and recall are more volatile.

Measuring Jikitou’s effectiveness

Precision and recall are common evaluation measures for information

retrieval systems. The problem with determining recall for information retrieval

systems with large corpora is that we do not know how many relevant answers

are available for each query. The Jikitou answers were classified using the SVM

classifier to predict their relevancy and since I did not run the entire ISDB

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2
0

0

2
0

2

2
0

4

2
0

6

2
0

8

2
1

0

2
1

2

2
1

4

2
1

6

2
1

8

2
2

0

2
2

2

2
2

4

2
2

6

2
2

8

2
3

0

2
3

2

2
3

4

Ef
fe

ct
iv

e
 M

e
as

u
re

 V
al

u
e

Question ID

SVM Model Evaluation
F-Measure, Recall, Precision, MCC

F-Measure MCC Recall Precision

81

collection through each model to determine their relevancy to each question here

too we do not know the total number of relevant answers in the database. To get

around this I took the aggregate of relevant items retrieved by each of the four

different agents as the total relevant set.

Recall and precision values were calculated for each of the 12 query sets

that had enough answers judged relevant for the 4 agents. A plot was made for

each query set where recall is on the x-axis and precision is plotted on the y-axis.

As the number of retrieved results increases, recall increases but precision

decreases. The individual query precision-recall results can be found in appendix

D.

Interpolated precision-recall

Interpolating a recall/precision curve is a way to visualize the change in

precision and recall as the number of ranked results increases. The precision

value is interpolated for each of the method’s standard recall values (36). The

interpolated precision at the i-th standard recall is the maximum of the known

precision values at that recall level or above. To get an idea of overall

performance I took the average precision at each standard recall level over all

queries, separately for each agent. Tables that contain the interpolated average

precision values at the 11 standard recall values for each of the agents can be

found in Appendix E. A graph (Figure 5-5) for these four curves for average

interpolated precision versus standard recall was plotted. The line that is closest

to the upper right hand corner represents the agent that performed the best.

82

 { }

Figure 5-5 To get an idea of overall performance we take the average precision at each

standard recall level for all queries for each agent. The line that is closes to the upper right

hand corner is the agent that has performed the best by this measure.

The interpolated precision vs. recall graph shows that the DeepQAgent

performs generally the best according to this evaluation measure. The MIMAgent

appears second best. Recall that the DeepQAgent works by using NLP and deep

question analysis, and the MIMAgent uses the same deep question analysis with

the addition of using the mutual information measure of genes found in the

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Standard Recall

Interpolated Precision Recall
12 Queries

BasicQA DeepQAgent MIMAgent LGAgent

 (5.6)

83

questions and the answers. By this measure MIM addition reduced the

performance of the agent.

Mean Average Precision (MAP) and Geometric Mean Average Precision (GMAP)

Mean average precision (MAP) and geometric mean average precision

(GMAP) are two measures that take into account a collection of queries. This

measure gives us an idea of overall effectiveness of an information retrieval

system. MAP is calculated using the average precision (AP) over m recall points

and then taking the mean of AP (MAP) over Q queries. Table 9-22 and Table

9-23 in appendix G contain the raw AP and MAP values.

0

0.2

0.4

0.6

0.8

1

M
A

P

Mean Average Precision

BasicAgent

DeepQAgent

MIMAgent

LGAgent

∑

 (5.7)

| |
∑

 (5.8)

84

Figure 5-6 Mean Average Precision (MAP) calculated for each agent. MAP is a measure

that takes into account a collection of queries.

Figure 5-6 shows the MAP measure for each of the agents. Although the results

are not significant we can see that the DeepQAgent and MIMAgent had the

highest MAP measure.

GMAP is a measure that emphasizes improvements in queries that have a

low average precision. Figure 5-7 shows the results of calculating the GMAP and

again we see that the DeepQAgent and MIMAgent have the highest values.

Table 9-24 contains the calculated GMAP values.

Figure 5-7 The Geometric Mean Average Precision (GMAP) for each of the agents. GMAP is

a measure that emphasizes improvements in queries that have a low average precision.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
M

A
P

Geometric Mean Average
Precision

BasicAgent

DeepQAgent

MIMAgent

LGAgent

| |
∑

 (5.9)

85

F-measure comparison

The average F-measure was calculated for each of the agents. See Figure

5-8. As with the previous measures we see that DeepQAgent and MIMAgent

have the highest F-measures. In this measure comparison we see that the

LGAgent is third highest and separation from the other agents is not as great as

compared to the other measures. Table 9-25 in appendix G contains the values

for the 12 queries for each agent and the average values that were used to

create Figure 5-8. Also in appendix G is Figure 9-14 which shows the max F-

measure value for each query.

Figure 5-8 The average F-measure for each of the agents. In this case we are using a

balanced F-measure meaning that recall and precision are weighted equally.

Agent answer overlap

Overlap in the sentence sets retrieved for each query was analyzed. Venn

diagrams for each of the 12 queries was created, see Figure 5-9, which show the

0

0.2

0.4

0.6

0.8

1

Agents

F-
M

e
as

u
re

Average F-Measure
12 Queries

BasicAgent DeepQAgent MIMAgent LGAgent

86

amounts of overlap among the different agents. Summing over all the Venn

diagrams, the BasicAgent and LGAgent have the largest distinct set of answers

they classified as relevant. The DeepQAgent and MIMAgent have the most

overlap which is to be expected since the only difference between the two is that

MIMAgent boosts the scores of answers mentioning genes with an MIM score

between the query and answer. Often no MIM score exists and in these cases

they both return the same answer set, thus creating the high degree of overlap

between the two. Overall, the results show that answers are frequently unique to

an agent, lending validity to the idea of having multiple search agents tuned to

get different relevant answers from the knowledge space.

87

Figure 5-9 A Venn diagram for each of the 12 question showing the amount of answer

overlap for answers classified as relevant.

88

Chapter 6: Future

There are multiple directions to expand and improve the system. In this

section I will expand and explain in detail some plans for future research.

6.1 Additional agents

New types of agents should be evaluated. The ISDB sentence database

has already been parsed using the Stanford Parser (87). The Stanford Parser is

a probabilistic natural language parser which uses knowledge of language

gained from hand-parsed sentences to assign the most probable structures to

new sentences. An agent that leverages the syntactic information produced by

this parser should be created and evaluated. It would also be interesting to

identify other types of biological data that could be useful in identifying answers

and design agents accordingly.

In addition to new agents, we hope to devise a method to combine the

results from the agents to present the best subset from each agent to the user.

This would allow for the user to benefit from integrating the information retrieval

strengths of all of the agents.

6.2 Additional resources

There are many additional resources that have been shown to improve

query results and are being considered for implementation in a future version of

Jikitou. The list below is a few of the resources and their descriptions:

89

 The Medical Subject Headings (MeSH) (88) terms are a controlled

vocabulary biomedical lexicon which is organized hierarchically.

The headings at the highest level are broad, and they become

more specific as one moves down the hierarchical structure. It is

freely available from the National Library of Medicine.

 The Unified Medical Language system (UMLS) (89) includes three

knowledge sources:

o The Metathesaurus (90), a multilingual vocabulary database

that contains information about biomedical concepts, names,

and the relationships among them.

o The Semantic Network, a consistent organization of all the

concepts that are present in the UMLS Metathesaurus which

provides a set of relationships among the concepts.

o The Specialist Lexicon, containing information useful for

natural language processing systems. It contains a general

English lexicon which includes biomedical terms. Terms

include multi-word items that form a lexical item.

Abbreviations and acronyms are also included in this

resource. Each entry includes syntactic, morphological, and

orthographic information.

Another issue facing the knowledge base is that the data can quickly

become outdated. The knowledge base needs to be updated periodically

because new terminology and literature are constantly being introduced. It is

90

desirable to automate the process of checking for changes in external databases

and taking the appropriate actions.

6.3 Current agent modification

It would also be useful to experiment with different scoring equations for

the agents to tune them and seek out their maximum potential. Many of the

current agents had issues with answers classified as being relevant not being

ranked above answers that were classified as non-relevant.

6.4 Future evaluation

The evaluation system showed that it could be a viable way to evaluate

the agents. It would be useful to improve the SVM classifier by taking into

account additional document features such as POS, grammatical relations, and

bi-grams. The similarity measure for measuring performance could also be

improved by using a more robust scoring algorithm to replace the cosine

similarity measure which does not take into account any actual available

textual/NL clues as to the relatedness of two documents.

Although the main reason for the design of the evaluation system was to

avoid user studies, in the future it would be helpful to do one, it would be a way to

validate or identify weakness in the current automated method. It would also be

useful to get human relevancy judgments for answers from the Jikitou corpus and

compare them to SVM classified answers. User studies would also help to

evaluate Jikitou’s user interface which is really the only way to evaluate the UI.

91

Chapter 7: Conclusions

Jikitou is a complete information retrieval system, which in addition to a

question answering system, includes tools for indexing as well as tools to

evaluate the system. Jikitou is designed to return short answers to biological

questions. The QA system is intended to decrease the effort required to find

answers when compared to methods that use traditional information retrieval

systems (e.g., PubMed). Short answers can eliminate the need to read or scan

entire documents to obtain desired information. The Jikitou QA system is

designed to be a tool used by biomedical domain experts as well as useful and

informative to students. The system has the potential to impact the design of

future question answering systems, thereby advancing the field. It is not only a

live information retrieval tool but also an IR research system. Jikitou combines

multiple natural language processing techniques, data resources and

technologies to create a unique system to help researchers navigate a

biomedical corpus.

7.1 Evaluation

The evaluation techniques provide a method to extend the use of

manually pre-judged passages to evaluating systems that were not among the

original systems that contributed to the pool of passages and indeed use different

corpuses altogether. The two evaluation methods were shown to validate each

other where often a higher cosine score trend was observed when more answers

92

were classified as being relevant and a lower cosine score trend was seen when

more answers where classified as not relevant. They provide a way to identify

performance differences among agents and agent algorithm variations.

There were occasions where the two evaluation methods differed. The

TREC passages were often comprised of multiple sentences so during model

training the models were tuned to longer answer strings. This may have resulted

in the shorter Jikitou answers being incorrectly classified as not-relevant because

of length. The cosine score evaluation normalizes so that the effect of different

string length was minimized. So the fact that one method controlled for length

and the other did not may be a reason for seeing a difference in results.

7.2 Agents

Jikitou uses an agent based architecture in which different agents search

the information space using different retrieval strategies. The amount of overlap

among the agents shows that the agents retrieve significantly different sets of

relevant information. Although the LGAgent often had the lowest performance

according to the evaluation measures used, a higher percentage of the answers

that it returned and that were also deemed relevant were different from the

answers returned by the other agents. It was able to retrieve answers that the

other agents missed. This is additional evidence that implementing a multiple

search strategy is an ideal method to maximize the recall of relevant answers

from the information space. The LGAgent’s scoring equation should be further

investigated and tuned to return more relevant answers with higher ranks. The

93

BasicAgent is a good agent to compare to the other agents. For all measures of

performance and quality it performed well. The DeepQAgent was shown to be

the best by most of the evaluation measures. It is clear that providing phrase

queries that take into account key phrases from the questions, and gene

synonyms increased its performance over the BasicAgent. The MIMAgent was

basically the DeepQAgent with an added module to use the correlation value of

gene co-expression. Although not consistently higher, for certain answers, a

boost was seen in cosine score over the answers from the DeepQAgent,

meaning that the MIM boost brought back answers that were more closely

related to the judged relevant passages in those cases. There were occasions

where using MIM boosted answers up in the rank that were then found to be not

relevant or had a relatively low cosine scores, however. The next step would be

to tweak each of the agent’s search algorithms to optimize their performances,

and compare the difference in evaluation results.

7.3 User interface

Jikitou addresses two current gaps in current QA systems through the

integration of the HyperGlossary. The first gap is answer generation and

presentation. It is through the HyperGlossary system that the user is connected

to multimedia information that has the potential to add value to the text answers

returned by the agents. The second gap is a lack of systems that allow the user

to choose his or her environment, establish context, have the system take that

information into account, and automatically return the appropriate answer.

94

The choice of the glossary changes the context per the user’s preference.

The HyperGlossary gives the user the ability to choose a glossary that allows him

or her to customize the information that is returned. The HyperGlossary-

enhanced answers make the information more accessible to a wider audience

and reduces the need to search other resources. This approach can enable

users with varying levels of knowledge to have access to their choice of glossary

to aid in the understanding of the answer. The terms in the answer that get

enhanced are determined by the glossary the user chooses.

Answers are parsed for keywords that are linked to external sources of

information. The enhancement of answers is achieved through the use of

heterogeneous multimedia sources such as ChemSpider, ChemEdDL, and

RCSB Protein Data Bank. The fusion of the HyperGlossary and Jikitou helped to

create a unique system to assist researchers in navigating the current

information deluge.

7.4 Query refinement

The system's ability to have a dialog with the user is likely to result in more

relevant answers being retrieved compared to systems that rely solely on the

user to supply the query unguided. It is through a dialog with the user that

essential parameters can be communicated to the system. In Jikitou the dialog is

created through the terms suggested in the question drop down box as the user

types and in both feedback panels, all of which are dynamically updated as the

95

user types. These components are used to establish context and help refine the

question in order to return better answers.

7.5 Architecture

The system is designed to be easily updated and improved. This ability is

achieved with modular components that permit swapping of different algorithms.

An agent design was adopted not only for algorithmic purposes, but also to keep

the system modular and allow it to be distributed to increase speed performance.

Agents can be run in parallel on the same processing unit or could be easily

assigned to their own unit. The Catalyst framework for Perl was used because it

facilitates modular code by keeping the application logic separate from the user

interface code. Ultimately it would be good to keep track of versioned protocols to

help the system evolve and improve. The ability of agents in the system to evolve

depends on our ability to understand what happened, through the tracking of

results of different algorithms. The methods implemented in this system ensure

that these goals are achieved, such that the system could continually evolve to

become and stay an invaluable tool to researchers.

7.6 Summary

This work has focused on three synergistic contributions. Firstly, Jikitou

serves as a model QA architecture, one which integrates the important properties

of agents, the MVC framework, incorporating biological data, NLP, and deep

question analysis. Other system builders can incorporate these ideas into their

own designs. Secondly, Jikitou provides a model user interface strategy. The

96

flexible and diverse palette of UI features serves to demonstrate a user-centered

UI approach that other system builders could borrow. These features include

dynamic feedback panels, medical term focused autocomplete, and connections

to a multitude of additional resources through the HyperGlossary. Thirdly, the

evaluation strategy I designed, which is based on a method suggested by

Büttcher et. al. (85), includes using the cosine similarity measure as an

innovative contribution. The approach cleanly trades the noise and subjectivity of

a user study for the objectivity and reproducibility of a method based on standard

evaluation data. Other system builders could benefit by using this evaluation

strategy as well.

97

Chapter 8: List of references

1. Brin S, Page L. The anatomy of a large-scale hypertextual web search engine.
Comput Networks and ISDN Syst. 1998;30(1):107-17.

2. Home - PubMed - NCBI [Internet].; cited 1/4/2013]. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/.

3. Zweigenbaum P. Question answering in biomedicine. EACL. 2003.

4. Zweigenbaum P, Demner-Fushman D, Yu H, Cohen KB. Frontiers of
biomedical text mining: Current progress. Brief Bioinform. 2007;8(5):358-75.

5. Allan J, Aslam J, Belkin N, Buckley C, Callan J, Croft B, et al. Challenges in
information retrieval and language modeling: Report of a workshop held at
the center for intelligent information retrieval, university of massachusetts
amherst, september 2002. SIGIR Forum. 2003;37(1):31-47.

6. Grant S, Marshall M, Page K, Cumiskey M, Armstrong D. Synapse proteomics
of multiprotein complexes: En route from genes to nervous system diseases.
Hum Mol Genet. 2005; #14:R225-R23.

7. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, et al. A
comprehensive analysis of protein-protein interactions in saccharomyces
cerevisiae. Nature. 2000 February;403(6770):623-7.

8. Ding J, Berleant D, Nettleton D, Wurtele E. Mining MEDLINE: Abstracts,
sentences, or phrases. Proceedings of the pacific symposium on
biocomputing; 2002.

9. Berger A, Lafferty J. Information retrieval as statistical translation. In
proceedings of the 1999 ACM SIGIR conference on research and
development in information retrieval; August 15-19, 1999; University of
California at Berkeley. New York, NY, USA: ACM; 1999.

10. Mayburry M. New direction in question answering. In: Strzalkowski T,
Harabagui SM, editors. Advances in Open Domain Question Answering.
Springer Netherlands; 2008. p. 533.

http://www.ncbi.nlm.nih.gov/pubmed/

98

11. Ferrucci D, Nyberg E, Allan J, Barker K, Brown E, Chu-Carroll J, et al.
Towards the open advancement of question answering systems. 2009.

12. Wren JD. Question answering systems in biology and medicine - the time is
now. Bioinformatics. 2011 jul;27(14):2025-6.

13. Athenikos SJ, Han H. Biomedical question answering: A survey. Comput
Methods Programs Biomed. 2010;99(1):1.

14. Lee M, Cimino J, Zhu HR, Sable C, Shanker V, Ely J, et al. Beyond
information retrieval - medical question answering. AMIA. 2006:469-73.

15. Cohen AM, Hersh WR. A survey of current work in biomedical text mining.
Brief Bioinform. 2005 Mar;6(1):57-71.

16. IBM watson [Internet]. [cited 1/4/2013]. Available from: http://www-
03.ibm.com/innovation/us/watson/.

17. Cao Y, Cimino JJ, Ely J, Yu H. Automatically extracting information needs
from complex clinical questions. J. of Biomedical Informatics. 2010
December;43(6):962-71.

18. Cao Y, Liu F, Simpson P, Antieau L, Bennett A, Cimino JJ, et al.
AskHERMES: An online question answering system for complex clinical
questions. J Biomed Inform. 2011 4;44(2):277-88.

19. AskHermes - the clinical question answering system [Internet]. [cited
1/4/2013]. Available from: http://www.askhermes.org/.

20. Gobeill J, Tbahriti I, Ehrler F, Ruch P. Vocabulary-driven passage retrieval for
question-answering in genomics. TREC; 2007; Gaithersburg, Maryland,
USA. National Institute of Standards and Technology (NIST); 2007.

21. EAGLi: The EAGL project's biomedical question answering and information
retrieval interface [Internet]. [cited 1/4/2013]. Available from:
http://eagl.unige.ch/EAGLi/.

22. Cruchet S, Gaudinat A, Boyer C. Supervised approach to recognize question
type in a QA system for health. Stud Health Technol Inform. 2008;136.

23. Cruchet S, Gaudinat A, Rindflesch T, Boyer C. What about trust in the
question answering world. AMIA 2009 annual symposium; ; 2009.

24. Honqa [Internet]. [cited 1/4/2013]. Available from: http://services.hon.ch/cgi-
bin/QA10/qa.pl.

http://www-03.ibm.com/innovation/us/watson/
http://www-03.ibm.com/innovation/us/watson/
http://www.askhermes.org/
http://eagl.unige.ch/EAGLi/
http://services.hon.ch/cgi-bin/QA10/qa.pl
http://services.hon.ch/cgi-bin/QA10/qa.pl

99

25. MEDLINE/PubMed resources guide [Internet]. [cited 1/4/2013]. Available
from: http://www.nlm.nih.gov/bsd/pmresources.html.

26. Diseases & conditions - medscape reference [Internet]. [cited 1/4/2013].
Available from: http://emedicine.medscape.com/.

27. Home - PMC - NCBI [Internet]. [cited 1/4/2013]. Available from:
http://www.ncbi.nlm.nih.gov/pmc/.

28. Health on the net foundation [Internet]. [cited 1/4/2013]. Available from:
http://www.hon.ch/.

29. National library of medicine - national institutes of health [Internet]. [cited
1/4/2013]. Available from: http://www.nlm.nih.gov/.

30. HONcode: Principles - quality and trustworthy health information [Internet].
[cited 1/4/2013]. Available from: http://www.hon.ch/HONcode/Conduct.html.

31. Hearst MA. Untangling text data mining. ACL. 1999:3-10.

32. Rebholz-Schuhmann D, Kirsch H, Couto F. Facts from text - is text mining
ready to deliver? PloS Biology. 2005;3(2):0188-91.

33. McGill M, Koll M. An evaluation of factors affecting document ranking by
information retrieval systems. Syracuse Univ , School of Information Studies:
Tech. Rep; 1979.

34. Apache lucy [Internet]. [cited 1/4/2013]. Available from:
http://lucy.apache.org/.

35. Torre CJdl, Martín-Bautista MJ, Sánchez D, Miranda MAV. Text mining:
Intermediate forms on knowledge representation. EUSFLAT conf.; 2005.

36. Manning CD, Raghavan P, Schütze H. Introduction to information retrieval.
1st ed. Cambridge University Press; 2008.

37. Porter MF. An algorithm for suffix stripping. . 1980.

38. GNU aspell [Internet]. [cited 1/4/2013]. Available from: http://aspell.net/.

39. OpenMedSpel | world class open source medical spelling tools | [Internet].
[cited 1/4/2013]. Available from: http://www.e-
medtools.com/openmedspel.html.

40. Abul Seoud R, Youssef A, Kadah YM. Extraction of protein interaction
information from unstructured text using a link grammar parser. Computer

http://www.nlm.nih.gov/bsd/pmresources.html
http://emedicine.medscape.com/
http://www.ncbi.nlm.nih.gov/pmc/
http://www.hon.ch/
http://www.nlm.nih.gov/
http://www.hon.ch/HONcode/Conduct.html
http://lucy.apache.org/
http://aspell.net/
http://www.e-medtools.com/openmedspel.html
http://www.e-medtools.com/openmedspel.html

100

engineering & systems, 2007. ICCES'07. international conference on; IEEE;
2007.

41. Ding J, Berleant D, Xu J, Fulmer AW. Extracting biochemical interactions
from MEDLINE using a link grammar parser. Tools with artificial intelligence,
2003. proceedings. 15th IEEE international conference on; IEEE; 2003.

42. Sleator DD, Temperley D. Parsing english with a link grammar. 1991.

43. Industry leading JavaScript framework for building desktop web apps |
sencha ext JS | products | sencha [Internet]. [cited 1/4/2013]. Available from:
http://www.sencha.com/products/extjs.

44. Bauer M, Belford R, Ding J, Berleant D. ISDB: Interaction sentence database.
BMC Research Notes. 2010;3(1):122.

45. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: Tool for the unification of biology. Nat Genet. 2000 May; 25(1):25-
9.

46. Liu H, Hu ZZ, Zhang J, Wu C. BioThesaurus: A web-based thesaurus of
protein and gene names. Bioinformatics. 2006 Jan; 22(1):103-5.

47. Fellbaum, Fellbaum C. WordNet: An electronic lexical database (language,
speech, and communication). The MIT Press; 1998.

48. Maglott DR, Ostell J, Pruitt KD, Tatusova TA. Entrez gene: Gene-centered
information at NCBI. Nucleic Acids Res. 2007:26-31.

49. Das-Gupta P, Katzer J. A study of the overlap among document
representations. SIGIR Forum. 1983;17(4):106-14.

50. Bradshaw JM. An introduction to software agents. In: Bradshaw JM, editor.
Software Agents. Cambridge MA: MIT Press; 1997. p. 1.

51. Jennings NR, Wooldridge M. Applications of intelligent agents. In: Agent
Technology: Foundations, Applications, Markets. Springer-Verlag; 1998. p.
3-28.

52. Petit-Rozé C, Grislin-Le Strugeon E. MAPIS, a multi-agent system for
information personalization. Information and Software Technology. 2006
2;48(2):107-20.

53. Lhotská L, Prieto L. A multi-agent system for information retrieval.
EUROCAST; 2007.

http://www.sencha.com/products/extjs

101

54. Decker K, Zheng X, Schmidt C. A multi-agent system for automated genomic
annotation. International conference on autonomous agents proceedings of
the fifth international conference on autonomous agents; Montreal, Quebec,
Canada. New York, USA: ACM; 2001.

55. Chu-Carroll J, Czuba K, Prager J, Ittycheriah A, Blair-Goldensohn S. IBM’s
PIQUANT II in trec 2004. Proceedings TREC; 2004.

56. Chu-Carroll J, Prager J, Welty C, Czuba K, Ferrucci D. A multi-strategy and
multi-source approach to question answering. In proceedings of text
REtrieval conference; 2003.

57. Hersh WR, Cohen AM, Ruslen L, Roberts PM. TREC 2007 genomics track
overview. TREC; 2007.

58. Ruthven I. Re-examining the potential effectiveness of interactive query
expansion. SIGIR '03: Proceedings of the 26th annual international ACM
SIGIR conference on research and development in informaion retrieval;
Toronto, Canada. New York, NY, USA: ACM; 2003.

59. Vakkari P. Subject knowledge, source of terms, and term selection in query
expansion: An analytical study. ECIR; 2002.

60. Belkin NJ, Cool C, Head J, Jeng J, Kelly D, Lin S, et al. Relevance feedback
versus local context analysis as term suggestion devices: Rutgers' TREC-8
interactive track experience. TREC-8, proceedings of the eighth text retrieval
conference; Harman; 2000.

61. Jensen Juhl L, Saric J, Bork P. Literature mining for the biologist: From
information retrieval to biological discovery. Nature Reviews GENETICS.
2006;7:119-29.

62. Wren JD. A global meta-analysis of microarray expression data to predict
unknown gene functions and estimate the literature-data divide.
Bioinformatics. 2009 July 01;25(13):1694-701.

63. Mikhail D, Jonathan W, Dumas EK, Dozmorov IM, Benbrook DM, Marcia S.
High-throughput processing and normalization of one-color microarrays for
transcriptional meta-analyses. BMC Bioinformatics;12.

64. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Research.
2002 January 01;30(1):207-10.

65. Entrez programming utilities help - NCBI bookshelf [Internet]. [cited 1/4/2013].
Available from: http://www.ncbi.nlm.nih.gov/books/NBK25501/.

http://www.ncbi.nlm.nih.gov/books/NBK25501/

102

66. ChemSpider [Internet]. [cited 2012]. Available from:
http://www.chemspider.com/.

67. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al.
The protein data bank. Nucleic Acids Research. 2000 January 01;28(1):235-
42.

68. Belford RE, Bauer MA, Berleant D, Holmes JL, Moore JW. ChemEd DL
WikiHyperGlossary: Connecting digital documents to online resources, while
coupling social to canonical definitions within a glossary. 22nd international
conference on chemisty education; July15th-20th 2012; Italy: Editrice di
chimica; 2012.

69. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al.
UniProt: The universal protein knowledgebase. Nucleic Acids Res;32:115-9.

70. Consortium TU. Reorganizing the protein space at the universal protein
resource (UniProt). Nucleic Acids Research. 2012;40(D1):D71-5.

71. RCSB protein data bank - RCSB PDB [Internet]. [cited 1/4/2013]. Available
from: http://www.rcsb.org/pdb/home/home.do.

72. Stein SE, Heller SR, Tchekhovskoi D. An open standard for chemical
structure representation: The IUPAC chemical identifier. 2003.

73. Jmol: An open-source java viewer for chemical structures in 3D [Internet].
[cited 2012]. Available from: http://www.Jmol.org/.

74. Welcome to the chemical education digital library [Internet]. [cited 1/4/2013].
Available from: http://www.chemeddl.org/.

75. O'Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G.
Open babel: An open chemical toolbox. Journal of Cheminformatics.
2011;3(1):33.

76. Vainio MJ, Johnson MS. Generating conformer ensembles using a
multiobjective genetic algorithm. Journal of Chemical Information and
Modeling. 2007;47(6):2462-74.

77. Krause S, Willighagen EL, Steinbeck C. JChemPaint - using the collaborative
forces of the internet to develop a free editor for 2D chemical structures.
Molecules. 2000;5:93-8.

78. Hersh W, Voorhees E. TREC genomics special issue overview. Inf.Retr.
2009 feb;12(1):1-15.

http://www.chemspider.com/
http://www.rcsb.org/pdb/home/home.do
http://www.jmol.org/
http://www.chemeddl.org/

103

79. Hersh W, Cohen A, Roberts P, Rekapalli HK. TREC 2006 genomics track
overview. The fifteenth text retrieval conference; 2006.

80. TREC genomics track [Internet]. [cited 1/4/2013]. Available from:
http://ir.ohsu.edu/genomics/.

81. Buckley C, Voorhees EM. Retrieval evaluation with incomplete information.
Proceedings of the 27th annual international ACM SIGIR conference on
research and development in information retrieval; Sheffield, United
Kingdom. New York, NY, USA: ACM; 2004.

82. Grönqvist L. Evaluating latent semantic vector models with synonym tests
and document retrieval. ELECTRA workshop: Methodologies and evaluation
of lexical cohesion techniques in real-world applications beyond bag of
words; in association with ACM SIGIR, pages 86-88, 2005..

83. Ahlgren P, Gronqvist L. Retrieval evaluation with incomplete relevance data:
A comparative study of three measures. Conference on information and
knowledge management: Proceedings of the 15 th ACM international
conference on information and knowledge management; 2006.

84. Aslam JA, Yilmaz E. Inferring document relevance via average precision.
Proceedings of the 29th annual international ACM SIGIR conference on
research and development in information retrieval; ACM; 2006.

85. Büttcher S, Clarke CLA, Yeung PCK, Soboroff I. Reliable information retrieval
evaluation with incomplete and biased judgements. Proceedings of the 30th
annual international ACM SIGIR conference on research and development in
information retrieval; ACM; 2007.

86. Chang C, Lin C. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology. 2011;2(3):27:1,27:27.

87. Klein D, Manning CD. Accurate unlexicalized parsing. Proceedings of the
41st annual meeting on association for computational linguistics - volume 1;
Sapporo, Japan. Stroudsburg, PA, USA: Association for Computational
Linguistics; 2003.

88. Rogers F. Medical subject headings. Bull Med Libr Assoc. 1963;51:114.

89. Bodenreider O. The unified medical language system (UMLS): Integrating
biomedical terminology. Nucl.Acids Res. 2004 January;32(suppl_1):D267-
270.

http://ir.ohsu.edu/genomics/

104

90. Schuyler PL, Hole WT, Tuttle MS, Sherertz DD. The UMLS metathesaurus:
Representing different views of biomedical concepts. Bull Med Libr Assoc.
1993 April;81(2):217-22.

105

Chapter 9: Appendices

9.1 Appendix A: Question list

Q
ID

Questions

200 What serum proteins change expression in association with high disease
activity in lupus?

201 What mutations in the Raf gene are associated with cancer?

202 What drugs are associated with lysosomal abnormalities in the nervous
system?

203 What cell or tissue types express receptor binding sites for vasoactive
intestinal peptide (VIP) on their cell surface?

204 What nervous system cell or tissue types synthesize neurosteroids in the
brain?

205 What signs or symptoms of anxiety disorder are related to coronary artery
disease?

206 What toxicities are associated with zoledronic acid?

207 What toxicities are associated with etidronate?

208 What biological substances have been used to measure toxicity in
response to zoledronic acid?

209 What biological substances have been used to measure toxicity in
response to etidronate?

210 What molecular functions are attributed to glycan modification?

211 What antibodies have been used to detect protein PSD-95?

212 What genes are involved in insect segmentation?

213 What genes are involved in Drosophila neuroblast development?

214 What genes are involved axon guidance in C.elegans?

215 What proteins are involved in actin polymerization in smooth muscle?

216 What genes regulate puberty in humans?

217 What proteins in rats perform functions different from those of their human
homologs?

218 What genes are implicated in regulating alcohol preference?

219 In what diseases of brain development do centrosomal genes play a role?

220 What proteins are involved in the activation or recognition mechanism for
PmrD?

221 Which pahtways are mediated by CD44?

106

222 What molecular functions is LITAF involved in?

223 Which anaerobic bacterial strains are resistant to Vancomycin?

224 What genes are involved in the melanogenesis of human lung cancers?

225 What biological substances induce clpQ expression?

226 What proteins make up the murine signal recognition particle?

227 What genes are induced by LPS in diabetic mice?

228 What genes when altered in the host genome improve solubility of
heterologously expressed proteins?

229 What signs or symptoms are caused by human parvovirus infection?

230 What pathways are involved in Ewing's sarcoma?

231 What tumor types are found in zebrafish?

232 What drugs inhibit HIV type 1 infection?

233 What viral genes affect membrane fusion during HIV infection?

234 What genes make up the NFkappaB signaling pathway?

235 Which genes involved in NFkappaB signaling regulate iNOS?

Table 9-1 A list of the 36 TREC question and their IDs used to evaluate the Jikitou system.

107

9.2 Appendix B: Agent relevant cosine scores by rank

An ANOVA was performed to determine if there was a significant

difference between agents’ cosine scores by rank. The results of the ANOVA

were a p-value of .55 which is well above a p-value ≤ .05 so we accept the null

hypothesis that the means are equal. See Table 9-2.

Anova: Single Factor

 SUMMARY
 Groups Count Sum Average Variance

 BasicAgent 48 5.159888 0.107498 0.000272
 DeepQAgent 48 5.226204 0.108879 0.000295
 MIMAgent 48 5.292254 0.110255 0.000354
 LGAgent 48 5.066484 0.105552 0.000191

 ANOVA

 Source of Variation SS df MS F P-value F crit

Between Groups 0.000581 3 0.000194 0.695602 0.555805 2.652646

Within Groups 0.052312 188 0.000278

 Total 0.052893 191
Table 9-2 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using the

moving average cosine similarity measure (window size of 3)

108

9.3 Appendix C: relevant vs. not-relevant data analysis

Before determining the difference seen between the cosine measure

scores of the relevant and not-relevant, it was first determined if the data was

normal. A Shapiro-Wilk test for normality was performed in R. The results are

shown in Table 9-3. Both test resulted in non-significant results meaning that

both datasets conform to being normally distributed.

Shapiro-Wilk normality test
Dataset W p-vlaue

Relevant 0.9837 0.7156

Not-Relevant 0.9699 0.2297

Table 9-3 The results of the Shapiro-Wilk normality test on relevant and not-relevant

average cosine score by rank. The results of both test were not significant at the p-value

of <.05 meaning that both datasets are normally distributed.

A t-test was then performed in Excel, the results of which can be seen in

Table 9-4. The t-test was done to determine the difference between the relevant

and not-relevant average cosine score by rank. The null hypothesis being that

the difference between the two means is the same. The alternative hypothesis is

that the means are different. The results of the t-test is a t-statistic value of -4.951

with a p-value of <.05. This means we reject the null hypothesis and accept the

alternative that the means of the datasets are different.

t-Test: Two-Sample Assuming Equal Variances

 NOT Score Average Relevant Score Average

Mean 0.074790593 0.080031355
Variance 0.002650613 0.005417105
Observations 7200 7200
Pooled Variance 0.004033859

109

Hypothesized Mean Difference 0
 df 14398
 t Stat -4.950913491
 P(T<=t) one-tail 3.73511E-07
 t Critical one-tail 1.644959466
 P(T<=t) two-tail 7.47022E-07
 t Critical two-tail 1.960128762

Table 9-4 The results of the t-test to determine if the difference between the relevant and

not-relevant average cosine score by rank. The results of the test is that the difference

between the two means is significant at a p-value of <.05.

110

9.4 Appendix D: Difference among agents per query: data analysis

To determine the difference between agents by query an ANOVA was

performed on each query. The ANOVA was done in excel on the 12 different

queries.

Anova: Single Factor (QID: 200)
 SUMMARY

 Groups Count Sum Average Variance
 BasicAgent 50 5.9063 0.1181 0.00166
 DeepQAgent 50 6.4355 0.1287 0.001301
 MIMAgent 50 6.4355 0.1287 0.001301
 LGAgent 50 6.3765 0.1275 0.001314

 ANOVA

 Source of Variation SS df MS F P-value F crit

Between Groups 0.003941 3 0.001314 0.942422 0.421167 2.650677
Within Groups 0.273197 196 0.001394

 Total 0.277138 199

Table 9-5 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 200.

Anova: Single Factor (QID: 203)
 SUMMARY

 Groups Count Sum Average Variance
 BasicAgent 50 5.5222 0.1104 0.001745
 DeepQAgent 50 6.4029 0.1281 0.003948
 MIMAgent 50 5.5784 0.1116 0.002633
 LGAgent 50 6.2356 0.1247 0.003623

 ANOVA
 Source of Variation SS df MS F P-value F crit

Between Groups 0.012138 3 0.004046 1.354451 0.258027 2.650677

Within Groups 0.585479 196 0.002987

111

 Total 0.597617 199
Table 9-6 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 203.

Anova: Single Factor (QID: 204)
 SUMMARY

 Groups Count Sum Average Variance
 BasicAgent 50 6.4912 0.1298 0.001845
 DeepQAgent 50 4.3836 0.0877 0.003979
 MIMAgent 50 4.3836 0.0877 0.003979
 LGAgent 50 3.7620 0.0752 0.002701

 ANOVA

 Source of
Variation SS df MS F

P-
value F crit

Between Groups 0.085524631 3 0.02851 9.12019
1.11E-

05 2.650677
Within Groups 0.612663654 196 0.00313

 Total 0.698188285 199

Table 9-7 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 204.

Anova: Single Factor (QID 211)

 SUMMARY
 Groups Count Sum Average Variance

 BasicAgent 50 7.1505 0.1430 0.002182
 DeepQAgent 50 3.3587 0.0672 0.002228
 MIMAgent 50 3.0053 0.0601 0.001955
 LGAgent 50 2.2203 0.0444 0.000375

 ANOVA
 Source of

Variation SS df MS F
P-

value F crit

Between Groups 0.289520621 3 0.09651 57.27172
1.25E-

26 2.650677

112

Within Groups 0.330273757 196 0.00169

 Total 0.619794379 199
Table 9-8 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 211.

Anova: Single Factor (QID 212)
 SUMMARY

 Groups Count Sum Average Variance
 BasicAgent 50 2.1604 0.0432 0.000446
 DeepQAgent 50 2.8374 0.0567 0.000439
 MIMAgent 50 2.8374 0.0567 0.000439
 LGAgent 50 2.5621 0.0512 0.000463

 ANOVA

 Source of Variation SS df MS F P-value F crit

Between Groups 0.006149338 3 0.00205 4.586946 0.003969 2.650677
Within Groups 0.087586987 196 0.00045

 Total 0.093736325 199
Table 9-9 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 212.

Anova: Single Factor (QID: 213)
 SUMMARY

 Groups Count Sum Average Variance
 BasicAgent 50 5.29048 0.10581 0.003184
 DeepQAgent 50 5.50599 0.11012 0.002347
 MIMAgent 50 5.50599 0.11012 0.002347
 LGAgent 50 4.50229 0.09005 0.001689

 ANOVA

 Source of Variation SS df MS F P-value F crit

Between Groups 0.013644861 3 0.00455 1.901615 0.130632 2.650677
Within Groups 0.468793213 196 0.00239

 Total 0.482438074 199

113

Table 9-10 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 213.

Anova: Single Factor (QID: 214)
 SUMMARY

 Groups Count Sum Average Variance
 BasicAgent 50 8.4648 0.1693 0.002756
 DeepQAgent 50 9.7057 0.1941 0.001651
 MIMAgent 50 9.7057 0.1941 0.001651
 LGAgent 50 7.3301 0.1466 0.0036

 ANOVA

 Source of Variation SS df MS F P-value F crit

Between Groups 0.078268411 3 0.02609 10.80438
1.33E-

06 2.650677
Within Groups 0.473283568 196 0.00241

 Total 0.551551979 199

Table 9-11 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 214.

Anova: Single Factor (QID: 215)
 SUMMARY

 Groups Count Sum Average Variance
 BasicAgent 50 11.8285 0.2366 0.008375
 DeepQAgent 50 12.5439 0.2509 0.005165
 MIMAgent 50 12.5439 0.2509 0.005165
 LGAgent 50 11.0496 0.2210 0.008444

 ANOVA

 Source of Variation SS df MS F P-value F crit

Between Groups 0.030477598 3 0.01016 1.496779 0.216707 2.650677
Within Groups 1.330325092 196 0.00679

 Total 1.360802689 199

Table 9-12 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 215.

114

Anova: Single Factor (QID: 218)
 SUMMARY

 Groups Count Sum Average Variance
 BasicAgent 50 3.0122 0.0602 0.002171
 DeepQAgent 50 0.7789 0.0156 5.67E-05
 MIMAgent 50 0.7789 0.0156 5.67E-05
 LGAgent 50 1.6728 0.0335 0.001416

 ANOVA

 Source of Variation SS df MS F P-value F crit

Between Groups 0.066833442 3 0.02228 24.07964
2.61E-

13 2.650677
Within Groups 0.181333739 196 0.00093

 Total 0.248167181 199

Table 9-13 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 218.

Anova: Single Factor (QID: 227)

 SUMMARY
 Groups Count Sum Average Variance

 BasicAgent 50 5.7820 0.1156 0.002757
 DeepQAgent 50 6.0542 0.1211 0.002127
 MIMAgent 50 6.0542 0.1211 0.002127
 LGAgent 50 5.8487 0.1170 0.001609

 ANOVA

 Source of Variation SS df MS F P-value F crit

Between Groups 0.001185457 3 0.0004 0.183358 0.90762 2.650677

Within Groups 0.422397758 196 0.00216

 Total 0.423583215 199
Table 9-14 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 227.

Anova: Single Factor (QID: 232)

115

SUMMARY
 Groups Count Sum Average Variance

 BasicAgent 50 9.8511 0.1970 0.00796
 DeepQAgent 50 5.5553 0.1111 0.007579
 MIMAgent 50 5.2856 0.1057 0.006849
 LGAgent 50 5.2232 0.1045 0.005756

 ANOVA
 Source of Variation SS df MS F P-value F crit

Between Groups 0.304515095 3 0.10151 14.42674
1.57E-

08 2.650677

Within Groups 1.379035261 196 0.00704

 Total 1.683550356 199
Table 9-15 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 232.

Anova: Single Factor (QID: 234)

 SUMMARY
 Groups Count Sum Average Variance

 BasicAgent 50 2.3226 0.0465 0.000205
 DeepQAgent 50 9.3194 0.1864 0.003124
 MIMAgent 50 8.9849 0.1797 0.003412
 LGAgent 50 9.5928 0.1919 0.002881

 ANOVA
 Source of Variation SS df MS F P-value F crit

Between Groups 0.733777139 3 0.24459 101.6831
9.91E-

40 2.650677

Within Groups 0.471465642 196 0.00241

 Total 1.205242782 199
Table 9-16 ANOVA results for BasicAgent, DeepQAgent, MIMAgent, and LGAgent using

question ID 234.

ANOVA tests that resulted in a significant result at the p-value <.05 level,

meaning that not all 4 agents had equal means, were then tested using Tukey

116

multiple comparison. This test is used to determine which of the agents were

significantly different from the others. Questions 204, 211, 212, 214, 218, 232,

and 234 were found to not have equal means by ANOVA. The complete results

of the Tukey test can be found in Table 9-17.

Tukey multiple comparisons of means 95% family-wise confidence
level Fit

aov(formula = lm(value ~ variable, data = rdata))

Pair-wise Comparison
diff lwr upr

Adjusted P-
Value

204

 DeepQAgent-BasicAgent -4.22E-02
-

0.0711
-

0.0132
0.0012299

MIMAgent-BasicAgent -4.22E-02
-

0.0711
-

0.0132
0.0012299

LGAgent-BasicAgent -5.46E-02
-

0.0836
-

0.0256
0.0000129

MIMAgent-DeepQAgent -5.55E-17
-

0.0290
0.0290 1

LGAgent-DeepQAgent -1.24E-02
-

0.0414
0.0165 0.6826629

LGAgent-MIMAgent -1.24E-02
-

0.0414
0.0165 0.6826629

211

DeepQAgent-BasicAgent

-0.07583473
-

0.0971
-

0.0546 0

MIMAgent-BasicAgent
-0.082904

-
0.1042

-
0.0616 0

LGAgent-BasicAgent
-0.09860406

-
0.1199

-
0.0773 0

MIMAgent-DeepQAgent
-0.00706927

-
0.0283 0.0142 0.8248632

LGAgent-DeepQAgent
-0.02276933

-
0.0440

-
0.0015 0.0307114

LGAgent-MIMAgent
-0.01570006

-
0.0370 0.0056 0.2262059

212

 DeepQAgent-BasicAgent 1.35E-02 0.0026 0.0245 0.0085656
MIMAgent-BasicAgent 1.35E-02 0.0026 0.0245 0.0085656

LGAgent-BasicAgent
8.04E-03

-
0.0029 0.0190 0.2311872

MIMAgent-DeepQAgent
1.39E-17

-
0.0110 0.0110 1

117

LGAgent-DeepQAgent
-5.51E-03

-
0.0165 0.0054 0.5624999

LGAgent-MIMAgent
-5.51E-03

-
0.0165 0.0054 0.5624999

214

DeepQAgent-BasicAgent
2.48E-02

-
0.0006 0.0503 0.0591663

MIMAgent-BasicAgent
2.48E-02

-
0.0006 0.0503 0.0591663

LGAgent-BasicAgent
-2.27E-02

-
0.0482 0.0028 0.0994347

MIMAgent-DeepQAgent
2.78E-17

-
0.0255 0.0255 1

LGAgent-DeepQAgent
-4.75E-02

-
0.0730

-
0.0220 0.0000159

LGAgent-MIMAgent
-4.75E-02

-
0.0730

-
0.0220 0.0000159

218

DeepQAgent-BasicAgent
-4.47E-02

-
0.0604

-
0.0289 0

MIMAgent-BasicAgent
-4.47E-02

-
0.0604

-
0.0289 0

LGAgent-BasicAgent
-2.68E-02

-
0.0426

-
0.0110 0.0001026

MIMAgent-DeepQAgent
3.47E-18

-
0.0158 0.0158 1

LGAgent-DeepQAgent 1.79E-02 0.0021 0.0336 0.0191799
LGAgent-MIMAgent 1.79E-02 0.0021 0.0336 0.0191799

232

DeepQAgent-BasicAgent

-
0.085916587

-
0.1294

-
0.0424 0.0000043

MIMAgent-BasicAgent
-

0.091309932
-

0.1348
-

0.0478 0.0000009

LGAgent-BasicAgent
-

0.092559525
-

0.1360
-

0.0491 0.0000006

MIMAgent-DeepQAgent
-

0.005393344
-

0.0489 0.0381 0.98848

LGAgent-DeepQAgent
-

0.006642938
-

0.0501 0.0368 0.978903

LGAgent-MIMAgent
-

0.001249594
-

0.0447 0.0422 0.9998513

234
 DeepQAgent-BasicAgent 0.139937421 0.1145 0.1654 0

MIMAgent-BasicAgent 0.133247255 0.1078 0.1587 0
LGAgent-BasicAgent 0.145404328 0.1200 0.1708 0
MIMAgent-DeepQAgent - - 0.0187 0.9038357

118

0.006690166 0.0321

LGAgent-DeepQAgent
0.005466908

-
0.0200 0.0309 0.9444567

LGAgent-MIMAgent
0.012157073

-
0.0133 0.0376 0.6026047

Table 9-17 Tukey’s honest significance test was performed in R, which is a multiple

comparison of means procedure. The test compares the means of each group to the mean

of every other group. This test allows us to determine which agent or agents’ means was

different from the other.

119

9.5 Appendix E: Individual query precision vs. recall graphs

Figure 9-1 Precision-recall graph for query 200.

Figure 9-2 Precision-recall graph for query 203.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

o
n

Recall

200 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

ci
si

o
n

Recall

203 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

120

Figure 9-3 Precision-recall graph for query 204.

Figure 9-4 Precision-recall graph for query 211.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

ci
si

o
n

Recall

204 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

o
n

Recall

211 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

121

Figure 9-5 Precision-recall graph for query 212.

Figure 9-6 Precision-recall graph for query 213.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

ci
si

o
n

Recall

212 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

o
n

Recall

213 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

214 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

122

Figure 9-7 Precision-recall graph for query 214.

Figure 9-8 Precision-recall graph for query 215.

Figure 9-9 Precision-recall graph for query 218.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

o
n

Recall

215 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

ci
si

o
n

Recall

218 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

123

Figure 9-10 Precision-recall graph for query 227.

Figure 9-11 Precision-recall graph for query 232.

Figure 9-12 Precision-recall graph for query 234.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

o
n

Recall

227 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

ci
si

o
n

Recall

232 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

ci
si

o
n

Recall

234 Precision Recall

BasicAgent DeepQAgent MIMAgent LGAgent

124

125

9.6 Appendix F: Calculation of the interpolated average precision

. BasicQA

Std Recall 200 203 204 211 212 113 214 215 218 227 232 234 Average

0 1.000 0.750 1.000 0.500 1.000 1.000 1.000 0.600 0.909 0.273 0.188 1.000 0.768

0.1 0.857 0.667 0.933 0.500 0.800 1.000 1.000 0.500 0.909 0.273 0.188 0.533 0.680

0.2 0.682 0.611 0.864 0.410 0.696 1.000 0.455 0.500 0.800 0.273 0.162 0.490 0.578

0.3 0.682 0.556 0.771 0.000 0.676 1.000 0.455 0.394 0.800 0.128 0.000 0.000 0.455

0.4 0.645 0.525 0.000 0.000 0.659 0.976 0.455 0.394 0.800 0.128 0.000 0.000 0.382

0.5 0.628 0.500 0.000 0.000 0.000 0.976 0.455 0.375 0.000 0.128 0.000 0.000 0.255

0.6 0.000 0.000 0.000 0.000 0.000 0.940 0.333 0.000 0.000 0.000 0.000 0.000 0.106

0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.241 0.000 0.000 0.000 0.000 0.000 0.020

0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.209 0.000 0.000 0.000 0.000 0.000 0.017

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.209 0.000 0.000 0.000 0.000 0.000 0.017

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 9-18 Calculation of the eleven-point interpolated average precision for the BasicQAgent.

126

 DeepQAgent

Std Recall 200 203 204 211 212 113 214 215 218 227 232 234 Average

0 1.000 0.375 1.000 0.750 1.000 1.000 0.286 0.529 1.000 0.200 0.333 1.000 0.706

0.1 1.000 0.350 1.000 0.692 0.478 1.000 0.286 0.529 0.882 0.200 0.258 1.000 0.640

0.2 0.909 0.349 1.000 0.692 0.478 1.000 0.286 0.529 0.882 0.200 0.258 1.000 0.632

0.3 0.773 0.349 0.977 0.647 0.478 0.960 0.250 0.435 0.882 0.200 0.258 1.000 0.601

0.4 0.633 0.000 0.977 0.640 0.000 0.921 0.250 0.419 0.857 0.200 0.213 1.000 0.509

0.5 0.600 0.000 0.960 0.000 0.000 0.900 0.250 0.378 0.000 0.200 0.000 0.980 0.356

0.6 0.580 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000 0.178 0.000 0.000 0.084

0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.146 0.000 0.000 0.178 0.000 0.000 0.027

0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 9-19 Table 9 18 Calculation of the eleven-point interpolated average precision for the DeepQAgent.

127

 MIMAgent

Sd Recall 200 203 204 211 212 113 214 215 218 227 232 234 Average

0 1.000 0.333 1.000 1.000 1.000 1.000 0.286 0.529 1.000 0.200 1.000 1.000 0.779

0.1 1.000 0.270 1.000 0.667 0.478 1.000 0.286 0.529 0.882 0.143 0.600 1.000 0.655

0.2 0.909 0.270 1.000 0.500 0.478 1.000 0.286 0.529 0.882 0.143 0.556 0.964 0.626

0.3 0.773 0.000 0.977 0.500 0.478 0.960 0.250 0.435 0.882 0.129 0.296 0.943 0.552

0.4 0.633 0.000 0.977 0.000 0.000 0.921 0.250 0.419 0.857 0.000 0.268 0.940 0.439

0.5 0.600 0.000 0.960 0.000 0.000 0.900 0.250 0.378 0.000 0.000 0.000 0.000 0.257

0.6 0.580 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000 0.000 0.000 0.000 0.069

0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.146 0.000 0.000 0.000 0.000 0.000 0.012

0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 9-20 Table 9 18 Calculation of the eleven-point interpolated average precision for the MIMAgent.

128

 LGAgent

Std Recall 200 203 204 211 212 113 214 215 218 227 232 234 Average

0 0.526 1.000 1.000 0.581 1.000 1.000 0.286 0.667 0.737 0.200 0.125 1.000 0.677

0.1 0.526 0.400 1.000 0.581 0.622 1.000 0.286 0.412 0.737 0.143 0.125 1.000 0.569

0.2 0.526 0.357 0.862 0.581 0.622 1.000 0.286 0.412 0.720 0.143 0.125 1.000 0.553

0.3 0.420 0.000 0.826 0.581 0.622 0.960 0.286 0.408 0.720 0.129 0.000 0.960 0.493

0.4 0.420 0.000 0.826 0.000 0.622 0.957 0.286 0.408 0.720 0.000 0.000 0.960 0.433

0.5 0.000 0.000 0.000 0.000 0.000 0.957 0.238 0.408 0.000 0.000 0.000 0.000 0.134

0.6 0.000 0.000 0.000 0.000 0.000 0.940 0.000 0.408 0.000 0.000 0.000 0.000 0.112

0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 9-21 Table 9 18 Calculation of the eleven-point interpolated average precision for the LGAgent.

129

9.7 Appendix G: Average Precision, MAP, GMAP, and F-Measure

Figure 9-13 Average precision for the agents for each of the queries under investigation.

 BasicAgent DeepQAgent MIMAgent LGAgent
QID AP log-AP AP log-AP AP log-AP AP log-AP

200 0.651 -0.186 0.727 -0.139 0.727 -0.139 0.375 -0.426

203 0.541 -0.267 0.280 -0.552 0.200 -0.698 0.352 -0.454

204 0.818 -0.087 0.985 -0.007 0.985 -0.007 0.854 -0.068

211 0.335 -0.475 0.615 -0.211 0.542 -0.266 0.448 -0.349

212 0.694 -0.158 0.459 -0.339 0.459 -0.339 0.534 -0.272

213 0.984 -0.007 0.951 -0.022 0.951 -0.022 0.970 -0.013

214 0.287 -0.542 0.171 -0.767 0.171 -0.767 0.154 -0.812

215 0.377 -0.424 0.391 -0.407 0.391 -0.407 0.356 -0.449

218 0.754 -0.123 0.859 -0.066 0.859 -0.066 0.636 -0.196

227 0.123 -0.911 0.123 -0.911 0.123 -0.911 0.098 -1.010

232 0.110 -0.957 0.206 -0.685 0.340 -0.468 0.073 -1.135

234 0.549 -0.261 0.997 -0.001 0.957 -0.019 0.972 -0.012

Table 9-22 Average precision calculated value and the log of the average precision used in

the MAP and GMAP calculations.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

200 203 204 211 212 213 214 215 218 227 232 234

A
ve

ra
ge

 P
re

ci
si

o
n

Quiestion ID

Average Precision

BasicAgent DeepQAgent MIMAgent LGAgent

130

MAP

BasicAgent DeepQAgent MIMAgent LGAgent

0.518523889 0.563594839 0.55867549 0.48509

Table 9-23 Values calculated from the Mean Average Precision.

GMAP

BasicAgent DeepQAgent MIMAgent LGAgent

0.693117572 0.710124763 0.710051767 0.648444

Table 9-24 Values calculated for the Geometric Mean Average Precision.

Query BasicAgent DeepQAgent MIMAgent LGAgent

200 0.577319588 0.597938144 0.597938144 0.432989691

203 0.505050505 0.303030303 0.242424242 0.282828283

204 0.452554745 0.700729927 0.700729927 0.598540146

211 0.327868852 0.524590164 0.409836066 0.459016393

212 0.50877193 0.385964912 0.385964912 0.543859649

213 0.74015748 0.708661417 0.708661417 0.74015748

214 0.3 0.233333333 0.233333333 0.166666667

215 0.43902439 0.43902439 0.43902439 0.487804878

218 0.592592593 0.622222222 0.622222222 0.533333333

227 0.196721311 0.262295082 0.262295082 0.131147541

232 0.16 0.266666667 0.32 0.16

234 0.324324324 0.662162162 0.635135135 0.648648649

Average 0.427032143 0.47555156 0.463130406 0.432082726

Table 9-25 Values F-measure values and the average value for the 12 queries.

131

Figure 9-14 Max balanced F-measure for individual queries.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

200 203 204 211 212 213 214 215 218 227 232 234

F-
M

e
as

u
re

Question ID

Max F-Measure per Query

BasicAgent DeepQAgent MIMAgent LGAgent

