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Abstract

We describe a software tool for performing automatically veri�ed arithmetic

operations on independent operands when the operands are intervals, or prob-

ability distribution functions, or one operand is an interval and the other is a

distribution. Intervals and distributions are expressed using the same technique,

so the algorithms do not need to distinguish between intervals and distributions

in their operation. The tool can calculate common arithmetic operations with

guaranteed results (as well as con�dence limits on a distribution if the distribu-

tion is empirically estimated from samples).

A previous paper (Berleant 1993 [1]) discusses the concepts, algorithms,

and related work. Here we emphasize a software tool that implements the

algorithms, interacts with the user via a graphical user interface, and saves,

retrieves, and prints the results of its calculations.

1 Introduction to the Representation

We use histograms to represent, correctly, both probability distribution func-

tions (PDFs) and intervals. We take an interval to be an incompletely speci�ed

description of value such that there is a probability of one that the actual but

unknown value falls within the interval. A probability distribution may be in the

form of either a probability density function (PDF) or its integral, a cumulative

distribution function (CDF). Next, we show how to represent both distribution

functions and intervals, correctly, using the same representational technique.

1.1 Representing a Distribution Function

Histograms are a natural way for people to create and edit probability distri-

butions, and are used for this purpose by our software tool. While a histogram

discretizes the underlying PDF, in our technique this discretization introduces
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no error, and thereby maintains correctness. Instead, it introduces information

loss. To see this, consider a histogram discretization of a PDF to be a partition-

ing of the PDF's domain into a set of intervals, each of which is associated with

a probability mass equal to the area under the PDF across the range of that

interval. The graphical depiction of a histogram is then simply a convention for

describing this set of intervals and their associated masses.

A histogram graphic (Figure 1) is user friendly but has the disadvantage that

a histogram bar is conventionally shown with a 
at top, which might give the

impression that the probability mass associated with the interval for that bar

is assumed to be distributed evenly over its range. In fact, in our technique no

assumption is made about how the probability mass associated with an interval

is distributed over that interval, hence a given histogram bar is consistent with

any such distribution, including the PDF that the histogram might have been

intended to discretize but also an in�nite number of others. This is explained

in more detail in Berleant (1993 [1]), but the main point to consider is that this

view of a histogram allows it to discretize a PDF correctly but with information

loss, and displaying the bars with 
at tops is merely a graphical convention.

The more bars in the histogram, the less the information loss.

The software tool we report here includes the capability of allowing users to

graphically edit histograms. To underline their information-losing but correct-

ness properties, the tool also allows display of the same information in another

graphical form, the integral (or cumulated probability) of a histogram. Just as a

PDF can be integrated into a corresponding CDF, the histogram discretization

of a PDF we have described can also be integrated and this cumulated form dis-

played graphically (Figure 1). The graphic for the cumulation of the histogram

consists of two bounding CDFs. The higher of the two assumes the extreme

case where the probability mass associated with each bar of the histogram is

concentrated at the low bound of its interval. The lower of the two assumes the

other extreme, where each probability mass is concentrated at the high bound

of its corresponding interval. Any other of the in�nite number of distributions

consistent with the histogram, when integrated, results in a curve that stays

within the two stair-step shaped bounding CDFs exempli�ed in Figure 1. The

space between these bounding CDFs re
ects the information loss associated

with the discretization.

1.2 Representing an Interval

An interval is represented in our technique as a histogram with one bar. Since

the interval representation of value does not assume any particular distribution

of probability mass within the interval, the interval representation is consistent

with any PDF whose value is zero outside the bounds of the interval, and with

any CDF whose value is zero below the interval and one above it (Figure 2).

To represent the interval using bounding CDFs, we must determine the space

of CDFs consistent with the interval. The two most extreme CDFs that bound
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Figure 1: A histogram edited by a user and its two corresponding CDF bounds

(one solid and one dotted).
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this space are the one that rises faster than any other CDF consistent with the

interval, and the one that rises slower than any other CDF consistent with the

interval. The one that rises fastest will correspond to the PDF which is an

impulse of mass 1 at the interval's low bound (that is, the variable's value is

certainly equal to the interval's low bound). Likewise, the one that rises slowest

will correspond to the PDF which is an impulse of mass 1 at the interval's

high bound. The interval is therefore representable as a family of CDFs whose

two bounding CDFs each have one \step." Figure 2 shows an interval and its

representation as a bounded family of CDFs; the CDF that bounds this family

from above jumps from zero to one at the interval's low bound, and CDF that

bounds it from below jumps from zero to one at the interval's high bound.

2 Introduction to Arithmetic Operations

The algorithmic approach to performing an arithmetic operation on histograms

is exempli�ed in Figure 3. An arithmetic operation produces as a result a Carte-

sian product consisting of a set of intervals that in general contains overlaps.

Due to the overlaps this set cannot be shown directly as a histogram, but can

be integrated and shown correctly as a pair of stepwise, bounding CDFs. (The

software tool will however allow a result to be displayed as an approximating his-

togram if desired, due to the visual impact and intuitive appeal of histograms.)

However displayed, this result may in turn be used as an operand in further

arithmetic operations.

The representational technique of using a set of intervals | non-overlapping

in the case of PDFs, singleton in the case of an interval operand, and overlap-

ping in the case of results of arithmetic operations | and a probability mass

associated with each interval in the set, is the key to our algorithm. This repre-

sentation we term an intermediate distribution and it mediates between PDFs,

intervals, and bounding CDFs and is the underlying representation used by the

algorithm for its computations. A fuller description of the algorithm is given in

Berleant (1993 [1]).

Related algorithms appeared beginning in 1968 (Ingram et al. [6]), however

these algorithms were not automatically verifying. A recent constraint satisfac-

tion approach to the problem is in Hyv�onen (1995 [4]). An approach to using

CDF bounds in computer systems administration appears in Post and Diltz

(1986 [8]) under the rubric of the stochastic dominance �eld, which recognizes

the usefulness of bounded families of CDFs. Another area of related work is

robust statistics. We have not been able to �nd work by others discussing au-

tomatically veri�ed operations where one operand is an interval and the other

is a distribution function. A fuller review of related work appears in Berleant

(1993 [1]).
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Figure 2: The interval [4; 7] and its representation as two CDFs bounding the

family of all CDFs consistent with the interval.
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Figure 3a: Let this histogram describe uncertain value X: It depicts the

intermediate distribution fp([1; 2]) =

1

2

; p([2;4]) =

1

2

g:
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Figure 3b: Let this histogram describe uncertain value Y: It depicts the

intermediate distribution fp([2; 3]) =

1

4

; p([3;4]) =

1

2

; p([4; 5]) =

1

4

g:
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Figure 3c: Multiplying the intermediate distributions for X and Y leads to

another intermediate distribution, shown in the last column. (This interme-

diate distribution contains overlapping intervals, as is typical of intermediate

distributions resulting from arithmetic operations.)
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Figure 3d: Integrating the result intermediate distribution in the last column

of Figure 3c produces these stair-step shaped bounding CDFs.

||||||||||||||||||||

Figure 3 (a-d): Multiplying two operands. The user created two histograms

X (Figure 3a) and Y (Figure 3b) using a graphical editor. These histograms

are represented internally as intermediate distributions, that is, lists of intervals

and associated probability masses. The intermediate distributions are used to

calculate X � Y , whose intermediate distribution is shown in the last column of

Figure 3c. Integrating this result produces the CDF bounds shown in Figure 3d.

||||||||||||||||||||

3 A Software Tool

A software calculating tool that runs under Microsoft Windows has been written.

This tool does automatically veri�ed arithmetic operations on operands, each

of which may be either an interval or a distribution function.
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3.1 Creating and Displaying Operands

The tool allows the user to graphically create and edit histograms using the

mouse. A mouse-click based menu can be used to increase or decrease the

number of bars in the histogram. Clicking the left button above a bar increases

its height (and hence its area, which de�nes its probability mass) in proportion

to how high above the bar the cursor is when the left button is pressed. Clicking

the left button below the top of the bar decreases its height analogously. The

width of a bar can also be increased or decreased, by clicking the right (instead

of the left) mouse button above or below the top of the bar. As an alternative to

mouse-based graphical editing, numerical values can be typed in directly when

desired, by clicking on the Edit button at the top of the screen (visible e.g. in

Figure 1) and invoking a dialog box. Clicking on the File button allows saving

a histogram to a disk �le, or reading one in from a disk �le. The intent is to

provide a user interface that is easy-to-use yet quite 
exible.

An input histogram, as well as the result of an arithmetic operation on his-

togram operands, is represented internally as an intermediate distribution. This

set of intervals each associated with a probability mass, when stored on disk,

is stored as a list of triples. Each triple speci�es specifying an interval low

bound, an interval high bound, and a probability mass for the interval. This

list can be edited using an ordinary text editor if desired. All intermediate dis-

tributions may be displayed graphically as histograms. These histograms are

labeled Approximate when the intermediate distribution has overlapping inter-

vals, as is usually the case for the result of an arithmetic operation. Approxi-

mate histograms cannot be edited, and like other histograms can alternatively

be displayed correctly (not approximately) as a pair of bounding CDFs.

3.2 Operations on Operands

The tool provides several primitive operations. A menu of these operations is

invoked by clicking on the Operation button at the top of the screen (Figure 4).

Operations in f+;�;�;�g take the top two panels A and B as operands and

place the result in the lowest of the three panels, panel C (Figure 5), overwriting

anything that may already be in C. If this result is to be used as an operand

in a subsequent operation, it may be moved into panel A or B using one of the

Exchange operations (Figure 4). An operand or result may be viewed as either

a histogram or a pair of CDF bounds and may be viewed in detailed form (e.g.

Figure 1), with or without a grid.

As an added feature, the tool can apply results of Kolmogorov (1941 [7])

and others to obtain bounds on the CDF for a random variable for which some

samples are provided. The samples must be provided in a text �le ending in

\.smp" and containing their numerical values. This �le may be read into panel

A and displayed in cumulated form as an empirically estimated CDF for the

underlying random variable. Then, the operation C = A's Con�dence Limits ...
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Figure 4: The operations o�ered by the tool.
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Figure 5: Panel C contains the result of applying an operation (division in this

case) to A and B. Panel C, labeled Approximate as displayed in histogram form,

can alternatively be exactly displayed as a pair of bounding CDFs.
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Figure 6: Con�dence limits around the CDF in panel A, if generated from

samples of a random variable (several dozen student test scores in this case)

may be calculated and shown in panel C. The con�dence level is chosen from a

menu.

(Figure 4) may be invoked to place in panel C bounds on the actual but unknown

CDF for the random variable, to a given con�dence level (Figure 6).

Various functions of the software tool may be grouped together and partially

automated using a primitive batch command facility.

4 Future Work

We now have a tool for doing common arithmetic operations on distribution

function and interval operands. However, much more remains to be done to

extend and apply the work.

A next major stage in the research is to identify applications and apply the

tool to those applications. Once identi�ed, an application can serve not only to

demonstrate the practical value of an idea but also to guide its further extension.

Digital signal processing and highway maintenance decision support are among
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those that have been suggested. Applications of stochastic dominance are also

possible candidates, as are applications of robust statistics. The world is full

of incompletely known values which need to be taken into account, underlining

the importance and potential value of research dealing with incompletely known

information.

A number of extensions to the tool described here would be useful:

� Handling calculations whose intermediate results are dependent on one

another could be done by implementing not only the common arithmetic

operations as we have done, but also combinations of those so that, for

example, given histograms in panels A and B; (B �A)=A could be calcu-

lated even though (B�A) and A are dependent on each other. This would

require a simple expression parser and, although excess width might occur

in constituent interval calculations in many cases, the result would still be

correct (Berleant 1993 [1]).

� Providing exponentiation, logarithms, trigonometric and other unary and

binary operations would be useful.

� Handling distribution functions that have tails extending out to in�nite

could be handled by applying the work of others on handling intervals

containing bounds of 1 and �1:

� The tool is presently modeled after a calculator, in which only a small

number of operands can be handled at once. A useful extension to the

calculator concept is the spreadsheet concept. Interval mathematics has

been implemented in spreadsheets (Hyv�onen 1994 [5]) and distribution

functions have also been shown to be feasible as cells in spreadsheets in

commercial products such as Crystal Ball [3] and @RISK [9].

5 Conclusion

The present paper describes a computer tool with graphical user interface capa-

bilities, for allowing users to specify interval and distribution function operands

as histograms and allowing them to perform automatically veri�ed arithmetic

operations on those operands. A previous paper (Berleant 1993 [1]) reviews

related work and describes in more detail how automatically veri�ed arithmetic

operations may be carried out on intervals and distribution functions. An im-

portant next stage in this research is to �nd applications for the techniques in

order to demonstrate practical use of the tool and its underlying ideas.

Details on the implementation appear in Cheng (1994 [2]). The software is

available at no charge (for non-commercial purposes) from the authors.
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