THE JIKITOU BIOMEDICAL QUESTION ANSWERING SYSTEM:
FACILITATINGTHE NEXT STAGE IN

THE EVOLUTION OF INFORMATION RETRIEVAL

A Dissertation Submitted
to the Graduate School
University of Arkansas at Little Rock

in Partial Fulfilment of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY

in Bioinformatics

from the Bioinformatics Graduate Program of
the University of Arkansas at Little Rock and

the University of Arkansas for Medical Sciences

January 2013

Michael Anton Bauer

B.S., Computer Science, New Mexico Institute of Mining and Technology,
2005
B.S., Biology, New Mexico Institute of Mining and Technology, 2005
M.Sc., Bioinformatics, University of Arkansas at Little Rock and

University of Arkansas for Medical Sciences, 2008

© Copyright by
Michael Anton Bauer
2013

This thesis, The Jikitou Biomedical Question Answering System: Facilitating
the Next Stage in the Evolution of Information Retrieval, by Michael Anton

Bauer is approved by:

Thesis Advisor:

Daniel Berleant, Ph.D.
Professor of Information Science

Thesis Committee:

Robert E. Belford, Ph.D.
Associate Professor of Chemistry

Alan J. Tackett, Ph.D.
Associate Professor of Biochemistry

William R. Hogan, M.D.
Associate Professor and Chief in Division
of Biomedical Informatics

Radhakrishnan Nagarajan, Ph.D.
Associate Professor, Division of
Biomedical Informatics at the University of
Kentucky

External Member:

Jonathan D. Wren, Ph.D.
Assistant Member of the Arthritis
and Clinical Immunology Research
Program at the Oklahoma Medical
Research Foundation

Program Coordinator:

Elizabeth Peirce, Ph.D.
Associate Professor, Chair of Information
Science

Graduate Dean:

Patrick J. Pellicane, Ph.D.
Professor of Construction Management

Fair Use

This thesis is protected by the Copyright Laws of the United States (Public
Law 94-553, revised in 1976). Consistent with fair use as defined in the
Copyright Laws, brief quotations from this material are allowed with proper
acknowledgment. Use of this material for financial gain without the author’s
express written permission is not allowed.

Duplication

| authorize the Head of Interlibrary Loan or the Head of Archives at the
Ottenheimer Library at the University of Arkansas at Little Rock to arrange
for duplication of this thesis for educational or scholarly purposes when so
requested by a library user. The duplication will be at the user’s expense.

Signature

| refuse permission for this thesis to be duplicated in whole or in part.

Signature

THE JIKITOU BIOMEDICAL QUESTION ANSWERING SYSTEM:
FACILITATING THE NEXT STAGE IN THE EVOLUTION OF INFORMATION
RETRIEVAL by Michael Anton Bauer, 2013

Abstract

In clinical and biomedical settings researchers often use specialized
search engines to acquire answers to technical questions or to verify
experimental results from peer reviewed scientific literature. The outcome of such
gueries typically results in the reading and scanning of multiple Web pages and
documents. Information retrieval is the science of retrieving relevant items and
guestion answering (QA) is a specialized type of information retrieval with the
aim of returning precise short answers to queries posed as natural language
guestions. In this dissertation | describe and discuss a QA system, named Jikitou
(www.jikitou.com), which creates a dialog with the user that mimics human
interaction and utilizes multiple search agents to answer biomedical questions.

Jikitou is designed to be modular to allow for easy modification and
evolution of core components. An evaluation system has been devised, which
allows for the systematic comparison among different algorithms for finding
relevant answers. The system's architecture can be divided into four subsystems:
knowledge base, question analysis, answer agents, and user interface. Multiple
software agents find possible answers to questions, from which the most relevant
are presented to the user. Relevant information is presented to the user which
establishes a kind of dialog with the user to obtain feedback to refine the query.

Answers are automatically marked up and linked to semantically relevant content

in other databases. The additional information is presented in a popup window
that appears when a marked term is clicked.

Jikitou addresses two current requirement gaps in biomedical question
answering, namely, incorporating multimedia information and an ability to interact
with the user. There is a lack of systems that allow the user to establish context,
utilize that information in the process, and automatically return the appropriate
answer. Jikitou returns answers to biological questions rather than lists of
documents, which reduces the need to read entire documents. In addition to
addressing current gaps, the system demonstrates an architecture framework
that can continually evolve, maintaining itself as a valuable tool to researchers

not only for question answering but also for other information retrieval needs.

Dedication
This dissertation is dedicated to my loving wife Akemi and three daughters

Kana, Sana, and Mana who supported me throughout the entire endeavor.

Acknowledgments

There are a number of individuals that | would like to acknowledge for their
help and encouragement. | would first like to acknowledge my parents Mark and
Lorna Bauer for their love and support and belief in me. They were a strong
driving force that kept me pushing on when it felt like there was no end in sight.

| would like to recognize and express my gratitude to my advisor Dr.
Daniel Berleant for his guidance throughout both my masters and PhD. His ability
to provide guidance, while at the same time still allowing me to take the lead in
my education where the perfect balance, which | feel will prove to make me a
better researcher. | would also like to acknowledge my dissertation committee
members Drs. William Hogan, Radhakrishnan Nagarajan, and Alan Tackett for
their guidance. With a special thanks to Drs. Jonathan Wren and Robert Beflord.
Dr. Wren provided me with the idea of designing a question answering system
and provided invaluable advice and suggestion throughout the dissertation. And
Dr. Belford whom | started working with on the HyperGlossary project provided
excellent support which has led to my intellectual growth.

| would also like to acknowledge my classmate and dear friend Shweta
Chavan for all her support whether if it was proofreading, being there when ever
needed to bounce ideas off of, or just having the support of someone going
through the same process to be able to talk to during the tough times. | will
always treasure the times we were able to take a break and play ping pong.

| would like to give a very special acknowledgement to my wife Akemi who

has supported my educational endeavors since undergraduate school and whose

support really made it all possible. Her understanding of late hours and
weekends in the office made my ability to focus much easier. She was truly my

rock and | cannot thank her enough.

Table of Contents

Chapter 1: INtrodUCLIONccceeiiiieiiiie e e e e e e e eeenes 1
1.1 BacKgroundoooooiiiiiiiiii e 1
1.2 AIMS and ODJECHIVES......cii i e 3

SPECITIC @IMS .. 4
1.3 ThesSiS Organizationcceeviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 6
Chapter 2 Literature rEVIEWcccoeevieeeieeeeeeeeeee e 6
Chapter 3 Jikitou design and methods...........ccoovveeeiiiiiiiiiiiiiiee e, 6
Chapter 4 System evaluation............ccooooeeeeiii 7
Chapter 5 RESUIScoooeeeeeeee 7
Chapter 6 FUTUIe WOTIKcoooiiiiieeeeeeeeeeeee 7
Chapter 7 CONCIUSIONScoooeieeeeeeeeeeee 7

Chapter 2: Literature rEVIEWuuuiiiieeeeeieeeeiiie e ee e eeeeeeaens 8

2.1 Usability survey of biomedical question answering systems.......... 8
SUMIMEATY ..ttt et e e e e e e e e e e eennna s 8
INEFOAUCTION ...t 8
INFOrMALION SOUICES ...ceeiiiiiiiiiiiiiieieeeeeeeee ettt 9
Response time and reSultSeuuveiiiiiiiiiiiiiiiiiiiiiees 10
USEI INTEITACEuuiiiiiiiiiiiiitiii i 13
ANSWET QUANTY eeeeiiiiiiiiiiiiieeee e 14

SUMMATY ...ttt e e ettt e e e e et e e e e eena e e e eeenanaaaeees 15

Chapter 3: Jikitou design and methodscccccvvvvviiiiiiiiiiiiiiiiiiiiieeee, 17
3.1 Design rational..........ccoovvuviiiiiii e 17
Y o F= U] 1= 3N IR o Y 19
SEAICNING ... e e aaaae 19

(@ 11T 2 0] 1 1.4 = 11 o] o ST 20
Document representation and document weighting............cccccoeeo.... 21
QUETNY WEIGNTINGuvii e 25
SIMIlANTY MEASUIE ... e e e e e enaees 25
3.2 JIKItOU OESIGN ...ttt 26
1Y [o [RN 28
VIBW .. 30
CONIIOIIET <. 30
3.3 Knowledge Dase ... 30
3.4 Dictionaries and theSAUIUSESuuuiiiiiiiiiiiiiiiiiiiiieiiiiiieene 31
3.5 Multiple search agent approach.............cccccuvueeimiiiiiiiiiiiiiiiiiiiinins 32
AQENT tOOIDOX.....ccciiiiiiice e 35
DispatCh MOdUIEeeeee e 42
AGENTS o 43
3.6 INEEITACE. 46
“ADOUL” taD ..o 47
“QUESHION” TAD ... 48

Xi

AN SWET 1A e 51

“ADSIraCE” 1ab v 52
3.7 HYPEIGIOSSANYuuuuiiiiiiiiiiiiiiiiiii e 52
Creating @ gloSSaArYcciii i e i 54
JavaSCript OVEIAYS........coviiiiiie e 55
Chapter 4. System evaluation..............cccoooeieeiiiiiiiiiiii e 59
4.1 Evaluation methods: User study vs Automatedccc..evvveen. 59
4.2 Text Retrieval Conference ReSOUICES...........cccvvvveieieeeeiniiiiiiine, 60
4.3 Similarity-judged vs. Jikitou-produced ansSwers............cccceevvvvnnnn. 61
4.4 SVM: extending the judged passagescccceeeeveeeieeeeeeeeeeeeeee 62
Chapter 5: RESUIS.......ccooviiiiiiiiiiiiiee 67
5.1 Evaluation COMPAIiSONuuuuuummmmiiiiiiiiiiniiininiinennieaeeneennneennees 67
5.2 Cosine similarity measure evaluation results............ccccooeeeeveeeenn. 70
Cosine score, relevant vs. not-relevant, by rank....................ccoeeees 70
Agent relevant cosine scores by rank............ccccceeeeiiiiiiiiiiceen e, 72
Difference between agent per QUENY.........oovvvvviiiiiieeeeeeeeeeicee e 73
5.3 SVM evaluation resultS...........cceeeeiiiiieiiiiiiiiieeee e 75
SVM performance eStimateccovvuiieeiiiiiiie e 76
Measures of effeCtiVENESSuuuiiiiiiiiiiiiiii e 78
Measuring SVM models’ effectiveness..........ccccuvvvvviiiiiiiiiiiiiiiiiinnnnn. 79
Measuring Jikitou’s effectivenesscccccvevviiiiiiiiiiiiiiiiiiiiiiiiinns 80
AgeNt aNSWET OVEIAPiiiiiii e e 85

Xii

Chapter 6: FULUIEoooeeeei e 88

6.1 AdditioNal AQENLSuuuriiiiiiiiiiiiiiiiiii i 88
6.2 AdIitiONal FESOUICESuuviiiiiiiiiiiiiiiiiiibiieiib bbb 88
6.3 Current agent modifiCation.................uuueeiiiiiiiiiiiiiiiiiiiee 90
6.4 Future evaluation................uuvueiiimiiiiiiiiiiiiiiiiiiiii e 90
Chapter 7: CONCIUSIONSuiiiiiiiieeeiiiii e 91
7.1 EVAIUALION ...ttt 91
7.2 AQEBNES .ot 92
7.3 USEr INTEIMACEveiiiiieiiiiiieeee e 93
7.4 Query refinemMeENt........ccooiiiiiiiiii e 94
7.5 AICRItECIUIE ... 95
A SIS 1 U1 0 = Y P 95
Chapter 8: List Of referencCes ... 97
Chapter 9: APPENdICEScovviiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 105
9.1 Appendix A: QUESHION liSt..........uuuuuiiiiiiiiiiiiiiiiiiiiee 105
9.2 Appendix B: Agent relevant cosine scores by rank.................... 107
9.3 Appendix C: relevant vs. not-relevant data analysis.................. 108
9.4 Appendix D: Difference among agents per query: data analysis110
9.5 Appendix E: Individual query precision vs. recall graphs........... 119
9.6 Appendix F: Calculation of the interpolated average precision.. 125
9.7 Appendix G: Average Precision, MAP, GMAP, and F-Measure 129

Xiii

Chapter 1. Introduction

We live in an age where we have access to more information than ever
before. This can be a double edged sword. The access to information allows for
more informed and empowered researchers. On the other hand finding relevant
information becomes an increasingly more difficult task. Clinical and biomedical
researchers often use search engines to find short answers to biological
guestions or to quickly get validation of genomic and proteomic experimental
results. Google (1) and PubMed (2) are well known and successful information
retrieval systems, but once the results are returned in the form of a list of
documents or sites, it is left to the user to scan the resulting list and linked pages
for the relevant information. A simple search can quickly become a time
consuming task when one must manually find the answer due to the number of
hits returned using these traditional kinds of information retrieval systems. There
is a need for intelligent information retrieval systems that can summarize relevant
textual information while also incorporating multiple sources of information from

reliable sources to satisfy a user’s query.

1.1 Background

Question answering (QA) systems are an extension of information
retrieval in which precise short answers are built and returned to the user in
response to queries posed as a natural language question (3-5) . Currently there

are few such QA systems specific to the genomic and proteomic domains. Thus,

there is a need for systems that are able to return short answers extracted from
PubMed articles and other such sources that accurately answer genomic and
proteomic questions. Reduction of the amount of irrelevant information returned
to the user is expected to increase the productivity of researchers in the
biomedical field.

There are many reasons why researchers perform literature searches:

find gaps and limitations in a field

find and compare results

validate results against peer's research

learn about a field

A question answering system might allow researchers interested in
biomolecular interactions to fulfill many of these needs. Potential gaps in a field
can be found if a particular question cannot be answered. If conflicting answers
are presented to the user they can quickly get an idea of the controversies and
conflicting opinions. Performing large scale interactome, proteomic, or genomic
experiments results in large lists of genes, proteins, and other biomolecules and
it is often necessary to review the literature to validate results or see what is
known about them (6, 7). The aim of a question answering system like this is to
make this task easier.

Grant et al. (6), for example, present a proteomic study of multi-protein
complexes in mammalian neuronal synapses. They describe the protocol they
followed and believe a systematic literature search should be done when you

have a list of proteins and genes obtained during a proteomic or microarray

experiment. The paper states that learning what is already known about the
proteins that they have identified can provide insight into what the next step
should be in the research plan. This requires an exhaustive search of the
literature for the entities of interest.

The author mentions that performing literature research on even a list of
just 10 proteins can be a daunting task. Each gene or protein has multiple
synonyms and it can be time consuming to create a query to encompass all
possible terms. A method is described that utilizes text mining methods to
automate the process of finding synonyms and searching the literature
databases for papers pertinent to a protein in question. They were looking for
papers that mentioned a mutation in a gene of interest that was associated with a
human disease. Their method is broad and returns only a small percentage of
relevant papers. This type of search still requires a large percentage of the
literature research time to be dedicated to reading and skimming papers that do

not contain any relevant information.

1.2 Aims and objectives

The main hypothesis in this study is that a question answering system can
provide an improved method for information retrieval that deals with specific
biological questions. The hypothesis is based on the concept that often the
relevant information need can be found in a sentence or phrase contained within
a document rather than having to read the entire document (8). Retrieval of this

piece of information helps reduce the need for documents to be scanned or read.

This thesis will advance the information retrieval field by filling gaps that
are present in information retrieval and question answering systems. Such gaps
include the deficiency in the use of multimedia sources to enrich answers and
interaction with the user to establish context (9, 10). There is also a lack of
systems that enable users to systematically build and test a QA approach without
the need to build an entire IR system from the ground up (11). It is the goal of this
project to address these gaps and limitations. Multimedia sources are linked to
key words matched in the answers that aid in the understanding of the answer.
Sources include links to definition of terms, relevant information in other
databases, and video. Design decisions taken during the development of the
system allow it to systematically evolve and give other researches a base from
which they can build novel search strategies immediately (contact the author for
source code if you are such a researcher). This QA system advances the field
with an application that returns answers to biomedical questions enhanced with

data from multimedia sources in addition to providing a QA development tool.

Specific aims

The goal of this thesis is to advance QA in the context of building a text
mining system with a question answering system that returns concise answers to
genomic and proteomic questions. To achieve this, the following specific aims

were fulfilled.

Aim #1: Build components of a base information retrieval system

Build the information retrieval base system components that are
necessary for the QA system. Sub-tasks included the selection of a suitable
search engine library to incorporate into modules and scripts to provide basic

search and indexing capabilities.

Aim #2: Build a QA system onto the base

Build the question answering system on top of the base information
retrieval system, also integrating multiple resources together to create a
knowledge base which different search strategies can access. This approach will
maximize the likelihood that the most relevant information for a particular

information need is found using one of the search strategies.

Aim #3: Build a web interface

Build a web interface to the QA system. It is through this interface that
standard users will interact with the system. They will submit their questions and
answers will be returned to them. The interface will also allow for query
refinement through user feedback. As well as providing a mechanism for
presenting the content provided by the HyperGlossary. The requirements of the

interface are that it be dynamic, responsive, and intuitive.

Aim #4: Enhance the answers using the HyperGlossary
Enhance the answers by incorporating a HyperGlossary module to
connect answers to additional resources. Possible answers to questions can be

presented to the user enhanced with links to additional information. Passing the

answers to the HyperGlossary increases the understandability of the answers

through the addition of links to semantically relevant information.

Aim #5: Evaluate the system
Design and execute a method to evaluate the system. Different search
strategies should be developed for use within the system and compared. An

evaluation method that minimizes the need for human judges was desired.

1.3 Thesis organization

The rest of this thesis is organized as follows.

Chapter 2 Literature review

This chapter gives background information on current state of the art QA
systems and is essentially a paper that we published in the journal Human

Genomics entitled “Usability survey of biomedical question answering”.

Chapter 3 Jikitou design and methods

Chapter 3 goes into design and describes the methods and algorithms
chosen for the QA system. | describe the software design paradigms followed
and the reason for the choices. | continue in the chapter to give background on
the basic parts of an information retrieval system and our approach to
implementing these into the system. In this project many existing tools,

databases and technologies are integrated and their function and use are also

described in detail. The chapter concludes with a detailed description of the

interface and how the user interacts with the system.

Chapter 4 System evaluation

Evaluation of the system is explained in Chapter 4. A detailed description
of the problem with evaluating IR tools is given and two evaluation methods that |

have chosen to implement are detailed.

Chapter 5 Results

Evaluation results are described in this chapter. The results of both
evaluation methods are further analyzed with additional evaluation measures
calculated and the results presented. Agreement and disagreements between
the two methods are highlighted. Performances of the different search strategies

are compared.

Chapter 6 Future work

This chapter conveys possible future plans for improving the system.
There are several directions that can be taken to further the research, advance

the field of IR, and question answering in particular.

Chapter 7 Conclusions

Chapter 7 draws conclusions from the evaluation results as well as
making a case for how the Jikitou system has advanced the fields of information

retrieval and question answering.

Chapter 2. Literature review

2.1 Usability survey of biomedical question answering systems

Based on a paper published in the journal Human Genomics, 2012, 6:17,

http://www.humgenomics.com/content/6/1/17.

Summary

Biologists have access to an ever increasing amount of textual
information. Increased access to information allows for more informed and
empowered researchers, while information overload becomes an increasingly
serious risk. Thus, there is a need for intelligent information retrieval systems that
can summarize relevant and reliable textual sources to satisfy a user's query.
Question answering is a specialized type of information retrieval with the aim of
returning precise short answers to queries posed as natural language questions.

| present a review and comparison of three biomedical question answering

systems: askHERMES (http://www.askhermes.orqg/), EAGLI

(http://eagl.unige.ch/EAGLI/), and HONQA (http://services.hon.ch/cqi-

bin/QA10/ga.pl).

Introduction

There are numerous general purpose search engines available online, but
as information sources continue to proliferate, specialized and domain-specific

information retrieval tools become more essential. One such domain is the

http://www.askhermes.org/
http://eagl.unige.ch/EAGLi/
http://services.hon.ch/cgi-bin/QA10/qa.pl
http://services.hon.ch/cgi-bin/QA10/qa.pl

clinical and biomedical fields, where the body of scientific knowledge is large and
increasing. To minimize searching and browsing time while maximizing
usefulness of that knowledge and data, we are seeing considerable interest in
biomedical/clinical question answering systems (12). Question answering (QA) is
a specialized type of information retrieval that returns precise short answers to
gueries posed as natural language questions (3, 13-15). It is the goal of such
systems to move the burden of skimming multiple documents, which can be quite
time consuming, from the researcher or clinician to the computer. The recent
successes of IBM's Watson on Jeopardy highlight the possibilities and potential
power of QA (16). | present a review of three leading biomedical QA systems,
askHERMES (17-19), EAGLI (20, 21), and HONQA (22-24), which are all
publically accessible online. This paper is organized into sections based on key

usability dimensions used to compare the different systems.

Information sources

An important factor for any domain-specific QA system is the accuracy
and trustworthiness of the sources against which queries are performed. Most
biomedical QA systems make use of MEDLINE abstracts as an information
source (25) . Two systems that | reviewed, askHERMES and EAGLI, used
MEDLINE as a major source of answers. In addition, askHERMES uses
eMedicine,(26) clinical guidelines, PubMedCentral (27) full text documents, and
Wikipedia. EAGLI uses Medical Subject Headings to help answer some

definitional questions. HONQA uses websites that have been certified by Health

10

On the Net Foundation (HON) (28), unlike the other two systems that rely heavily

on MEDLINE.

Response time and results

First of all, the systems vary in their response times and in the form of
answers returned to the user (in particular, single or multiple sentences). All three
QA systems return relatively short answers to clinical or biomedical questions
instead of entire documents. Response time assessment is based on the relative
amount of time it took each system to respond to a typical query.

EAGLI is quite slow and may not truly be ready for high volume traffic. In
response to a question that the system ‘understands,’ a list of possible answers
is displayed with corresponding levels of confidence indicated. Links to abstracts
are also provided and grouped by which answers to the question they support. If
a question is not understood, EAGLI returns a list of abstracts that contained
some of the query terms. The program also provides a short snippet of text from
the abstract that contains keywords from the query. Next to the text there are
links to PubMed and to a page they call a “semantic summary” which displays
the entire abstract and a list of all the Gene Ontology and SwissProt terms that
were matched, along with the phrase they were mapped to. A score is given to
indicate to the user the strength of the mapping. This information gives the user a
way to understand why the system has determined that a particular abstract
supports an answer or was given as the answer. A link to a matrix is provided on
the main results page that can quickly give the user an overview of the terms that

were matched in the abstracts. This system provides a degree of transparency to

11

the retrieval process that traditional information retrieval systems hide from the
user. That in turn supports efforts by the user to efficiently figure out how to best
phrase a query or question to get the most relevant information.

The askHERMES system responds significantly more quickly than EAGLI
or HONQA. It warns that it may take up to 60 s, but more often than not, it returns
results in only a few seconds. Query terms are determined first by identifying
noun phrases in a question which are then weighted based on several methods.
The query is subsequently expanded using the Unified Medical Language
System (UMLYS), dictionaries, and thesauruses. Answers that are returned in
response to a question can be viewed in three different arrangements: clustered
answers, ranked answers, and content clustered answers. Clustered answers
are first grouped according to different combinations of query and UMLS query
expansion terms. They are then sub-clustered by different combinations of
synonym concepts. This functionality can be useful in answering a complex
question, such as one about a cause and treatment, which may require reading
several different passages to find an answer. This is useful because often a
sufficient answer cannot be found in just one sentence or short passage. Content
clustered answers provide a third method to view answers. Common labels are
found for the original clusters, and additional answer passages are found that
match these labels. This approach allows a passage to be found under multiple,
easy to read labels. A list of related questions is shown and can be used to
further refine the one's own query question. The answers returned by the system

are short passages or phrases from MEDLINE abstracts which are linked back to

12

the original citation. The system classifies questions into several categories
defined by the National Library of Medicine (NLM) (29), such as diagnosis,
treatment and prevention, etiology, pharmacological, management, and others.
This classification aids in identifying query terms to use in retrieval.

HONQA is about as slow as EAGLI but it does display a status bar so that
you can better tell whether it is working or has hung. Next to each answer, you
can indicate whether a response to the question was appropriate or not. This is
intended to help improve the quality of the answers provided by the system over
time. Answers are linked to cached versions of the websites from which the
sentences were obtained. The answers are sentences taken from HON certified
websites. A health and medical website can apply to be certified, after which the
HON organization will evaluate the site to see that it meets “The HON Code of
Conduct for medical and health Web sites’ (HONcode) (30). The use of certified
health websites as a source of knowledge is unique to the HONQA system. It
was the intent of the designers of HONQA that users with different levels of
health and biological knowledge be able to benefit from answers that are
understandable and useful. MEDLINE contains high quality peer reviewed
literature but can be technically difficult to understand, whereas websites are
typically designed and geared for a more diverse audience. However, a
significant problem with using the Internet as a source of health information is the
lack of oversight of the information that is presented. The HON certification helps
alleviate the problem of incorrect and possibly dangerous medical information on

the Internet. Another benefit of using websites as a knowledge source is that

13

there are links to additional information present in most web pages (and absent
from MEDLINE abstracts) that can often help answer the question if the sentence

returned does not completely answer it.

User interface

EAGLI provides a simple and clean interface which allows users to ask a
guestion and either use the PubMed search tool or their specialized relevance
driven search engine. Most of the items on the page can be hovered over with
the mouse to display a small tooltip containing a more detailed description of the
item. The terms that are selected from the question to be used to query are
displayed on the results page. The system appears to reformulate and
automatically expand the queries with the addition of Gene Ontology and
SwissProt terms.

The interface to askHERMES is also simple and clean with multiple tabs.
At the top of the results page are links to clinical question answering tools, which
include utilities to browse guestions, classify questions, and generate query
terms. A question browsing utility allows browsing the NLM collection of clinical
guestions that they used while developing and tuning the system. A question
classifying utility lets the user submit a question and see in which category the
guestion is categorized. An ad hoc question can also be submitted to the query
term generating utility to get a list of the keywords that would be extracted and
used by the system to query the database. These utilities can help the user
understand how the system answers questions that are posed, similar to the

“Semantic Summary” of EAGLI.

14

HONQA has a very simple and easy-to-understand interface. When
results are returned, information about how the question was interpreted is
provided and includes: the number of answers, the language, expected question
type, and expected medical type. HONQA does some interpretation of the
guestion to determine the type and kind of medical information being requested.
Question types can be definition, factoid, list, and Boolean. The medical types a
guestion may be include definition, diagnostic, physiology, and treatment. This
helps the user determine whether the system understands the intent of their

guestion.

Answer quality

The askHERMES system returns passages that could potentially answer
all types of questions. A drawback is the consequently high recall; a large
number of results are often returned, which tends to defeat the intent of a
guestion answering system in reducing the amount of information that must be
read. HONQA returned fewer answers to many biomedical questions and is
tuned for medical questions. | observed that HONQA was able to present
sentences that answered questions to definitional clinical questions. The
sentences returned by the system were clear and easy to understand, and often,
following links to the cached source texts for further elaboration was
unnecessary. The EAGLI system was unique in that, when it understood a
definitional question, it would return a list of target answers with different levels of
confidence in addition to supporting abstracts. If a question was not understood,

it would just return abstracts that contained the query terms without the list of

15

possible answers. Thus, while long, complex questions tended to lead to no

results from EAGLi and HONQA, askHERMES returned results for any size and

type of question posed. This strategy strongly suggests itself as a general

architectural feature for future QA systems.

Summary

There are considerable interesting differences between the three systems.

HONQA returns single-sentence answers that are clear and easy to understand.

Although EAGLI provides single entity answers, it still seems to be often

necessary to read the abstracts to validate the answers provided. It also presents

the user with many different ratings and views which can be confusing. With its

quick responses, askHERMES is currently the most useable of the three

systems, especially if it is necessary to make multiple queries. Table 2-1

summarizes the dimensions and comparisons of the different systems.

Biomedical question answering systems are improving and will be ready for

prime time, perhaps surprisingly, soon. These three systems demonstrate that

they are close to becoming valuable tools for the clinical and biomedical fields.

QA Comparison Matrix

EAGLI

askHERMES

HONQA

Web address

eaglunigech/EAGLI

wwwaskhermeso rq

serviceshon.ch/cgi-bin/ QA1 gapl

Data sources MEDLINE abstracts MEDLINE abstracts, eMedicine, clinical HON certified websites
guidelines, PubMedCentral, and Wikipedia

Answers Multi-phrase passages and Multiple sentence passages Sentence

a list of single entities
Language English English English/French
System response Slowy Fast Slow
Interface complexity Complex but many tooltips Simple Wery simple
Question analysis Yes Yes Yes
Target question types Definition Al types Definition, procedure, factoid, who

Key feature

Returns a list of ranked
terms to answer "factual”
questions

Answers are presented in three ways: answers
clustered by terms, simple ranked answer
list, and answers clustered by content

Use of certified health websites which allow
for information to be geared towards people
with varying levels of health literacy

Table 2-1 Question answering system comparison matrix of features for HONQA,
askHERMES, and the EAGLI systems.

16

17

Chapter 3: Jikitou design and methods

This chapter details each part of the system, describing key functions and
algorithms. It also details the external programs and databases that have been
integrated into the system and their application. The reader can get an

explanation of the design concepts and the reasons for their selection.

3.1 Design rationale

The system that | have developed is called Jikitou and can be found at the

web address www.jikitou.com. Jikitou is the Japanese word for “prompt

answers/direct personal answer”, the tenets that guided the design and
implementation of the system. Question answering, being an advanced
information retrieval task, builds upon and combines many basic text-mining
tasks that in turn use many methods and tools, see Figure 3-1.

Jikitou incorporates many of the common methods which are used in the
more mature text-mining tasks of information retrieval, entity recognition, and
information extraction to find answers (15, 31, 32). Information retrieval is the
process of identifying text segments relevant to a topic, which is accomplished
using methods that find similarity between them. Information extraction is the
process of identifying predefined types of fact from the literature. The facts may
be specific relationships between biological entities; for example, protein-protein
interactions or gene-protein interactions. The most commonly used strategies for

automated information extraction are co-occurrence analysis, template matching,

http://www.jikitou.com/

18

and natural language processing. Entity recognition is the process of identifying

specific terms of interest. In the case of biomedical text-mining the usual entities

of interest are genes, proteins, or diseases.

Methods

l, Boolean

I Vector Model I

| Probabilistic |

Language Modeling

| Dictionary-based

| Machine Learning

[Rule-based

Natural Language
Processing

I Co-occurrence |

I Template Matching |

>

Basic Tasks

Information Retrieval
Identify text segments
relevant to a topic

> {Entity Recognition

Find the biological entities

Information Extraction
Find relationships
between entities

Advanced Tasks

-
Biological Data
L Integration

(

Text Summarization
L

>
Literature-Based
L Discovery

-

Question Answering

N\

)
]
)

./

Figure 3-1 The basic text-mining task, common methods to accomplish those task and
some of the possible advanced tasks that are built using a combination of them.
Highlighted items show which methods and tasks are used in the Jikitou QA system.

As mentioned previously a question answering system is an advanced

information retrieval system. A basic information retrieval system has five main

components (33) shown in Figure 3-2. Similarly Jikitou contains these

components, most of which are implemented using Apache Lucy, an open

source search engine. The rest of this section describe, the basic information

retrieval components and the Apache Lucy package

19

Basic Information Retrieval System

Doc. Term Document Create
eighting Representatlons 1ntrermed|ate

Information Que Q imilari
Que ue Similarity

Relevant
Information

Figure 3-2 Basic organization of an information retrieval system

Apache Lucy

Apache Lucy (34) is a full-text search engine library which is a loose C
port of Apache Lucene, which is written in Java. Lucy was chosen as the base
search library used by Jikitou because of the availability of Perl bindings, which
allow Jikitou to be programmed in Perl and to take advantages of that language

and still have the benefits that you are afforded with Lucy being written in C.

Searching

The actual searches are performed by the Lucy::Search::IndexSearcher
module which executes a search against a single index. It takes as a parameter
the directory path of the index of choice. The index is one that would have been
created in an earlier process and is discussed in more detail in the section on
indexing later in this chapter. The hits method made available through the
IndexSearcher can accept a plain query string or a query object. A query object
is created by using the Lucy::Search::QueryParser, which is used when complex

queries are desired.

20

Query formation

This is the process of building a query from the user’s input. The user has
an information need and inputs an initial string either in natural language or
Boolean form depending on the system. Query formation in Jikitou takes a user’s
guestion and then modifies the query based on feedback from the user through
the selection of additional terms suggested by the system. Additionally, the query
may be further modified through the use of the knowledge base for example, and
through automatic query expansion by including synonyms of terms identified in

the initial question.

Jikitou Query Formation

An important aspect of question answering is the formation of a query that
can be used to search an index that returns answers that are semantically
relevant to the question posed by the user. In Jikitou, the Lucy module that is
used in query formation is a subclass of the Lucy::Search::QueryParser module
which can take several syntactical constructs to build complex queries which may

include:

e Boolean operators ‘AND’, ‘OR’, and ‘AND NOT’
e Prepended ‘+ or ‘-‘ to indicate whether a term is required or
forbidden in the results

e Phrases indicated by double quotes

The module used in Jikitou is named FlatQueryParser and is used to

transform text produced after question analysis into a query object.

21

FlatQueryParser is a simplified custom search query language which, as of now,
only supports simple term queries and phrases identified by double quotes. It
takes a string of text and builds the query object that is then used by the search
module. The string is tokenized and terms enclosed in double quotes are
identified as phrases and a phrase query object is created. Terms without quotes
are turned into individual term query objects. After the string has been completely
parsed, the query objects are unioned together by adding it as a child of a Lucy
“OR” query object which is then used by the searcher to retrieve the closest

matching text.

Document representation and document weighting

This is the process by which the documents are converted to a secondary
representation known as an index. Here is where the terms to be indexed are
identified. The most basic document representation is a matrix with the
vocabulary for the collection on one axis and all the documents on the other axis.
If a term is present in the document it is represented as a 1 and if it is absent it is
represented with a 0. Most often a term is instead represented with a value that
represents its relative importance and ability to discriminate between different
documents. This involves a weighting scheme to assign different values to
different terms depending on their potential document discriminatory power,
meaning their ability to distinguish one document from another. The indexed
terms can be terms in a document set or a subset based on a controlled
vocabulary or at least the removal of stop words and other common words which

have very low document discrimination power. It can also be indexed by groups

22

of terms semantically relevant to one another, such as using Latent Semantic
Indexing (LSI). LSI is based on the principle that terms that are used in similar

textual context often have similar meanings.

Parsing and Indexing

Parsing is the process of analyzing text to determine structure. Parsing
requires tokenization, which is the process of segmenting text into meaningful
parts. Parsing can be as simple as finding terms and sentence boundaries or as
complex as determining grammatical structure. A parser tells the computer what
it should consider a token from the sequence of bytes it receives as it scans a
document. The results of parsing are placed in an index.

Indexing is a process of converting a corpus into a form that can be
quickly searched. When a document is indexed the entire corpus does not have
to be scanned to locate the desired information. The indexing process converts a
document to an intermediate form that is structured to allow the use of traditional
data mining techniques to discover relevant information. There are many types of
intermediate forms, each capturing different levels of semantic information (35).
The basic difference between the intermediate forms is the minimal text unit,
which can be a word, phrase, sentence, paragraph, or even an entire document.

Table 3-1 contains some text units and possible intermediate forms.

Text Unit Intermediate Form
Word Bag-of-Words
N-grams
Concept Concept Hierarchy
Conceptual Graph

Semantic Graph

Conceptual Dependence

Phrase

N-phrase

Sentence

Multi-term text phrase

Trends

Paragraph

Paragraph

N-phrases

Multi-term text phrase

trends

Document

Document

Table 3-1 Text unit and possible intermediate forms (35).

Standard Inverted Index

23

A standard inverted index has, for each term, a posting list associated with

the documents in the collection (36). Each term is represented by a value or

weight. Term weighting during the creation of a document representation is a

process for giving terms a value for perceived level of importance. In its simplest

form a 1 is assigned if the term is present in the document and a 0 is assigned if

the term is not present in the document. The resulting matrix gives a vector for

each term and the documents it can be found in, or a vector for each document

and the terms that occur in it. A common weighting scheme is the tf-idf (term

frequency / inverse document frequency) approach, which is described in more

detail next.

The following procedure describes the process of calculating tf-idf and the

theory behind the weighting scheme.

24

Local weighting — Terms that occur several times in a document have a
higher probability of being more meaningful indicators of document topic than
terms that occur just once. A local weighting scheme will give these terms a
higher weight. This is called term frequency (tf).

Global weighting — Terms that are used infrequently in the entire corpus
are likely to be more meaningful indicators of document topic than terms that are
common or occur frequently. A global weighting scheme gives these terms a

higher weight. This weight is called inverse document frequency (idf) and is given

by

_ N
df; = logﬁ (3.1)
t

where t is a term and N is the number of documents in the collection. df is the
document frequency and is defined as the number of documents that contain

term t. Term frequency-inverse document frequency is then calculated by

tf-idft,d == tft,d X ldft (3.2)

It is this standard indexing scheme that is used in Jikitou. Each sentence
in this case is considered a document. The sentences are tokenized where terms
are located by the space boundaries between them. The terms are then case
folded (make lower case) so that searches will be case insensitive. Next the
terms are stemmed which reduces them to their base forms. A Snowball (37)

stemming library was used. Three fields are indexed; the sentence id, PMID

25

number and the sentence. Only the sentence field is available for full text search.

Lucy creates a group of flat files that contain the index.

Query weighting

It is this process that gives the weights to the terms in the query. The
weights are often identical to the weights given to the terms in the document.
Weights can also be assigned based on dialog with the user and the importance

put on certain terms.

Similarity measure

The similarity measure determines similarity between the query vector and
the document vector. A possible measure is the cosine similarity measure, which
finds the similarity between a query and a document. A vector is created with the
tf-idf being the value for each term. The score is then calculated using the dot
product of each term in the non-judged document q that is present in the judged
passage d. This value is then normalized by dividing this score by the product of
the Euclidean distance between q and d. The cosine similarity measure is used
to compare each Jikitou answer to every relevant judged passage and the
average score is recorded. Figure 3-3 is a simplified example of some number of

sentences in an n term vector space. It is the angle between the query and each

. q-d
Stm(q, d) = cos(9) = oy
(3.3)
?=1 q; X d;

TR X I

26

of the sentence vectors.

o
£
K

Query

- m - - = -

Sentence 1
Sentence 2
——————————— -
Term1
Q e
,\0‘6\ PR Sentence n
Ve
»

Figure 3-3 A diagram of sentences and a query in a vector space where each dimension is
a different term. Cosine similarity measures the distance between the query vector and the
different sentence vectors to gauge similarity between them.

Once the similarity measure has been completed the items of information which

are most similar to the query are presented to the user in rank order.

3.2 Jikitou design

Jikitou was built generally following the Model, View, Controller (MVC)
framework which compartmentalizes the user’s interaction with the system from
the information/data in the system. The view encompasses any output from the
system. The model includes system data and the knowledgebase. It is the
controller that implements the “business logic” and is responsible for executing
commands for the model or view. Catalyst, an open-source MVC web framework
for the Perl language, was implemented in Jikitou. It is a flexible framework which
facilitates the separation of the application logic from the display of information.

Figure 3-4 is a simplified diagram of the Jikitou system that shows the Catalyst

27

MVC separation and key technologies and functions that are implemented.
Catalyst is used on an Apache server using FastCGl, an improved
implementation of the traditional Common Gateway Interface (CGIl). When the
Apache server is started the entire Catalyst project is brought into main memory
and multiple FastCGI processes are started, which increases the

speed/response to request to the application from users.

Jikitou (Perl Catalyst Application)

HTML ExtJS JavaScript
HTML (POST, GET), AJAX, Remote Restful Invocations

ASpell

Medical
Dictionary

Remote

Figure 3-4 A diagram overview of the Jikitou QA components. The separation of the Model,
View, and Controller is shown with many of the key parts of each shown.

28

Model

The model is the part of the application that accesses and modifies the
data. Each module in the system that accesses the different databases is

considered a component of the model.

Aspell

Aspell (38) is an open source spell checker that has been supplemented
with OpenMedSpell. OpenMedSpell (39) is an open source spelling dictionary of
50,000 medical terms. The Aspell dictionary of terms has been enhanced with
these medical terms which include terms for diseases and medications which can
often be long and difficult to spell. Aspell is used in the autocomplete functionality

and other modules that make use of it to gain access to its dictionary.

Natural language processing

A natural language parser is a program used to determine the
grammatical structure of a sentence. Natural language processing parses a
sentence into the different parts of speech (POS) and uses a set of rules to
identify possible relationships. The advantage of natural language processing is
the ability to infer the direction of the relationship and distinguish between
different relationships when more than two entities are present in the same
sentence for example protein-protein interactions (40, 41). Jikitou uses NLP in a
couple of ways. It uses the semantic structure to match answers based on the

semantic distances of terms from the query in the potential answers. Many of the

29

agents use NLP parse structures to help identify POS and potential phrases to

modify the user’s query.

Link Grammar Parser

Jikitou uses a parser called the Link Grammar Parser (42) which is an
English parser based on link grammar; it takes a sentence and calculates a
syntactic structure, where pairs of words are connected by labeled links. The
parser is written in C and has an API that a Perl module in Jikitou uses to gain
access to its functionality. Figure 3-5 is an example sentence and the resulting

Link Grammar syntactic tree.

Macrophage tropomyosin binds to actin filaments.

Syntactic Structure -
Xp periods at ends of sentences
wd main clause back to the wall
ip t AN noun-modifiers to nouns
+ Wid . e Jp-——m— + |
| + AN + Ss +--MVp-+ $=——=AN=-——4 | Ss subject-nouns to finite verbs

MVp verbs (and adjectives) to modifying phrases

LEFT-VALL macrophage.n tropomyosin.n binds.v to.r actin.n filaments.n ko a it

Ip prepositions to their objects

A pre-noun (“attributive") adjectives to nouns

(S (NP Macrophage tropomyosin) (VP binds (PP to (NP actin filaments))) .)

Figure 3-5 The tree is the resulting semantic structure after being sent through the link
grammar parser. The table contains explanation of some of the labeled links in the
semantic structure.

30
View

The view is comprised of parts written using the ExtJS JavaScript library
(43), plain JavaScript, and HTML. Data returned to the view use JavaScript
Object Notation (JSON) which is a human readable format for data interchange.
Passing data in this format provides a good example of the separation of the data
from the view. The controller passes the data to the view with no instructions on
how it should be presented to the user. The view can be modified without having
to deal with changing the model or controller. The specifics on the Jikitou

interface are described in greater detail later in this chapter.

Controller

The controller handles the request to the system. It gathers the required
data from the model and converts it to a JSON object and sends it to the view to
be rendered. Jikitou’s controllers are explained in the section about the user
interface because it is the controller that handles the user requests and it is

mainly through the interface that request are made.

3.3 Knowledge base

A knowledge base is a collection of specialized database that contains
information that is collected and organized. The knowledge base in Jikitou is the
repository from which answers are selected and also includes the lexicons used
to identify domain-relevant terms such as genes. The database consists of

corpora from multiple domains and includes dictionaries, thesauruses, and a

31

domain specific ontology. The dictionaries and thesauruses allow concepts to be
identified and connected to terms in the question. The knowledge base is used to
reformulate some queries with the addition of synonyms and additional concepts.
The Interaction Sentence Database (ISDB) (44) is used in Jikitou system’s
knowledge base as the corpus and is thus the source of the answers. Sentences
are indexed as though they were “documents” to be retrieved because they are a
minimal textual unit that is often self-contained (8). ISDB contains sentences that
were taken from PubMed abstracts. The sentences have been analyzed and
filtered so that all sentences contain at least two biomolecule entities and at least
one interaction-indicating term. This takes advantage of the fact that entities that
co-occur in the same sentence are related. Thus these sentences are more likely
to contain a biological interaction. The size of the database is approximately 4.5

million sentences.

3.4 Dictionaries and thesauruses

Jikitou has incorporated many publically available databases which have

been locally installed. These are as follows.

e The Gene Ontology (GO) (45) is a controlled vocabulary for
describing gene product characteristics. This database helps
mitigate the inconsistent terminology used to describe gene
products. The ontology is organized into three categories: cellular

component, biological process, and molecular function. This

32

database is used in user feedback and query expansion in this
system.

e BioThesaurus (46) is a protein entity dictionary that enables the
retrieval of synonymous names of proteins and the identification of
ambiguous names shared by multiple proteins.

e WordNet (47) is a database of nouns, verbs, adjectives, and
adverbs that are grouped by cognitive relatedness. These groups
are linked by conceptual-semantic and lexical relations. This
database is mainly used in identifying synonyms for non-biological
terms. It can also be an aid in natural language processing which is
important in answering queries posed in the form of questions.

e Entrez Gene (48) contains a large and diverse body of gene
information which includes synonyms, nomenclature, alternative

ids, and interaction information.

3.5 Multiple search agent approach

Studies have shown (35, 49) that there is good reason to have multiple
document representations and multiple searchers. Das-Gupta concluded, from
the four document representations that they investigated, that there was low
overlap between pairwise comparisons of the representations (average of 14%
overlap) even though performance values differed only slightly. The low overlap
suggests that the different document representations encode different

information in the document. Any particular document representation may not be

33

optimal for all information needs. The lack of overlap between representations is
the reason that this system is designed to have multiple document
representations. The multiple search agents were implemented for the same
underlying reason. Different agents formulate the queries differently and in the

end match to different sets of documents. See Figure 3-6.

AL

Possible Search Agents

11 .

Basic
Agent Agent Agent Agent

Figure 3-6 Representation of an agent based search approach. Each agent has the
potential of getting a different set of relevant information.

Software agents are components that are implemented using goal
concepts that are traditionally reserved for humans. They also interact with their
environment and with other agents on a user’s behalf. Software agents work with
each other and the user to accomplish a set of goals. The use of software agents
nicely fits the way that we think about complex tasks. The following group of
properties is commonly used to define software agents (50, 51). Software agents

are persistent, meaning the code is always running and not just executed when

34

needed. They are autonomous in their actions, making decisions and prioritizing
tasks without human intervention. They have the ability to socialize with the other
agents to work on common tasks together. The final attribute of software agents
is that they are reactive and able to adapt to their environment (52). These
properties of software agent reduce the need for complex descriptions of
complex software designs. It is easy for people to conceptually see software
agents as though they were human workers that communicate and work together
towards the completion of a common goal in a dynamic environment.

There are several systems for information personalization and information
extraction that utilize a multi-agent strategy (52-56). Agents are assigned to
major tasks such as searching data sources, information retrieval, and interacting
with the user. There are several reasons that make a QA system amenable to a
multiple-agents based design (53, 54): The information is available in many
distinct locations, the content is heterogeneous, and this content is constantly
changing. It also aids in the modularity of the system. New types of analysis and
sources of data can easily be added through the creation of new agents or
modification of current agents.

In this project, multiple software agents were designed to find possible
answers to questions from which the most relevant is presented to the user. The
idea is that, just as when working in a team, each member brings different skills
to address a problem. Software agents form a convenient and powerful way to
describe a software abstraction of a system that is somewhat autonomous and

brings a different set of skills to any particular problem. It is similar to Object

35

Oriented Programming in that pieces of the software are described as being
objects that can be acted upon and return results in specific ways. Different
agents use different algorithms and techniques to determine the different
answers to a query. This multi-model approach takes advantage of the fact that
different models are better for finding relevant passages to address different
types of queries/questions. After completing the document retrieval, each agent
returns its results to a dispatcher, which currently returns the top 50 results from
each agent but in the future will be tasked with making decisions pertaining to

which answers to present to the user.

Agent toolbox

In Jikitou the agents perform their search using a combination of modules
that make up the available tools in the toolbox. Agents can share tools and use
them in different combinations. The available tools fall into two categories: tools
that aid in refining and the automatic expansion of the query, and tools that help

re-score and re-rank answers.

36

Question

V A
4 Dispatch) Toolbox
. Query Refinement Scorers
Basic Agent
Entrez Gene LG Pre-Parsed
DeepQA Agent Gene Synomyms

] Gene Ids

SR

Gene Correlation

M|M Agent LinkGrammar

Default
Answers

g Lucy Searcher

Figure 3-7 A depiction of the tools used by the agents. A question is submitted to dispatch
which assigns it to each agent and forks off a new process so that the agents can work in
parallel. Dispatch then waits for their completion then returns all the answers.

Automatic Query Refinement Tools

Two modules were created that aid in automatic query refinement. The
goal of query expansion is to improve the probability of retrieving relevant content
through the addition of terms to a user's query. Studies have shown that query
expansion improves information retrieval results (57-60). Interactive and
automatic are the two main concepts in query expansion. These two approaches
to query expansion are supported in Jikitou. Later in this section | discuss
automatic query expansion and the modules that implement it, which is used by

several of the agents.

37

Gene Synonyms Module

The first module identifies possible genes and returns possible synonyms.
The module takes a string as input. The string is case folded (transformed to
lower-case) and tokenized. The tokens are then sent to an English dictionary to
determine if they are actual words. Tokens that are not found in the dictionary are
used in a query. Sending the terms to a dictionary first helps reduce the number
of possible misidentified genes that are actually non-gene words. The
‘gene_info” table, located in a local installation of the Entrez Gene database, is
gueried to find possible gene symbols and gene synonyms. These additional

terms are added to the original user’s query.

NLP Link Grammar Module

The second module utilizes natural language processing (NLP). The
user’s question is submitted to the module where it is parsed using the Link
Grammar Parser. If a complete linkage can be found, meaning that it is able to
parse the entire sentence, the linkage tree is stored for additional analysis. If no
linkage is found then no further analysis is performed by this module.

Using the linkage tree, two functions are used to identify the different parts
of speech (POS) using regular expressions. The first function identifies all nouns
and the second identifies verbs. These POS are identified because they are the
most informative words which consequently have a greater chance of
discriminatory power in identifying relevant sentences to answer the question. It
is also a way to remove words that are common and have low discriminatory

power.

38

The linkage tree contains labeled links which describe the connections
among terms. The function that identifies phrases follows these links to build up a
list of possible phrases to add to the query. It looks for noun phrases and verb
phases. See Figure 3-11 for an example. Phrases in the query are queried as

complete strings to look for answers that contain the exact phrase.

Scorers
The scoring modules in the toolbox take a list of N sentences returned by
the search engine and re-ranks the sentences using additional features identified

between the query and the possible answers.

LG pre-parsed Sentence Scoring Module

This scoring method uses the Link Grammar Natural Language Parser to
determine the semantic distance between terms of interest. Sentences are
parsed by the Link Grammar Parser and the resulting syntactic tree is
reassembled into a simple undirected graph. The terms represent the vertices
and the semantic links the edges between the terms. The original syntactic tree
is then parsed for semantically important terms such as nouns, verbs, and
adjectives. These terms are then paired in every combination and returned in an
array of pairs. The distance by number of vertices between each pair is found
using the previously described undirected graph. Table 3-2 is an example
adjacency matrix which is a way to represent a graph in table form. The numbers
in the table indicate the semantic distance between the words in the sentence
based on the results of the Link Grammar Parser. Only half the table needs to be

filled because it is an undirected graph.

39

macrophage tropomyosin binds to Actin filaments

macrophage 0

tropomyosin 1 0

binds 2 1 0

to 3 2 1 0

actin 5 4 3 2 0
filaments 4 3 2 1 1 0

Table 3-2 This adjacency matrix contains pairs of keywords found in the semantic tree
produced by the Link Grammar parser and contains the semantic distance between the
terms.

Due to the complexity and length of sentences found in biomedical
literature, natural language parsing can be a very CPU-intensive process. It was
determined that it was necessary to preprocess the calculation of the semantic
distance and to store it in a database to be retrieved at the time of sentence
ranking.

Preprocessing of the sentence knowledge base required multi-core
servers and parallelization of the task to accomplish the processing in a
reasonable amount of time. A Perl script was written which started the desired
number of child processes and partitioned the approximately 4.5 million
sentences into chunks depending on the number of available processors. The
script then forked off to that number of processes and the new script in each runs
its own instance of the Link Grammar parser to process a different chunk of data
and calculate the distances in parallel.

The server used was an HP ProLiant DL980 with 8 CPUs each having 10

cores and able to run 2 threads per core, resulting in the ability to run 160

40

processes at a time. Eighty processes were run to process the sentence set. The
server also had 4 terabytes of main memory which meant that the data could be
kept in memory without having to write to the hard drive. Using the HP ProLiant
DL980 Server reduced these times from about 150 hours on a Dell PowerEdge,
only able to run 8 processes at a time, to 20 hours of processing time. Figure 3-8
is a graph that shows the difference in processing time between two servers, the

Dell PowerEdge and the HP ProLiant DL980.

HP Proliant Server Vs. Dell
PowerEdge

Processing time (Hours)

HP ProLiant DL980 (60 Dell (8 cores)
cores)

Link Grammar Parser
Servers

Figure 3-8 Graph showing the preprocessing times of the Dell PowerEdge Vs. the HP
ProLiant server. Using the HP server resulted in reducing the processing time from many
days to less than one day.

The use of high-performance computing enabled the preprocessing of the
sentences in days instead of weeks. This will be invaluable should the system be

scaled up to include more sentences.

41

Mutual Information Measure of Gene Co-Expression Scoring Module

One area of biomedical text mining that has the potential to change the
way we mine data from textual sources is the integration of high-throughput
biological data (61). In this module information from high-throughput gene
expression experiments is used as a resource. Mutual Information Measure
(MIM) is one way to show the relatedness between two entities and in this case it
is used to show the relation between the co-expression between two genes. The
MIM Database of Gene Co-Expressions was created by Wren et al. (62, 63).
They performed a meta-analysis on all publically available two-channel human
microarray datasets found at GEO(64) (Gene Expression Omnibus). A local
installation of the MIM for gene co-expression was created where each row is
two gene ids, the 3" being the MIM between them. This scoring module checks
the question and possible answers returned by a deep question analysis and
guery for genes. If the question and the answer both contain genes the MIM
Database of Gene Co-Expressions is queried for different combinations of genes
in the question to genes in the answer. If a gene pair is found in the database the
sentence is given a boost in its rank by the MIM value. The idea is that if a gene
or genes in a question have a high co-expression value with a gene or genes in
the answer, this might increase its relevancy compared to answers that do not
have pairs of genes with a value or have a pair with a low co-expression value.
Below in Figure 3-9, the process taken by the MIMAgent to re-rank answers is

explained in a flowchart.

42

Question Answers

Identify a H! l E Identify

Figure 3-9 A flowchart showing the process used by the MIMAgent. Genes are identified in
both the question and the answers. All possible combinations are found between the two
sets and the local MIM database is queried. Answers that contain genes that returned a
MIM score get a boost in score and upon all answers being processes they are re-ranked
according to the new scores.

Dispatch module

The dispatch module takes a list of modules that represent the agents, the
user’s question and the number of results to return. Inside the module each of
the agent modules is dynamically loaded and each is assigned the question and
the number of results to return. In order to reduce the processing time each
module is forked and run as an individual process. The dispatch module waits for
each agent to return its results, compiles the results, and returns them all at
once. The processing time is dependent on the longest running agent, which

tends to be the agent that uses the LG scorer module.

43

Agents

Jikitou enlists the search strategies of four different agents. In the
following section the tools used to accomplish these different strategies is

explained.

Basic Agent (BasicAgent)

The basic agent does no query processing. The question is submitted to
the Lucy search module as a string with no query reformulation and its default
internal cosine based ranking is used to order the answers. During the evaluation
of the system, this agent is used as the control to compare the different search

strategies used by the other three agents.

Deep Question Analysis Agent (DeepQAgent)

The deep question analysis agent takes the users’ question and performs
automatic query refinement. It uses the gene synonym module as well as the
NLP link grammar module. It concatenates the nouns, verbs, gene synonyms
and phrases and submits them to the Lucy::Search::QueryParser module which
returns a query object which is then sent to the Lucy::Searcher. Figure 3-10 is a
flowchart which describes this process and in Figure 3-11 we see an actual
example of a question being parsed and its resulting parse tree. The tree is then
used to identify nouns, verbs, and phrases. The process of identifying genes is
also demonstrated and in the example we see that from 2 genes in the original

guestion we get 9 possible synonyms.

44

Question

(Original Query)

Grammar
Parser

Syntactic Tree

Dictionary
> reae’

\[e]y]
Dictionary
terms

Local
Entrez Gene

\
1
1
1
1

*
1
1
1
1
1
1
1
1
1

_
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

/

Refined Query

Gene

Nouns Verbs Phrases
Synonyms

———————.
\——————O

Flgure 3-10 A flowchart depicting the process of deep question analysis WhICh is
performed by all the agents except the BasicAgent. A question is sent to the module that
runs the Link Grammar Parser. The syntactic tree is returned and functions identify the
nouns, verbs and phrases. The question is also sent to the dictionary module that uses
ASpell to identify terms that are not in the dictionary and they are used to query the local
install of the Entrez Gene database for possible gene synonyms.

Which genes involved in NFkappaB signaling regulate iINOS?

Nouns Verbs Phrases Synonyms

Inol
nf-kappa-b
kbfl
nf-kappab
nfkb-pS0
Nos2
Nfkb1
nfkb-p105
nos

1. genes 1. Regulate
2. nfkappab 2. involved
3. inos 3. signaling

1. gene involved in
2. involved in nfkappab

OENOUV AW

Figure 3-11 An example of a question with its resulting syntactic tree produced by the Link
Grammar Parser. The nouns, verbs, phrases, and gene synonyms are the results of further
processing shown in Figure 3-10.

45

Mutual information measure gene co-expression (MIMAgent)

This agent uses the same query refinements as the deep question
analysis agent. After the results are returned to the agent it then uses the MIM
module value to re-rank the results based on genes that are located in the

guestion and answer and have an MIM value.

Link grammar analysis agent (LGAgent)

This agent also uses deep question analysis but also uses the
preprocessed link grammar database to re-score the results. Terms found in the
guestion are used to find their corresponding distances in the returned answers.
The LG Agent re-ranks the answers based on the semantic distances of the key
terms. A naive method to assess strength of evidence of interaction in a
sentence is determining the lexical separation of key terms in the sentence.
Semantic distance is expected to give a more accurate measure of term
relatedness because we are looking at the meaning of the words as opposed to

just saying terms are related by observing that they co-occur.

46

(Cmd Line Interface)_ - =

cos_evaluate.pl

svm_eval.pl

Soet_jikiarswers (]
+cos_scorer ()
+build_vector()
+string_prep(]
+get_stats (]

+swm_train()
+create_dataset()
+scale_dataset(]
+get_stats()
+build dateset()
+tf_idf()

jikitou::Controller::Root

jikitou::Controller::HG

[+abouti]
+answers ()

+feedback_concepts ()
+feedback_synonns ()

+auto()
+hg_word_identifier()
+ha_defanition()
+get_categories ()

+spellcheck ()
+pubmed_abs tract()

+uniprotamol(}

HTML(POST, GET), AJAX, Remote Restful Invocations

+get_dataset() +wordnet_def()

ratring pree() sdiatoal]

[+get_count +default(
-_generate_random_string()

+get_eval_answers ()
+get_quesTion_list()
+get_run_docs ()
+get_doc_freql)

HyperGlossary
WWW::HG

Tcategory_id
+category_nane

Knowledge Basel

JikitouQA::Dispatch

+nusber_of_results

= +passages
= JikitouQA::QueryRefinement:: GeneOntology -oassage_type
= i
+go_spellcheck () I'!i:;fi“:llsg()
+go_association() +qet_url()

+create_safe_set()
+search_replace_word()
-_build_regex()

Remote Resaurces

ChemEdDL

CHemSpider
PDE

Link Grammar]
Farser

JikitouQA::Agents::BasicAgent

[+ques tion
+rumber_of_results

+build_guery_string()

JikitouQA::NLP::LinkGrammar::GrammarDistance
+s1ds

+query tokens

Toet_scares (]

“get_term_distances()

caltulate_scores ()

snumber_of_results
+path_to_index
Fexecute_search(]

JikitouQ

9 1_gene_synonyms (]
+get_gene_10s ()
-_word_List_prep(]
~“build_synanym List()

[+

pa d
execu
rorder_by_scores()
JikitouQA::Agents::LGAgent

rquestion
+field runber_of _results

JikitouQA::Searcher::FlatQueryParser

+analyzer +path_to_index

+rew () [~exacute_search(]
-_make_tern_query() vorder_by scores()
make_phrase_query()

~“tokenize()

sparsel]

Jiki touQA::Utils:: Dictionary

EUILO)
+check_dictionary()

~“html_encode ()
~“htLunescape()
~Zcommify(}
status()

+uniq_array()
+remave_punct ()

Fget_answars()

Figure 3-12 A UML diagram showing the major modules, controllers, scripts, and function
that make up the Jikitou QA application. User access to the system can be through the
web interface or command line interface. The knowledgebase contains all of the database
resources that are used. The Jikitou utilities contain functions that are common to all
modules. The evaluation methods access Jikitou in two ways. The cosine similarity
measure includes the Jikitou modules and calls the necessary functions directly. The SVM
evaluation method goes through the controller using a web agent to make a request to the
system.

3.6 Interface

An important aspect of any information retrieval is the interface through
which a user interacts with the system. The goals of the Jikitou interface are to

be simple, informative and dynamic. Being dynamic, all content is brought to the

47

screen without ever moving to another screen. Asynchronous calls are made to
the server and content is returned as a JSON object. It is a tab based interface
with four permanent tabs: “about”, “question”, “answer” and “help”. Figure 3-13
shows the different components that make up Jikitou’s web interface. The
interface is made of a main viewport with multiple panels, the main panel being

the tab panel. In Figure 3-13 we can see the hierarchical structure of the different

components along with their key subroutines.

Jiki touViewportUi
I
+1n1tComponent ()

MainTabPanelUi

I
+1n1tComponent ()

about tab : Ext.Panel question_tab : Ext.Panel answer_tab : Ext.Panel help tab : Ext.Panel
autoLoad(URL) +click : Ext.Ajax.request(URL) autoLoad (URL)

+callback : function(options,success,response)

DialogPanel Ui FeedbackPanel Ui

user_input_form : Ext.FormPanel

+key : [ENTER] : handler : function()
+key : [SPACE] : handler : function()

synonym_panel : treepanel concept panel : treepanel

enter_button : Ext.Button

+TreeLoader() +TreeLoader ()
+synonym.getChecked() +listners : click : function(node) +listners : click : function(node)
+concept.getChecked()

+load(questlon:string,synonyms:array,category)

Figure 3-13 A diagram of the main components and sub-components of the Jikitou
interface. Important subroutines are written in the retangles of their respective
components.

“About” tab

The “about” tab displays a description of the project and the Jikitou QA

system.

48

“Question” tab

The “question” tab is where the user asks a question and interacts with the

system to refine the question. The question tab contains three windows.

A Synonyms

Autocomplete

Associations

Figure 3-14 As a user types a question the system suggests additional terms that can be
added to refine the initial query.

Main window

The main window (Figure 3-14) is the form where the user inputs a
guestion and can choose a glossary that they would like the answers to be
parsed against and linked to additional resources. As the user types a drop down
menu appears with suggestions for the current word they are typing. This action
is initiated after the first 4 characters have been typed to reduce the amount of
calls to the server. The suggestions are provided by controllers with two functions
in Jikitou. The first one takes the currently typed characters and uses Aspell, the
Open Source spell checker, to check the spelling and to provide spelling
suggestions for words and these are provided to the user as possible

completions of what they are trying to type. The other function takes the currently

49

typed characters and queries a local installation of the Gene Ontology for gene
symbols that start with the characters that the user is typing. These two functions
combine their results and the user is presented with up to 9 (4 from Aspell, 5
from Gene Ontology) different suggestions for completing the current word they

are typing.

Feedback windows

A dialog with the user is used for interactive query expansion. If a query
term is vague the user is presented with a list of possible, more-specific
alternatives. If there might be too many results, the idea is to identify broad terms
in a query and try to get the user to indicate more specific terms with which to
reformulate the query. When a query is too specific and very few or no results
are found, a broader term may be substituted into the query. One of the problems
with interactive query expansion has been that users are unable to identify good
guery expansion terms (58). Using the feedback windows the user has the ability
to quickly gain an understanding of the term and possibly discover other terms
they might like to include in their query.

There are two windows for user feedback, one for word synonyms and the
other for Gene Ontology associations. As the user types these windows are also
dynamically updated, one with a list of suggestions for synonyms and the other
with GO concepts. This suggested content might not have been thought of by the
user to include in their query. The user can then check the boxes of the terms

that they would like added to their query. The query for both these windows is

50

activated by the pressing of the spacebar, which indicates that the user has
completed typing a word and now that word can be used in subsequent queries.

The controller that provides content to the synonym feedback panel has 3
main functions. The first gets the term frequencies in the sentence database of
the terms in the query. This provides the user with information about the quality
of their query. A high term frequency may mean the term they have selected has
very low ability to provide relevant sentences since it is present in too many
sentences. On the other hand, a low frequency term may give a hint as to why
few or no results are being presented. The second takes the term and queries
the local installation of the WordNet lexical database for possible synonyms.
Terms that are not found in the word dictionary are then used in a query to
identify possible gene synonyms. Checking the word dictionary for terms that are
not English words reduces the number of spurious identification of genes that are
not really genes. There is a tradeoff between too many irrelevant synonyms
being presented to the user and some legitimate gene names that look like words
being missed. The association window is populated by the controller, which
submits a query to the Gene Ontology database for possible gene associations
relating biological processes, c