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Abstract—This paper presents a framework of portfolio
optimization for energy markets from an electric emrgy
company’s perspective. The objective of this reseehn is to
determine the best possible investment plan by corming two
potentially conflicting portfolio investment goals. First, given the
general characteristics of the generating assets @rforecast of
market variables, the decision maker selects an éffent set of
portfolios by optimizing the expected portfolio retirn. Secondly,
an optimal portfolio is chosen based on company’sisk profile.
This risk is controlled by guaranteeing that the patfolio model
has second-order stochastic dominance (SSD) overtbumulative
distribution of a minimum tolerable reference distribution.
Decision criteria are then applied to obtain an opmal and robust
portfolio.

The proposed approach is used to determine the amou of
optimal market share value that maximizes the expéed value of
the profit. This is performed by treating risk as adistribution that
represents the minimum expected profit acceptableybthe energy
company. Results show that different risk profile éads to
different optimal portfolio. The optimal portfolio which gives the
highest expected profit may not have the best robtrsess. This
approach is also applicable to problems charactered by other
sources of epistemic uncertainty besides unknown pgendencies.

Index Terms—Portfolio optimization, second-order stochastic
dominance, interval analysis, and epistemic unceriaty.

I. INTRODUCTION

The pioneering work in portfolio optimization begaith
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the proposition of mean variance model by Harry hdaitz

[17] in 1952. Since then, many related researctkwias been
focused on finance and economics. In the recentsydhe
adoption of such concept has increased in theucdsting

electric power sector. As more non-probabilistictéas affect
the electricity market, not many research focusedalving
the portfolio selection problem when dependencati@hships
between portfolio segments are unknown, in padiculvhen
the market share is represented by a bounded i@niath no
known underlying distribution.

Because knowledge that supports investment desisi®n
often limited by what information is available, énénce under
conditions of epistemic uncertainty is importantdtin order
to support optimized portfolio. Epistemic uncertgifn the
context of this paper refers to a lack of knowledg®ut the
randomness of the decision variable. In this papeich
uncertainty is quantified as bounded families obhability
distributions. Applying bounded families of disuiibns to
electric power bidding problems exemplifies whatymnize
expected in engineering from applying uncertainty
guantification. There is a growth of interest incartainty
guantification by journal special issues [1-2]. Aipgtions to
problems in electric power [3-4] follow naturallyofn the
insights and investigations of other researcheinso \mave
found that uncertainty quantification has applitigbto power
problems characterized by severe uncertainty. Rrvemi
techniques include intervals [5-6] and fuzzy me#¢d-8].
The well recognized need for decisions in the preseof
severe uncertainty, coupled with the grounding afr o
approach in the mathematically well-founded thea¥
probability, support its use in addressing impdrtaroblems
in electric power. Guidance can then be obtainegrding
investment decisions under conditions of uncenaimtwhich
standard methods would require extra, unjustifieslienptions.

The volatility of electricity prices caused the artain
return (profit or loss) for an electricity portfoli Often times,
standard distributions may not accurately fit tigribution of
returns. This calls for a methodology that doesdegiend on
the type of distribution shape of the return buhea on the
entire cumulative distribution function (CDF) ofettreturn.
This paper addresses this problem by optimizingosfqlio
while satisfying the risk constraint which is regpgated by the
second order stochastic dominance constraint.

In the proposed approach, generating units are iedds a
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series of options. The return is represented byksfmms) or
dark (coal) spread depending on the fuel used. eTlzee
generating units for this analysis. They includes oruclear
unit and 3 thermal units (coal-fired and gas-fired)two-step
optimization approach is proposed to find the optifimancial
portfolio for production. This problem is modeletbrh a
viewpoint of a utility that services 4 differentdinstries. The
first model assumes that this utility company idigaied to
serve the 4 sectors. The second model relaxesdhiraint to
allow the utility to sell to the forward market shd it see

profitable.
The following section describes the portfolio opgation
model. Section Ill defines the robustness and sistih

dominance concepts. Background sections Il andarié
borrowed and modified from a recently submitted rij@l
paper. The major differences in this paper as coetpto the
submitted journal paper include the assumption aliee sum
of all weights in the portfolio does not have talag to 1, the
return for each segment was generated using spafidark
spreads, and Anderson-Darling goodness-of-fit nreasue
used to fit distributions for each return segm8&etction 1V
describes the interval algorithm. Section V and d$cuss
conclusions and future work.

[I. PORTFOLIOOPTIMIZATION MODEL

Optimal portfolios are often identified by findinthe
weights of the portfolio segments such that a mésdn-
objective function is maximized [14]. Formally, theoblem to
be considered is to find such a portfolio givendbastraints:

R=>"X(s))r(s;) -, R (1)

X(Sj)ip < X(Sj) < X(Sj)up (2)
where

R: return distribution of the optimal portfolio

§: portfolio segmeng

X(s): weight of segmergin the portfolio

r(s;): return distribution of optimal portfolio segmest

R: a given reference curve that represents the mimim

tolerable return distribution (“risk limit”)

The symbol %;” designates stochastic dominanceithf
order. As an additional constraint set, weights), X($),

X(%), -.-, X(§) has to be within its upper and lower bound
X(s), and x(s)». Each weight may be required to be withi

some interval in order to enforce a balance acsegments, as
might be specified by a company’s business modestcaints
and investment policies. This model also assunasthie firm
has no restriction in borrowing money when it spasitable
to optimally invest in a particular sector.

The first step is to generate a set of optimal fpbos to
search within for the best. A standard approackedas mean
and risk and parameterized by risk position [17{ised. Let
the desirability of a portfolio return random vdnia r be

sl
n
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determined by the following function of a parameter

describing the importance of risk:
f(z,r) = mean(r) — z *risk(r) 3)

The following equation builds on the concept of Bgand

states that given a risk positianoptimal return distribution is
obtained by:

OPT(2) =supu, - z07) (4)
VY

where
Y: set of portfoliogy complying with constraints (1) and (2)

Uy expected return of a portfolio

2
gy

z: degree of risk aversion

: variance of the return of a portfolo

It is possible to account for properties of poitiolariation
besides variance [11], buraf, is nevertheless widely used to

model risk position.

Stochastic dominance constraint can be thoughtrasking
tool with no assumptions made on the shape of éterrr
distribution. It can be used as a profit/risk iredar for any
given portfolio. Thus, a given portfolio’s returristtibution
can be tested for compliance with stochastic donuea
constraints. By definition, a return of a portfoliX
stochastically dominates another portfofioto the first order,
if the following is true:

STOCHASTIC DOMINANCE AND ROBUSTNESS

X=1Y=>P(X<A<SPY<A
where
P(X < A) : Cumulative distribution function of

4)

Similar to the first order stochastic dominance, ¢bndition
for second order stochastic dominance constramgiven by:

A B
X =, Y:Lo P(X < B)stJ’m P(Y<B)dB (5)

SSD constraint is computed using numerical intégnaor
by summing areas of trapezoids under the curve.sidgeand
number of trapezoids to sum is determined by tep size
chosen for the integration process. An optimal fpba might
or might not comply with an additional requiremdmt it has

stochastic dominance over a given reference retBrn.The
SSD constraint *-,” ensures the dominant portfolio is

preferred by anyisk averseplayer [13], and has the additional
virtue of being less constraining than the FSD traing. Thus,
SSD constraint is used to be consistent with thgeseof risk
aversion specified in Eq. 3.

Robustnesss defined as the amount by which a portfolio
dominates a reference curve (robustness would dpatine if it



Paper ID #381 ro¢eedings of Power Tech 2007, July 1-5, Lausanne

does not dominate). By testing various optimaltfptios for obtained by the derived distribution that risesgloavest. This
robustness, one with the highest robustness cademified. is performed iteratively using linear programmingfind the

Alternatively, one with the highest expected rettinat also maximum and minimum values to form the left andhtig
meets the SSD constraint could be found. In eitase, the envelopes.

strategy is to search among a set of optimal pargrovided Fig. 2 illustrates the computation graphically. Tdperation
by an under-constrained optimization problem far ¢ime that is the addition of two random variableétY=2Z. X andY are
is best according to a second criterion. shown in PDF form and is represented in both PDF and CDF

SSD is computed by the minimum horizontal distanctorms.
between the integrals of two cumulative distribogio In other
words, |SSD| measures how much one curve for tegral of

a distribution can be moved toward another onelbe x-
axis before the two curves touch. |SSD| formalihesamount
PDF

of separation between the integrals of two distidns. |||I|||||||||||| Zppr

The amount of epistemic uncertainty is definedabyThe — + _ il ...
use ofa follows the convention in Info-Gap Theory [9]. thnis B - .
paper, maximum o# value is obtained by calling Eq. 6. ThisYPDF . T JIF Zeor
value determines the robustness of the optimafqdiart A

_ Figure 2. lllustration of the addition of two random variab)X andY, given
mo‘;ix l:new - m:left + (1 - 0’) Fbest—guessS l:reference (6) their dependency is unknown.
where V. A WiTH | c
F.ew New curve obtained with max This is thea curve - ANALYSIS WITH INDUSTRIAL CUSTOMERS
shown in Fig. 6. The portfolio optimization model accepts two majtasses

Fer. Left envelope based on the addition of 4 portfoli®f inputs: (i) the decision variables, which are tmarket
segments, given that their dependencies are unkribhia segments and their profit distributions, and (iiyederence
refers to the left curve in Fig. 6. distribution. The reference distribution referghe cumulative

Fpest-guess The curve based on the addition of 4 independesistribution of a minimum tolerable return. Althdug classic
portfolio segments. This is the best-guess cunavehin ~approach is to optimize the expected portfoliomesubject to
Fig. 6. a risk aversion factor, this model has been matifte

Freference THiS is the minimum tolerable risk level. This isoptimize based on a minimum tolerable ‘“reference”
the reference curve in Fig. 6. distribution, the concepts of second-order stoéhast

dominance and Information-Gap Decision Theory, aradket
share constraints for different customers.
IV. INTERVAL ALGORITHM The decision variables here refer to portfolio segts,

The unknown dependency among the portfolio segm'entsWhiCh are the market shares for cu;tomers witherfolowing
computed using Statool [19] that uses the Distidut markets: the mdugtry mgrkeslx, middle market &), mass
Envelope Determination (DEnv) algorithm. This aigam market &), and distribution marketsf). Each market share
was developed by Berleant et al [20]. This sectioiefly has an allowable range for level of investment mheiteed by
introduces the algorithm. First, a discrete joimstrdbution upper and lower limits. Suppose that the decisianable for
tableau is constructed. Each input is discretizeg keach market is represented ky Then the market share is
representing its probability density function (PDM)ith constrained by the following limits:
intervals (see figure below).

%, 0[0710]; x,0[0.710]; x50 [0608]; x,0[0810]

discretization

Each numberx represents a percentage of the entire
|::> —| European demand in markst For example, in the industry
> market §), the total European demand is 10767 MW/day, so
Figure 1. Discretization process. the market share limits for this segment are [007€Y7,

1*10767] = [7536.90, 10767] MW/day. Therefore, thés no
These discretized inputs form the marginal of thatj constraint indicating that the sum of all markearsls has to
distribution tableau, which sets the constraintsefach interior add up to 1. This is true assuming that the Eunogem is
cell. Each interior cell's is represented by a earfgr its able to sell short and would be able to borrow rgoween
probability mass distribution. Next, the algorithinds the needed. Notice that this is different than mosttfpbo
bounds on the cumulative probability of the derivegroblem because it is commonly assumed that alivights
distribution. The left envelope is obtained by thHerived are fractions of the total budget that has to galtbul.
distribution that rises the fastest and the righvedope is Different customers pay different prices to the pamy.
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The price charged to each market is given by:

7Ty =37E
TTy, =T, +2£
JTy =55E
Ty = 7T, —1£

where
71 : Daily spot price of electricity

The prices above are used to calculate the reviemwsach
market. For example, the revenue for industry maskgment

ro¢eedings of Power Tech 2007, July 1-5, Lausanne

The Anderson-Darling statisti@}) is a test that compares the
fit of an observed CDF to an expected CDF. Formddly n
number of observations, it is defined as:

A2 = _n_%zi":l(zi ~) [N F(X;) +In(L- F(Xp1)) (7)

where
F(X): CDF of the ordered datX;

This is a one-sided test where the critical valdegend on
the specific distribution that is being tested. Hgpothesis for
the distribution to follow a specific shape is g the test

s is in range [37*7,536.90, 37*10,767] = [278,865.3statistic is greater than the critical value.

398,379].

The cost of production is based on the average foostll
units if they are committed to sell. The units ammmitted
based on the least cost dispatch order. There gendrating
units. If the 3 units with the cheapest productawsts can
meet the demand for that day, then only 3 unitscaremitted
and the cost of production is the average coshef3 units
times the demand for that day. Average cost is Umshuse
there is no one-to-one mapping from a specific'sioititput to
a specific market. In other words, if the gas aodlear units
are committed to sell to the industry markg) @nd middle
market §,) segments, there is no information on whethas
getting its electricity from the gas generating tuai the
nuclear generating unit.

Profit distributions based on average cost of petida for

From Table 1, the percentage spreads with respetiet
corresponding mean value is on the order of 10%hodigh
they are in thousands, the values are relativelyllsiih
compared to the mean values.

TABLE 1
THE DISTRIBUTION FIT FOR EACH DEMAND SECTOR
Demand Distribution Mean Star?dgrd Deviation
Sector Deviation
S1 Beta 311,391.84 25,639.18 8.23%
S Beta 368,804.96 36,930.41 10.01%
S3 Student T 411,659.98 13,752.44 3.34%
S Beta 191,379.79 17,155.56 8.96%

Fig. 4 shows the optimal value for market share €ach

each segment is generated to obtain the expectennre demand segment for different degrees of risk awer&i= 0 to

distribution. Since the demand data for the entar exhibits
seasonality, the profit distribution exhibits sezddy as well
(see Fig. 3).

Return Distribution

1200000.00
1000000.00
800000.00 —+ WAoo

600000.00 RN LA i
400000.00
200000.00
0.00

20000000 MM RO AN N AN UNOSNMN MmN Odn N~ oo
NNNNANNNNMmM™m®O®m

aaaaaaaa

= Segmentsl Segments2 ===SegmentS3 ==—SegmentS4 Total Return

Figure 3. Annual return distribution for industry market)( middle market
(s2), mass markets§), and distribution marke&{). Total return, which is the
summation of all returns are also shown.

To use the yearly data without accounting for seakty
would produce inaccurate results. Since this papcus is
not on adjusting the data for seasonality, a srapshone
month’s data is used for the analysis, specificdéy month of
July’s data. July data was chosen because it isalypf a peak
period in the summer. This data is used as an itpuhe
portfolio optimization model together with an arhiily
selected reference distribution.

z=15). The market shares converge to their lowenkds when
z approaches 5. (Note: Although z<0 is not genenadigd for
the degree of risk aversion, the market shareslfaregative
z-values would be at their upper bounds becausgahances
for the demand sectors are high enough that thectig
function would benefit from their consequent rigsn.)

Market Share vs. Z Values

12

0.8

0.6 -

Market Share

0.4 1

0.2

0 1 2 3 4 5
z-value

Figure 4. Market shares for different risk aversion valyesvalues) for
industry marketx;), middle marketx,), mass marketxg), and distribution
market k).

Table 1 shows the distributions for each demandosec

based on the Anderson-Darling goodness-of-fit meaf2d].
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Market Share vs. ZValues
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0.003 0.004 0.005

[—x1 =2 x3 —w—x4|

Figure 5. Market shares for differemtvalues from 0 to 0.005 for the industry
market &), middle market X2), mass marketxg), and distribution market
(xa)-
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Figure 6. Left-envelope curve, best-guess curve, referenoee, and the max

However, the optimal weights change for very smalj (1.14) curve for=0.
positive values of. Fig. 5 illustrates how the weights for each

demand sector move from their upper limits to tHeiver
limits fromz = 0 toz = 0.005.

The weights change over a small rangez-whlues. Since
the reference distribution was arbitrarily chosariew values
for z with different weights are selected to illustraéi@w one
can use the |SSD| and alpha metrics to select-tatue that
gives the best results. The following tables gilve dptimal
values forx,, X, X3, X4, |SSD|, and maw, and the expected

The left envelope curve is the curve generated Hey t
addition of all profit segments without making assumption
about their dependency relationships. Since theelefelope
provides a worst case bound for portfolio perforosannder
uncertainty due to unspecified dependencies amegments,

a high value of 1 is assigneddas the measure of uncertainty
expressed by the left envelope, ignoring the rightelope
henceforth. The best-guess curve is the curve tsagptimal

returns forz = 0, 0.0003, 0.0006, 0.0008, 0.003, and 1 througheights forz=0, where the weights are all at their upper limits

5.
TABLE 2

THE OPTIMAL MARKET SHARES FOR EACH DEMAND SECTOR GEN Z

z X1 X2 X3 X4

0 1 1 0.8 1

0.0003 1 0.9014 0.8 1

0.0006 0.7895 0.7 0.8 1

0.0008 0.7 0.7 0.8 0.8128

0.003 0.7 0.7 0.7497 0.8

1.00-5.00 0.7 0.7 0.6 0.8

TABLE 3
THE OPTIMAL |SSD|MAX ALPHA AND EXPECTED PORTFOLIO RETURN
z |SSD| Maxa U
0 86,409.31 1.14 1,200,900.00
0.0003 56,112.53 0.42 1,164,500.00
0.0006 -63,392.25 0.00 1,024,700.00
0.0008 -118,980.54 0.00 961,020.00
0.003 -141,069.29 0.00 937,870.00
1.00-5.00 -202,112.57 0.00 876,240.00
Under the specified assumptions and the

distribution used, the best portfolio occurs wheis 0. The
weight for the middle market{) decreases first followed by

The reference curve is an arbitrary curve. The alplka curve
defines the robustness measure of the portfolio.

VI. FUTUREWORK

Other constraints such as resource minimum capaeityp
up rate and maintenance (or possible outages) thaththe
firm cannot sell the committed amount of generat@ame not
included in this model. If these are included, tésults could
be far more beneficial to a firm. In addition,rtti@ costs and
the forced outage rate for each unit should beuded in order
to be more complete.

Another extension to this work would be to lookoint
identifying the coherent risk measures to use i@ 865D
constraint. Seasonality of the data has to be ateduor and
more work needs to be done to adjust for this sedgoend.
Multi-period should be a natural extension to thaper as
portfolio problem for a company should be solvedimulti-
period manner.
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