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Abstract— Market based contracting introduces increased 

competition in the power industry, and creates a need for 
optimized bids and bidding strategies. To maximize the Expected 
Monetary Value (EMV) of a bid, generation companies 
(GENCOs) must use good models. Such models should account 
for factors such as buyers, market mechanisms, and other 
companies using mathematical models. This paper explores 
probability density functions for describing a competitor’s bids. 
This probabilistic information is used to formulate a basic 
competitive bidding profit maximization problem that results in 
a simple yet informed bidding strategy. Under the defined 
circumstances, we conclude that the dependency relationship 
between the density functions describing a competitor’s two bids 
may have no impact whatever on the optimal bid of a company 
trying to under-bid that competitor. 
 

Index Terms—Bidding strategy, decision tree, Expected 
Monetary Value, dependency relationship. 

I.  NOMENCLATURE 
The following notations are used throughout this paper.  

Fij  Operating cost for generation company i for generating 
unit j. 

Sij Monetary value of operating cost for generation company 
i of generating unit j, in $/MWh. 

XD Total demand in MWh for a given one-hour time period. 
Xij Generation capacity in MWh for generation company i  

and generating unit j in MWh. 

II.  INTRODUCTION 
HIS paper addresses a bidding problem faced by a 
generation company (GENCO) in a deregulated electric 

market. Deregulation exposes GENCOs to risks and 
uncertainties. Electric energy sales by a GENCO depend not 
only on demand and technical constraints but also on the 
strategies followed by its competitors. This creates a need for 
effective decision-support mechanisms that model 
competitors. In real situations, intelligence about competitors 
is often uncertain and incomplete, so it is important to develop 
a bidding model that can flexibly handle various kinds of 
partial information about competitors’ bids. Partial 
information includes but is not restricted to the dependency 
relationships among various relevant random variables, such 
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as the bids put forth by a competitor.  
 The analysis presented here is based on the following 
question: What is the optimal bid to make when information 
about the competitor’s bids is uncertain? 
 The framework for the analysis is a simplified day-ahead 
auction where the market is cleared one day in advance on an 
hourly basis [7]. Producers, GENCOs in this case, submit 
hourly bids consisting of blocks of energy and their 
corresponding prices. It is further assumed that this is a single-
round auction structure where the market participants only 
submit the bids once. The price of bid accepted by the buyer is 
the price it will pay to the winning GENCO to deliver the 
corresponding block of electric energy.  
 The next section begins with a simple example model in 
which perfect information is available. With perfect 
information, the decision tree approach is applied to the model 
and yields a straightforward solution.  This model is then 
extended to incorporate probability distributions to express 
uncertainty in the competitor’s bids. We derive an optimal 
solution to this new model, and discuss the significance of the 
dependency relationship between bids made by the 
competitor, GENCO 2. 

III.  MODEL 1: PERFECT INFORMATION 
This model consists of GENCO 1 and a competitor, 

GENCO 2. Both GENCOs are competing to sell XD megawatt-
hours (MWh) of electric energy. GENCO 1 is to determine a 
bid for an amount and a price that will optimize its expected 
profit. In a competitive environment, GENCO 1’s decision 
should depend in part on its competitor, GENCO 2. GENCO 1 
thus attempts to model GENCO 2 in order to bid optimally 
against GENCO 2.  

The assumptions made in this perfect information model 
are as follows: 

 GENCO 2 has two generators, A and B. These 
generators have capacities of X2A and X2B (MWh) 
respectively, and GENCO 2 would need to use 
both generators to meet the full demand. 
Generator A is assumed to have a fixed operating 
cost of S2A $/MWh in this basic model whereas 
generator B has a higher cost of S2B $/MWh, as 
illustrated in Fig. 1.  

 Total demand is XD for the time period in 
question.  

 GENCO 2 bids at its operating cost. (We may 
assume that a fixed profit margin is added so that 
GENCO 2 can make a profit, if desired.) S2A is the 
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bid price for the amount of X2A and S2B for the 
remaining energy needed, which is (XD - X2B). 

 GENCO 1 can meet the demand with one 
generator, for which the cost of generation is 
represented by S1A. 

 
 
 
 
 
 
 
 

 
 
 
Fig. 1.  Price per megawatt-hour as a function of MWh. (An extension to this 

model would have the function be strictly positively monotonic.) 
 

Both GENCOs submit bids to the Independent System 
Operator (ISO). The ISO determines the acceptance rules for 
submitted bids. Bids are accepted starting from the one with 
the lowest price per MWh, and proceeding to successively 
higher priced bids until the total need of XD has been 
purchased. 

Using a profit-maximizing strategy, GENCO 1, with only 
one generator formulates its maximum profit as: 

MAX [ XD*(S2A-S1A),  (XD-X2A)*(S2B-S1A),  0 ] 
This function describes the three possible maximum profits 

for GENCO 1 based on its cost per MWh, S1A. The first 
expression applies when S1A<S2A. In this case, GENCO 1’s 
cost is below the cost of its competitor GENCO 2’s generator 
A, which is the generator that produces electric energy most 
cheaply. (Therefore, it is also below GENCO 2’s generator B.) 
Thus, GENCO 1 can bid to sell the total demand, XD. GENCO 
1 can undercut GENCO 2’s bid by bidding just below S2A.  

On the other hand, if S2A<S1A<S2B, it is best to bid just 
below S2B for the amount of (XD-X2A), as shown in the 2nd 
expression of the profit-maximizing function shown earlier. 
Since GENCO 1’s cost in this case is higher than the cost of 
GENCO 2’s generator A, the cheaper of the two generators of 
GENCO 2, it is impractical to undercut that generator by 
bidding for the total demand because this would incur loss to 
GENCO 1. Instead of attempting to meet the entire demand, 
therefore, GENCO 1 should bid for the portion of the demand 
that the cheaper generator, generator A cannot meet at a price 
that is just low enough to undercut generator B. Referring to 
the 2nd expression, the bid price should therefore be S2B-ε , 
where ε  is assumed to be an insignificant amount whose 
purpose is to barely undercut GENCO 2’s bid of S2B. 

When S1A is higher than the cost of GENCO 2’s generator 
B, the one that is more expensive to run, then GENCO 1 
cannot undercut either of GENCO 2’s bids without incurring a 
loss, so it is better off not bidding at all. This yields the last 
expression in the profit function, 0.  

Based on these facts, how much should GENCO 1 bid? 
The widely known decision tree approach is presented in the 

following section as a way to determine the optimal bid for 
GENCO 1 to submit. This approach will be expanded later 
when uncertainty is added to the model. 

A.  Decision Tree Approach 
By adopting the decision tree of Figure 2, GENCO 1 

calculates the EMV for each leaf to find the most desirable 
bid, namely the one with the highest EMV.  

With reference to the previously defined profit-maximizing 
function, there are three branches in the decision tree. The first 
branch denotes GENCO 1’s bid of S2A-ε .  In order to perform 
the EMV calculation, GENCO 1 needs to know the 
probability that its bid will undercut GENCO 2’s bid. Since 
this model assumes complete information, each branch has a 
certain outcome so that the probability at every leaf is 1. The 
resulting EMV calculation then for the top branch is simply 
XD*(S2A-ε -S1A), where ε  represents the amount that GENCO 
1 is willing to give up in order to undercut GENCO 2’s bid.   

The second branch represents the decision to bid at S2B- ,ε  
which would yield a profit rate of S2B-ε -S1A.  Since GENCO 
1 needs to undercut GENCO 2’s more expensive generator in 
order to win the bid, the amount to bid is XD-X2A. This yields 
the EMV expression (XD-X2A)*(S2B-ε -S1A).  

The final branch represents the decision that GENCO 1 
does not bid, because its cost exceeds the cost of both of the 
competitor’s two generators. 

 
 
 
 
 
 
 
 
 
 
Fig. 2.  Decision tree for GENCO 1, given complete information. Mid-range 

bids make little sense and are not considered. 

B.  Example 
Here is a specific numerical example based on the problem 

described above. Let the variables be represented by the 
following values: 

XD = 600 MWh   
X2A = 300MWh   
X2B ≥  300MWh   
S2A = $100/MWh   
S2B = $150/MWh   
S1A = $40/MWh  
ε =1 
Since all the variables have exact values, in view of the 

discussion earlier, the only decision to make is whether to bid 
at $99/MWh for XD = 600 MWh, or $149/MWh for XD-X2A = 
300 MWh. It would not make sense to consider any bids 
lower than $99/MWh for the low bid because GENCO 1 
would just make less profit. Similarly, if GENCO 1 decides to 
try to undercut S2B but not S2A, then GENCO 1 should bid at 

 (MWh) XD 

S2A 

S2B 

($/MWh) 

X2A X2B 

EMV
 

XD*(S2A-ε -S1A) 
S2A-ε

S2B-ε
 

No bid

0 

 
(XD-X2A)*(S2B-ε -S1A) 
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$149/MWh. A bid of $148/MWh, for example, would make 
no sense because if a bid of $148/MWh would be accepted, a 
bid of $149/MWh would also be accepted and would lead to 
higher profit. The decision tree is depicted in Fig. 3. The 
resulting three EMV calculations indicate that GENCO 1 
should bid at $99/MWh for a total generation of 600MWh to 
maximize its profit. 
 

 
 
 
 
 
 
 

 
 

Fig. 3.  An example of the decision tree with numerical calculations.  

IV.  MODEL 2: INCORPORATING UNCERTAINTY 
 In the real world, it is often impossible to obtain various 

desired data, let alone the competitor’s exact bid cost. Most 
market participants would either use a forecasting tool to 
estimate the competitor’s cost, seek expert knowledge, or 
study the competitor’s strategy and market movements based 
on historical data. The goal would be to acquire as much 
reliable, accurate and useful information as possible to include 
in a decision model. 

Suppose that GENCO 1 does not know the precise 
operating costs of GENCO 2 generators, but has determined 
probability distributions for the two generators’ costs, F2A and 
F2B. As an example, suppose GENCO 1 models those with the 
following cumulative distribution functions (see Fig. 5): 

F2A: cumulative form of a uniform density function from 
$95-105/MWh, and 

F2B: cumulative form of a normal density function (tail-
trimmed) from $145-155/MWh. 

The profit maximizing function for GENCO 1 remains 
similar but is represented by distributions instead of exact 
values. Let us assume for now that the two distributions are 
independent of each other.  Since there is now uncertainty in 
the bid prices of GENCO 2, the decision tree has to 
incorporate this uncertainty. 

Generally, the decision tree maintains a similar structure to 
that of Figs. 2 and 3 except that the $99/MWh and $149/MWh 
branches are replaced by sets of branches representing similar, 
plausible bids.  The low bids range from $94-$104/MWh and 
the high bids range from $144-$154/MWh. For each plausible 
high bid bh, the probability that the higher of GENCO 2’s 
bids, represented by a sample drawn from F2B, is greater than 
bh is of importance for EMV computations. Similarly, for each 
low bid bl, GENCO 1 must use the probability that its 
competitor GENCO 2’s lower bid is greater than bl in order to 
calculate an EMV for bid bl. A decision tree that includes this 
information is shown in Fig. 4. 

With the decision tree approach, GENCO 1 uses the 
cumulative distribution functions F2A and F2B for EMV 

calculations. The decision tree selects a set of sample points 
from the relevant cumulative density function. Each point 
becomes a branch of the decision tree. Nine points are chosen 
from each cumulative density function for this analysis, 
leading to a tree with 18 branches (Fig. 4). 
 The formula used for calculating the EMV of bids bl in the 
low range is as follows:  

EMV = 300*(bl -ε -S1A) + 300*(bl -ε -S1A)*P(F2A> bl) 
which expresses the fact that 300 Mw will undercut the 
competitor’s high bid, and 300 Mw might undercut the 
competitor’s low bid. The nine low range bids’ EMV 
calculations use this formula by replacing bl with each bidding 
price from $94/MWh to $104/MWh, and multiplying by the 
probability P(F2A> bl) of winning the bid.  

The decision to bid high is also plausible because S1A < S2B 
(represented by F2A). Here, GENCO 1 can sell at most 300 
MWh because a bid in the high range represents a decision not 
to try to undercut F2A, implying that the competitor, GENCO 
2, will definitely sell the output of its generator A. The 
formula to calculate EMV for a branch of the tree for a bid bh 
in the high range ($144 to $154) is thus: 

EMV = 300*( bh -S1A)*P(F2B> bh) 
The EMV calculations are computed using the above formula 
by replacing bh in the EMV calculation with different prices in 
the range of $144/MWh to $154/MWh, and using the 
corresponding probability P(F2B> bh). 
  

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  Decision tree for GENCO 1 with imperfect information about GENCO 
2’s bids. 
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Fig. 5. (a) Cumulative distribution function for F2A (uniform density function). 
Continued on next page.   
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Fig. 5 continued from previous page. (b) Cumulative distribution function for 
F2B (tail-trimmed normal density function). 
  

Since the cheaper generator of GENCO 2, generator A, has 
limited capacity, it is evident that GENCO 1 is assured the 
sale of at least 300MWh if it bids in the low range because 
generator A produces a maximum of 300MWh, leaving 
another 300Mwh of the 600Mwh demand unfilled. But the 
chance of selling the full 600 MWh depends on the 
probability that its bid will undercut the cost of the cheaper 
generator, generator A. For example, if GENCO 1 bids at 
$97/MWh, it has to consider the probability that the cost of 
generator A will lead GENCO 2 to bid higher than $97/MWh.  

Suppose S1A is $40/MWh. The decision tree (Fig. 4) implies 
that the highest EMV will be $32400 for a bid of $94/MWh 
for 600MWh. On the other hand, suppose S1A is $90/MWh, 
then the decision is to bid at $146.25/MWh for 300MWh with 
a highest EMV of $16689.38. As a third example, if S1A is 
$97/MWh, the optimal bid does not change, with an EMV of 
$14612.48 for a bid at $146.25/MWh for 300MWh. 

V.  MODEL 3: INCREASE IN DEMAND 
 In the preceding discussion with S1A = $40/MWh, the 
decision was to bid at $94/MWh for the total demand of 
600MWh. At first glance it my seem that GENCO 1 might do 
better by submitting 2 bids, one attempting to undercut 
generator A and the other attempting to undercut generator B. 
In fact, a 1-bid strategy is better, as the following shows. 
 
A. 1 bid vs. 2 bids 

Suppose GENCO 1, attempting to undercut both generators 
A and B of GENCO 2, submits two different bids using, for 
illustration, the perfect information model of Section III. Since 
GENCO 2 also submits two bids, GENCO 1’s bid that was 
supposed to undercut generator B instead loses to generator A. 
As an example, suppose GENCO 1 submits bids of $99/MWh 
for 300MWh and $149/MWh for another 300MWh. Then its 
$99 bid will be accepted, while GENCO 2’s $100 bid will 
also be accepted, and GENCO 1 thus is chosen to meet only 
part of the demand. If GENCO 1 had made a single bid for the 
full demand at $99/MWh, it would have won. Thus, GENCO 
1 is better off submitting one bid. 

However, uncertainty typically arises in the demand for 
electricity. For instance, extreme weather may cause the 
demand for electricity to reach a peak. Thus, GENCO 1 has to 
perform further analysis for the situation where a sharp 
increase in demand may arise and whether it is still better to 
submit one bid or two bids. 

Referring to the perfect model again, suppose the demand 
rises to 1000MWh, and GENCO 1 once again considers a 
strategy of offering $99/MWh for 1000MWh, vs. a strategy  
of losing 300MWh to generator 2A while undercutting 
generator 2B. Indeed, the EMV calculated for submitting two 
bids is higher than for submitting one bid at $99 (Fig. 6). 
 

Strategy 
Bid 
($/MWh) 

Bid 
(MWh) EMV 

1-bid 99 1000 59000
    Total 59000
2-bid 99 300 17700
  149 400 43600
    Total 61300

 
Fig. 6. EMV calculations for 1-bid and 2-bid strategies when demand is 
1000MWh. Only 400 MWh are offered at $149 in the 2-bid scenario because 
the competitor will succeed in selling 300 MWh at $100, so the total demand 
of 1000 MWh will be met. 
 
 However, GENCO 1 can do even better by submitting only 
one bid that undercuts generator 2B, instead of trying to 
undercut generator 2A, as illustrated in Fig. 7.  
 

Strategy
Bid 
($/MWh) 

Bid 
(MWh) EMV 

1-bid 99 1000 59000
1-bid 149 700 76300

 
Fig. 7. EMV calculations for two different 1-bid strategies when demand is 
1000MWh. Only 700 MWh are offered at $149 because the competitor will 
succeed in selling 300 MWh at $100, so the total demand of 1000 MWh will 
be met. 
 

Thus here again, it is clear that GENCO 1 is better off 
submitting one bid than 2. 

VI.  EFFECTS OF THE DEPENDENCY RELATIONSHIP 
Independence between GENCO 2’s bids has been assumed 

in the model that we have discussed so far. The correlation 
that may exist between the two bids of GENCO 2 is ignored. 
But in the actual market, correlation and other dependency 
relationships can exist not only in the fuel prices of generation 
units using the same fuel type, but also among generation 
units employing different fuels, as well as for other reasons. 

Suppose that generator A and generator B of GENCO 2 are 
not independent of each other, but instead have some other 
dependency relationship. This dependency relationship 
between the two generators might be describable as positively 
correlated, negatively correlated, might have a numerical 
correlation value, etc. Suppose F2A and F2B are positively 
correlated such that a high sample value S2A drawn from F2A 
strongly suggests a high sample S2B of F2B, and vice versa. 
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Referring to the decision tree described earlier (Fig. 4), 
GENCO 1’s decision is not affected by this dependency 
relationship because each branch whose EMV depends on S2A 
(the low range bids) does not depend on S2B. Similarly, each 
branch whose EMV depends on S2B does not depend on S2A. 
S2A and S2B might be related in some way, but that does not 
alter GENCO 1’s decision because no matter how S2B depends 
on S2A, the optimal decision made by GENCO 1 is the same.  

Similarly, if F2A and F2B are negatively, partially or 
perfectly correlated, the decision tree remains unchanged with 
comparable reasoning, thus producing equivalent optimal 
bids. In conclusion, the underlying dependency relationship 
between the two random variables describing the two 
competitor’s bids is completely irrelevant in this model. 

VII.  CONCLUSIONS 
The completed analysis has accomplished the objective of 

the paper by showing that the effect of the dependency 
relationship between bids can be irrelevant in determining an 
optimal bid. In the described model, if the domains of 
probability density function domains for the competitor’s two 
bids are non-overlapping, the optimal bid is not affected by 
the correlation of the generation units, regardless of their 
underlying distributions. Where this situation applies, a 
market participant may ignore a significant form of 
uncertainty about its competitor without degradation in the 
quality of its bids.  

VIII.  FUTURE WORK 
As a continuation to this research, our next objective is to 

extend the results to incorporate a pool of market participants 
that includes more than two different competing GENCOs. 
Modeling a group of producers helps to depict a more realistic 
situation contributing to results that are more applicable in 
practical decision-making scenarios for power generating 
companies. In addition to that, the probability density cost 
functions will be modeled in such a way that the price range 
may overlap for different generating units. Once again, the 
dependency relationship among these units will be observed to 
discover the optimal bidding strategy. A third extended 
problem that we plan to investigate is the case where the 
competition has more than 2 generators, and a fourth problem 
is to extend the decision problem to allow GENCO 1 to make 
multiple bids at different prices even if it can meet the demand 
with 1 generator. 

In the implemented analysis, the inclusion of uncertainty in 
terms of the competitor’s probability density functions can be 
classified as 1st-order uncertainty. While one can provide 
justification for this kind of knowledge about the underlying 
uncertainty, relaxing this constraint deserves serious 
consideration. Public or private information based on experts’ 
knowledge, and forecasted and historical data come in various 
forms, creating the potential for 2nd-order uncertainty, or 
explicit descriptions of uncertainty about the details of a 
distribution function on other description of uncertainty. The 
term indicates the existence of uncertainty about the 

underlying uncertainty.  
We have discussed one type of 2nd-order uncertainty, 

namely the dependency relationship, which was shown to be 
safely ignorable. Another type of 2nd-order uncertainty comes 
into play when distribution functions are not fully specified, 
leading to envelopes [2] or probability boxes [4] (see Fig. 8). 
This research will be extended to include this particular type 
of higher order uncertainty to provide new insights. 

 

 
 

Fig. 8.  An example of envelopes or probability boxes distribution function. 
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