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Abstract—This paper surveys benchmarking principles, 

machine learning devices including GPUs, FPGAs, and 

ASICs, and deep learning software frameworks. It also 

reviews these technologies with respect to benchmarking from 

the perspectives of a 6-metric approach to frameworks and an 

11-metric approach to hardware platforms. Because MLPerf 

is a benchmark organization working with industry and 

academia, and offering deep learning benchmarks that 

evaluate training and inference on deep learning hardware 

devices, the survey also mentions MLPerf benchmark results, 

benchmark metrics, datasets, deep learning frameworks and 

algorithms. We summarize seven benchmarking principles, 

differential characteristics of mainstream AI devices, and 

qualitative comparison of deep learning hardware and 

frameworks. 
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I. INTRODUCTION  

After developing for about 75 years, deep learning 

technologies are still maturing. In July 2018, Gartner, an IT 

research and consultancy company, pointed out that deep 

learning technologies are in the Peak-of-Inflated-

Expectations (PoIE) stage on the Gartner Hype Cycle 

diagram [1] as shown in Figure 2, which means deep 

learning networks trigger many industry projects as well as 

research topics [2][3][4]. 

Image quality can certainly impact the results of 

applying deep learning algorithms. Well-known image sets 

useful in this domain include CIFAR-10 [5], MNIST[6], 

ImageNet [7], and Pascal Visual Object Classes (P-VOC) 

[8]. The CIFAR-10 dataset has 10 groups, and all images 

are 32×32 color images. MNIST has digital handwriting 

images, and these images are black and white. ImageNet 

and P-VOC are high quality image datasets, and are broadly 

used in visual object category recognition and detection. 

Benchmarking is useful in both industry and academia. 

The definition from the Oxford English Dictionary [9]  

states that a benchmark is "To evaluate or check 

(something) by comparison with an established standard." 

Deep learning neural networks are leading technologies that 

owe their computing performances and capabilities in part 

to flexibility, distributed architectures, creative algorithms, 

and large volume datasets. Comparing them via 

benchmarking is increasingly important.  

Even though previous research papers provide 

knowledge of deep learning, it is hard to find a survey 

discussing qualitative benchmarks for machine learning 

hardware devices and deep learning software frameworks as 

shown in Figure 1. In this paper we introduce 11 qualitative 

benchmarking metrics for hardware devices and six metrics 

for software frameworks in deep learning, respectively. The 

paper also provides qualitative benchmark results for major 

deep learning devices, and compares 18 deep learning 

frameworks.  

According to [16], [17], and [18], there are seven vital 

characteristics for benchmarks. These key properties are: 

 
1) Relevance: Benchmarks should measure important 

features. 
2) Representativeness: Benchmark performance 

metrics should be broadly accepted by industry and 
academia. 

3) Equity: All systems should be fairly compared. 
4) Repeatability: Benchmark results should be 

verifiable.  
5) Cost-effectiveness: Benchmark tests should be 

economical. 
6) Scalability: Benchmark tests should measure from 

single server to multiple servers. 
7) Transparency: Benchmark metrics should be 

readily understandable. 
 

Evaluating artificial intelligence (AI) hardware and 

deep learning frameworks allows discovering both strengths 

and weaknesses of deep learning technologies. To 

illuminate, this paper is organized as follows. Section II 

reviews hardware platforms including CPUs, GPUs, 

FPGAs, and ASICs, qualitative metrics for benchmarking 

hardware, and qualitative results on benchmarking devices. 

Section III introduces qualitative metrics for benchmarking 

frameworks and results. Section IV introduces a machine 

learning benchmark organization named MLPerf and their 

deep learning benchmarking metrics. Section V presents our 

conclusions. Section VI discusses future work. 

   

Fig. 1. Benchmarking Metrics and AI Architectures 

 



II. DEEP LEARNING HARDWARE  

AI algorithms often benefit from many-core hardware 
and high bandwidth memory, in comparison to many non-
AI algorithms that are often encountered. Thus 
computational power is not just a one-dimensional concept. 
The type of computations the hardware design is best suited 
for must be considered, since a hardware platform can have 
more or less computational power depending on the type of 
computation on which it is measured. GPUs (graphics 
processing units) do well on the kind of parallelism often 
beneficial to AI algorithms, in comparison to CPUs (central 
processing units), and thus tend to be well suited to AI 
applications. FPGAs (field programmable gate arrays), 
being configurable, can be configured to perform well on AI 
algorithms although currently they lack the rich software 
layer needed to fully achieve their potential in the AI 
domain. ASICs (application specific integrated circuits) are 
similar to FPGAs in this regard, since in principle a specially 
configured FPGA is a kind of ASIC. Thus GPUs, FPGAs 
and ASICs have the potential to expedite machine learning 
algorithms in part because of their capabilities for parallel 
computing and high-speed internal memory.  

Nevertheless, while earlier generation CPUs have had 
performance bottlenecks while training or using deep 
learning algorithms, cutting edge CPUs can provide better 
performance and thus better support for deep learning 
algorithms. In 2017, Intel released Intel Xeon Scalable 
processors, which includes Intel Advance Vector Extension 
512 (Intel AVX-512) instruction set and Intel Math Kernel 
Library for Deep Neural Networks (Intel MKL-DNN) [10]. 
The Intel AVX-512 and MKL-DNN accelerate deep 
learning algorithms on lower precision tasks. Comparing 
mainstream 32-bit floating point precision (fp32) on GPUs, 
the 16-bit and 8-bits floating-point precisions (fp16/fp8) are 
lower in precision,  but can be sufficient for the inference of 
deep learning application domain. In addition, Lower 
precision also can enhance usage of cache and memory, and 
can maximize memory bandwidth. Let us look specifically 
at GPUs, FPGAs, and ASICs next. 

A. GPU Devices 

GPUs are specified unitary processors that are 

dedicated to accelerating real time three-dimensional (3D) 

graphics.  GPUs contain an internal cache, high speed 

bandwidth, and quick parallel performance. The GPU 

cache accelerates matrix multiplication routines because 

these routines do not need to access global memory.  

GPUs are universal hardware devices for deep 

learning. After testing neural networks including ones with 

200 hidden layers on MNIST handwritten data sets, GPU 

performance was found to be better than CPUs [11]. The 

test results show NVIDIA GeForce 6800 Ultra has a 3.3X 

speedup compared to the Intel 3GHz P4; ATI Radeon X800 

has 2.4-3.4X speedup. NVIDIA GPUs increase FLOPS 

(floating point operations per second) performance. In 

[12], a single NVIDIA GeForce 8800 GTX, released in 

November 2006, had 575 CUDA cores with 345.6 

gigaflops, and its memory bandwidth was 86.4 GB/s; by 

September 2018, a NVIDIA GeForce RTX 2080 Ti [13] 

had 4,352 CUDA cores with 13.4 Teraflops, and its 

memory bandwidth had increased to 616 GB/s.  

B. FPGA Devices 

FPGAs have dynamical hardware configurations, so 
hardware engineers developed FPGAs using hardware 
description language (HDL), including VHDL or Verilog 
[14][15]. However, some use cases will always involve 
energy-sensitive scenarios. FPGA devices offer better 
performance per watt than GPUs. According to[16], while 
comparing gigaflops per watt, FPGA devices often have a 
3-4X speed-up compared to GPUs. After comparing 
performances of FPGAs and GPUs [17] on ImageNet 1K 
data sets, Ovtcharov et al. [18] confirmed that the Arria 10 
GX1150 FPGA devices handled about 233 images/sec. 
while device power is 25 watts. In comparison, NVIDIA 
K40 GPUs handled 500-824 images/sec. with device power 
of 235 watts. Briefly, [17] demonstrates FPGAs can process 
9.3 images/joule, but these GPUs can only process 2.1-3.4 
images/joule. 

 
 

Fig. 2 Milestones of Deep learning on the Gartner hyper cycle. We inserted some  

deep learning historical milestones, modifying the figure of Gartner [1]. 



C. ASIC Devices 

Usually, ASIC devices have high throughout and low 
energy consumption because ASICs are fabricated chips 
designed for special applications instead of generic tasks. 
While testing AlexNet, one of the convolutional neural 
networks, the Eyeriss consumed 278 mW [18]. 
Furthermore, the Eyeriss  achieved 125.9 images/joule (with 
batch size N=4) [19]. In [12], Google researchers confirm 
that the TPU 1.0, based on ASIC technologies, has about 
15-30X speed-up compared to GPUs or CPUs during the 
same period, with TOPS/watt of about 30-80X better. 

D. Enhance Hardware Performance 

Even though multiple cores, CPUs, and hyper-threading 
are mainstream technologies, these technologies still show 
weaknesses in the big data era. For example, deep learning 
models usually have products and matrix transpositions 
[11], so that these algorithms require intensive computing 
resources. GPUs, FPGAs, and ASICs have better computing 
performance with lower latency than conventional CPUs 
because these specialized chipsets consist of many cores and 
on-chip memory. The memory hierarchy on these hardware 
devices is usually separated into two layers: 1) off-chip 
memory, named global memory or main memory; and 2) 
on-chip memory, termed local memory or shared memory. 
After copying data from global memory, deep learning 
algorithms can use high-speed shared memory to expedite 
computing performance. Specific program libraries provide 
dedicated application programming interfaces (APIs) for 
hardware devices, abstract complex parallel programming, 
and increased executive performance. For instance, the 
CuDNN library, released by NVIDIA, can improve 
performance of the Apache MXNet and the Caffe on 
NVIDIA GPUs [20][17]. 

Traditionally, multiple cores, improved I/O bandwidth, 
and increased core clock speed can improve hardware 
speeds [21]. In Figure 3, Arithmetic Logic Unit (ALU), 
single instruction, multiple data (SIMD), and single 
instruction, multiple thread (SIMT) systems concurrently 
execute multiply-accumulate (MACs) tasks based on shared 
memory and configuration files. 

However, there are new algorithms to improve 
computing  performance. GPUs are low-latency temporary 
storage architectures, so the Toeplitz matrix, fast Fourier 
transform (FFT), and Winograd and Strassen algorithms can 
be used for improving GPU performance [21]. Data 
movement consumes energy. FPGAs and ASICs are spatial 

architectures. These devices contain low-energy on-chip 
memory, so that reusable dataflow algorithms provide 
solutions for reducing data movements. Weight stationary 
dataflow, output stationary dataflow, no local reuse 
dataflow, and row stationary dataflow were developed for 
decreasing energy consumption of FPGAs and ASICs [21]. 
In addition, co-design of deep learning algorithms and 
hardware devices are other approaches. According to [21], 
there are two solutions. 1) Decrease precision: There are 
several algorithms to decrease precision of operations and 
operands of DNN, such as 8-bit fixed point, binary weight 
sharing, and log domain quantization. 2) Reduce number of 
operations and model size: Some algorithms need to be 
highlighted, such as exploiting activation statistics, network 
pruning algorithms, and knowledge distillation algorithms.  

E. Qualitative Benchmarking Metrics on Machine 

Learning Hardware 

GPUs, FPGAs, and ASICs can be used in different 
domains besides deep learning, including cloud servers and 
edge devices. There are 11 qualitative benchmarking 
metrics we distinguish on machine learning devices, as 
follows. In addition, results of the benchmarks are shown in 
Table I.  

TABLE I.  QUALITATIVE BENCHMARKING HARDWARE         

FOR MACHINE LEARNING ([10]-[20])    

# Attributes ASICs FPGAs GPUs 

1 Computing Performance  High  Low Moderate 

2 Low Latency   High  Moderate Low 

3 Energy efficiency   High  Moderate Good 

4 Compatibility   Low  Moderate High 

5 Research Costs   High  Moderate Low 

6 Research Risks   High  Low Moderate 

7 Upgradability  Low Moderate High 

8 Scalability   High  Low Moderate 

9 Chip Price   Low  High Moderate 

10 Ubicomp   Low  High High 

11 Time-to-Market   Low  High High 

 
1) Computing Performance can be measured by 

FLOPS. For measuring ASICs and GPUs, a 
quadrillion (thousand trillion) FLOPS (petaflops) 
are used in testing modern chipsets. In May 2017, 
Google announced Tensor Processor Unit 2.0 
(TPU 2.0), which provides 11.5 petaflops per chip 
[22]. TPU 3.0, released in May 2018, offers 23.0 
petaflops [23]. However, NVIDIA GeForce RTX 
2080 Ti has only 13.4 Teraflops [13]. According to 
[24] and [25],  ASICs have the most FLOPs, and 
GPUs are better than FPGAs. 

2) Low latency describes an important chipset 
capability [26], and is distinguished from 
throughout [12]. In [12][24], ASICs have the lowest 
latency, while FPGAs are lower than GPUs. 

3) Energy efficiency in computing is particularly 
important for edge nodes because  mobile devices 
generally have limited power. In [12][24] ASICs 
have the highest energy efficiency, and FPGAs and 
GPUs come in second and third, respectively. 

4) Compatibility means devices can be supported by 
multiple deep learning frameworks and popular 
programming languages. FPGAs needs specially 
developing libraries, so that FPGAs are not that 
good with respect to compatibility. GPUs have the 
best compatibilities [24]. ASICs currently are Fig. 3. Parallel Chipsets and memory diagrams (after [21]) 



second. For example, TPUs support TensorFlow, 
cafe, etc. 

5) Research costs refer to the total costs for 
developing devices incurred from designing 
architectures, developing algorithms, and 
deploying chip sets on hardware devices. GPUs are 
affordable devices [24]. ASICs are expensive, and 
FPGAs are between GPUs and ASICs. 

6) Research risks are determined by hardware 
architectures, development risks, and deployed 
chip sets. ASICs have the highest risks before 
market scaling. FPGAs are very flexible, so that 
their risks are limited. GPUs are in the middle. 

7) Upgradability is a challenge for most hardware 
devices. In [24], GPUs are the most flexible after 
deployment, and are better than FPGAs. ASICs are 
the most difficult to update after delivery. 

8) Scalability means hardware devices can scale up 
quickly with low costs. Scalability is vital for clouds 
and data centres. ASICs have excellent scalability. 
GPUs have good scalability, but not as good as 
ASICs.  FPGAs are the lowest on this dimension. 

9) Chip Price means price of each unit chip after 
industrial-scale production. In [27], FPGAs have 
the highest chip cost after production scale-up. 
ASICs have the lowest cost, and GPUs are in the 
middle. 

10) Ubicomp (also named ubiquitous computing) 
indicates hardware devices used extensively for 
varied use cases including e.g. large scale clouds 
and low energy mobile devices. FPGAs are very 
flexible, so that the devices can be used in different 
industries and scientific fields. ASICs usually are 
dedicated to specific industry needs. GPUs like 
FPGAs can be developed for many research fields 
and industry domains.  

11) Time-to-market means the length of time from 
design to sale of products. According to [15], [24], 

and [27], FPGAs and GPUs have lower 
development time than ASICs. 

III. MAINSTREAM DEEP LEARNING FRAMEWORKS 

Open source deep learning frameworks allow engineers 
and scientists to define activation functions, develop special 
algorithms, train big data, and deploy neural networks on 
different hardware platforms, from x86 servers to mobile 
devices. 

Based on the wide variety of usages, support teams, and 
development interfaces, we split 18 frameworks into three 
sets including mature frameworks, developing frameworks, 
and inactive frameworks. The 10 mature frameworks can be 
used currently to enhance training speed, improve scalable 
performance, and reduce development risks. The 
developing frameworks are not yet broadly used in 
industries or research projects, but some developing 
frameworks could be used in specific fields. Retired 
frameworks are largely inactive.  

A. Mature Frameworks 

1) Caffe and Facebook Caffe2: Caffe [28] was 
developed at the University of California, Berkeley 
in C++. According to [29], Caffe can be used on 
FPGA platforms. Caffe 2 [30] is an updated 
framework supported by Facebook.  

2) Chainer Framework: Chainer [31], written in 
Python, can be extended to multiple nodes and 
GPU platformws through the CuPy and 
MPI4Python libraries [32][33]. 

3) DyNet Framework: DyNet [34] was written in 
C++. The framework can readily define dynamic 
computation graphs, so DyNet can help improve 
development speed. Currently, DyNet only 
supports single nodes and not multiple node 
platforms. 

  

Fig. 4. Popular Deep learning Frameworks. From right column to left one is hardware, frameworks, license types,core codes, and API codes 

 

 



4) MXNet: the Apache MXNet [35][36] is a well 
known deep learning framework. This framework 
was built in C++, and MXNet supports NVIDIA 
GPUs through the NVIDIA CuDNN library. In 
[37], the GLUNO is a development interface for 
MXNet. 

5) Microsoft CNTK: The Microsoft Cognitive Toolkit 
[38][39], funded by Microsoft and written in C++, 
supports distributed platforms. 

6) Google TensorFlow: In 2011, Google released 
DistBelief [40], but the framework was not an open 
source project. In 2016, the project was merged 
with TensorFlow [41][42], an open source deep 
learning framework. 

7) Keras [43][44] is a Python library for TensorFlow, 
Theano, and Microsoft CNTK. Keras has a 
reasonable development interface that can help 
developers to quickly develop demo systems and 
reduce development costs and risks. 

8) Neon and PlaidML are partially supported by 
Intel: Neon [45], supported by Nervana Systems 
and Intel, may improve performance for deep 
learning on diverse platforms. PLaidML[46] was 
released by Vertex.AI in 2017; Intel will soon fund 
PlaidML.   

9) PyTorch Framework: PyTorch [47][48], written in 
Python, can be integrated with Jupyter Notebook. 
FastAI [49] is another development interface for 
PyTorch. 

10) Theano Framework: The core language of Theano 
[50][51] is Python with a BSD license. Lasagne 
[52][53] is an additional development library for 
Theano.  

B. Developing Frameworks 

In addition, some deep learning frameworks are less 
frequently mentioned by academic papers because of their 
limited functions. For example,  

1. Apache SINGA [54] was developed in C++. The 
framework is supported by the Apache group [44] 
[45].  

2. BigDL [46][47], built with Scale codes, is a deep 
learning framework that can run on Apache Spark 
and Apache Hadoops.  

3. In [59], the authors mentioned DeepLearning4J 
(DL4J), which can be accelerated by cuDNN.  

4. The PaddlePaddle deep learning framework was 
developed by Baidu using  Python [60]. 

C. Inactive Frameworks 

We mention two of these. (1) Torch [61], was written in 
Lua. It is inactive. (2) Purine [53][54] is open source and not 
updated since 2014. 

D. Qualitative Benchmarking Metrics for Deep            

Learning Frameworks  

Benchmarking metrics for frameworks for deep learning 
include six qualitative metrics described next.  

1) License Type: Open source software licenses 
impose a variety of restrictions. In [64], degree of 
openness is used as a metric for ranking open 
source licenses. Apache license 2.0 has relatively 
few restrictions. The MIT license requires the most 
limitations. BSD is in the middle. So, in comparing 
degree of openness, Apache 2.0 > BSD > MIT.  

2) Interface Codes (also called the API): The more 
functionality the API offers, the better it tends to 
support development. A good API can increase 
development productivity, reduce development 
cost and enhance functionality of the framework.  

3) Compatible Hardware: Computing hardware 
devices including CPUs and GPUs constitute the 
underlying support for deep learning frameworks. 
The more different hardware devices a deep 
learning framework can run on, the better it is on 
this dimension.    

4) Reliability: No single point of failure (NSPOF) is a 
risk minimizing design strategy. This approach 
ensures that one fault in a framework will not break 
an entire system. For avoiding single points of 
failure, a mature framework might run on multi-
server platforms rather than a single node. 

5) Tested Deep Learning Networks: Evaluating 
software could discover potential problems, 
measure performance metrics, and highlight 
strengths and weaknesses. If a framework can be 
officially verified by a variety of deep learning 
networks, then the framework is correspondingly 
more suitable as a mainstream production 
framework. 

6) Tested Datasets: Image datasets, voice datasets, 
and text datasets are among those used for training 
and testing deep learning networks. If a framework 
was verifed by diverse datasets, we are able to 
know its performance, strengths, and weaknesses.  

 Consistent with these six metrics, there are 16 
mainstream deep learning frameworks as shown in Figure 4 
and Table II (shown after the references). 

IV. A MACHINE LEARNING BENCHMARK ORGANIZATION 

MLPerf is a machine learning benchmark organization 

that offers useful benchmarks that evaluate training and 

inference on deep learning hardware devices. MLPerf and 

its members are associated with advanced chip hardware 

companies and leading research universities. Hardware 

companies include Google, Nvidia, and Intel. Research 

universities include Stanford University, Harvard 

University,  and University of Texas at Austin.  

MLPerf members share their benchmarking results. 

Benchmark results, source codes, deep learning algorithms 

(also called deep learning models), and configuration files 

are submitted to a website on github.com. Currently MLPerf 

members already have submitted the MLPerf Training 

Results v0.5 and MLPerf Training Results v0.6, and the 

deep learning reference results v0.5 will be released soon. 

MLPerf benchmarks involve benchmark metrics, 

datasets, deep learning algorithms, and deep learning 

frameworks. MLPerf members execute deep learning 

algorithms on hardware devices, then record execution time, 



deep learning algorithms, deep learning frameworks, and 

tested open datasets. Time is a critical metric for measuring 

MLPerf training or inference benchmarks [65]. Short run 

time is associated with high performance of deep learning 

devices. Benchmark datasets consist of image datasets, 

translation datasets, and recommendation datasets. 

ImageNet and COCO [66] are among the image datasets. 

WMT English-German [67] and MovieLens-20M [68] are 

translation and recommendation datasets, respectively. 

MLPerf benchmark frameworks are TensorFlow, PyTorch, 

MXNet, Intel Caffe, and Sinian. MLPerf deep learning 

algorithms benchmarked [69] include ResNet50-v1.5, 

MobileNet-v1, SSD-MobileNet, and SSD-ResNet34.  

V. CONCLUSIONS 

Deep learning has increased in popularity dramatically 

in recent years. This technology can be used in image 

classification, speech recognition, and language translation. 

In addition, deep learning technology is continually 

developing. Many innovative chipsets, useful frameworks, 

creative models, and big data sets are emerging, resulting in 

extending the markets and uses for deep learning. 

While deep learning technology is expanding, it is 

useful to understand the dimensions and methods for 

measuring deep learning hardware and software. 

Benchmarking principles include representativeness, 

relevance, equity, repeatability, affordable cost, scalability, 

and transparency. Major deep learning hardware platform 

types include CPUs, GPUs, FPGAs, and ASICs. We 

discussed machine learning platforms, and mentioned 

approaches that enhance performance of these platforms. In 

addition, we listed 11 qualitative benchmarking features for 

comparing deep learning hardware. 

AI algorithms often benefit from many-core hardware 

and high bandwidth memory, in comparison to many non-

AI algorithms that are often encountered in practice [70]. 

Thus it is not just the computational power of hardware as 

a one-dimensional concept that makes it more (or less) 

suited to AI applications, but also the type of computations 

the hardware excels in. A hardware platform can have more 

or less computational power depending on the type of 

computation on which it is measured. GPUs (graphics 

processing units) often do comparatively well on the kind 

of parallelism often beneficial to AI algorithms, and thus 

tend to be well suited to AI applications. FPGAs, being 

configurable, can be configured to perform well on AI 

algorithms although currently they lack the rich software 

layer needed to be as useful for this as they could become. 

ASICs are similar to FPGAs in this regard, since in 

principle a specially configured FPGA is a kind of ASIC. 

        Software frameworks for deep learning are diverse. 

We compared 16 mainstream frameworks through license 

types, compliant hardware devices, and tested deep 

learning algorithms. We split popular deep learning 

frameworks into three categories: mature deep learning 

frameworks, developing frameworks, and retired 

frameworks.  

       Deep learning benchmarks can help link industry and 

academia. MLPerf is a new and preeminent deep learning 

benchmark organization. The organization offers 

benchmarking metrics, dataset evaluation, test codes, and 

result sharing.       

VI. FUTURE WORK 

      Deep learning technology including supporting 

hardware devices and software frameworks is increasing in 

importance and changing rapidly, with new technology 

options as scientists and engineers develop innovative 

hardware and frameworks. Thus review articles will 

continue to be of interest. Future reviews can help 

contribute by (1) being up to date as older articles 

necessarily lose currency; (2) adding further information 

and details where this would better support decisions about 

what hardware and tools to use; (3) including relevant 

closely related topics like reinforcement learning; and (4) 

providing information on what types of hardware and what 

tools are best suited to what ML tasks. 
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TABLE II.  COMPARING POPULAR DEEP LEARNING FRAMEWORKS 

 

a. alphabetical order 

b. In License Type column, Apache 2.0 means the Apache 2.0 license 

 

 

# Frameworks a   License Type b  

 

Core Codes API Codes Hardware Devices Reliability Tested Networks Related Datasets 

 

1 BigDL Apache 2.0 

 

C/C++ Scala CPU/GPU Multi-Server 

VGG, Inception, ResNet, 

GoogleNet ImageNet, CIFAR-10 

 

2 Caffe/Caffe2 BSD License 

 

C/C++ 

Python, C++ 

MATLAB 

CPU/GPU 

/FPGA/Mobile Multi-Server LeNet, RNN CIFAR-10, MNIST, ImageNet 

 

3 Chainer MIT License 

 

C/C++ Python CPU/GPU Multi-Server RNN CIFAR-10, ImageNet 

 

 
4 DeepLearning4j Apache 2.0 

 

 
Java 

Java, Scala, Clojure,  
Python, Kotlin CPU/GPU Multi-Server 

AlexNet, LeNet, Inception, 

 ResNet, RNN, LSTM,  
VGG, Xception, ImageNet 

 

5 DyNet Apache 2.0 

 

C/C++ C++, Python CPU/GPU Single Node RNN, LSTM ImageNet 

 

6 FastAI Apache 2.0 

 

Python Python CPU/GPU Multi-Server ResNet CIFAR-10, ImageNet 

 

7 Keras MIT  License 

 

Python Python, R CPU/GPU Multi-Server CNN, RNN CIFAR-10, MNIST 

 

8 Microsoft CNTK MIT License 

 

C/C++ C++, C#, Python, Java CPU/GPU Multi-Server CNN, RNN, LSTM 

CIFAR-10, MNIST, ImageNet, 

P-VOC 

 

 
9 MXNet Apache 2.0 

 

 
C/C++ 

C++, Python, Clojure, 

 Julia, Perl, R, Scala,  
Java, JavaScript, Matlab 

CPU/GPU 
/Mobile Multi-Server CNN, RNN, Inception 

CIFAR-10, MNIST, ImageNet, 
P-VOC 

 

10 Neon Apache 2.0 

 

Python Python CPU/GPU Multi-Server AlexNet,  ResNet, LSTM CIFAR-10, mnist, ImageNet 

 
11 PaddlePaddle Apache 2.0 

 
C/C++ Python 

CPU/GPU 
/Mobile Multi-Server AlexNet, GoogleNet, LSTM CIFAR-10, ImageNet 

 

 
12 PlaidML Apache 2.0 

 

 
C/C++ Python, C++ CPU/GPU Multi-Server 

Inception, ResNet, VGG,  

Xception, MobileNet, DenseNet, 
 ShuffleNet, LSTM CIFAR-10, ImageNet 

 

13 PyTorch BSD License 

 

Python Python CPU/GPU Multi-Server 

AlexNet, Inception, ResNet, 

 VGG, DenseNet, SqueezeNet CIFAR-10, ImageNet 

 
 

14 SINGA Apache 2.0 

 
 

C/C++ Python CPU/GPU Multi-Server 

RNN, AlexNet, DenseNet, 
 GoogleNet, Inception, 

 ResidualNet, VGG MNIST, ImageNet 

 

 
15 TensorFlow Apache 2.0 

 

 
C/C++ 

Python, C++, Java,  

Go, JavaScript, Scala, 
 Julia, Swift 

CPU/GPU 
/TPU/Mobile Multi-Server 

AlexNet, Inception, ResNet,  
VGG, LeNet, MobileNet CIFAR-10, mnist, ImageNet 

 

16 Theano BSD License 

 

Python Python (Keras) CPU/GPU Multi-Server AlexNet, VGG, GoogleNet CIFAR-10, ImageNet 


