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Abstract— This paper presents a framework of portfolio 

optimization for energy markets from an electric energy 
company’s perspective. The objective of this research is to 
determine the best possible investment plan by combining two 
potentially conflicting portfolio investment goals. First, given the 
general characteristics of the generating assets and forecast of 
market variables, the decision maker selects an efficient set of 
portfolios by optimizing the expected portfolio return. Secondly, 
an optimal portfolio is chosen based on company’s risk profile. 
This risk is controlled by guaranteeing that the portfolio model 
has second-order stochastic dominance (SSD) over the cumulative 
distribution of a minimum tolerable reference distribution. 
Decision criteria are then applied to obtain an optimal and robust 
portfolio. 

The proposed approach is used to determine the amount of 
optimal market share value that maximizes the expected value of 
the profit. This is performed by treating risk as a distribution that 
represents the minimum expected profit acceptable by the energy 
company. Results show that different risk profile leads to 
different optimal portfolio. The optimal portfolio which gives the 
highest expected profit may not have the best robustness. This 
approach is also applicable to problems characterized by other 
sources of epistemic uncertainty besides unknown dependencies.  
 

Index Terms—Portfolio optimization, second-order stochastic 
dominance, interval analysis, and epistemic uncertainty. 

I. INTRODUCTION 

The pioneering work in portfolio optimization began with 
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the proposition of mean variance model by Harry Markowitz 
[17] in 1952. Since then, many related research work has been 
focused on finance and economics. In the recent years, the 
adoption of such concept has increased in the restructuring 
electric power sector. As more non-probabilistic factors affect 
the electricity market, not many research focused on solving 
the portfolio selection problem when dependency relationships 
between portfolio segments are unknown, in particular, when 
the market share is represented by a bounded variable with no 
known underlying distribution.  

Because knowledge that supports investment decisions is 
often limited by what information is available, inference under 
conditions of epistemic uncertainty is important to do in order 
to support optimized portfolio. Epistemic uncertainty in the 
context of this paper refers to a lack of knowledge about the 
randomness of the decision variable. In this paper, such 
uncertainty is quantified as bounded families of probability 
distributions. Applying bounded families of distributions to 
electric power bidding problems exemplifies what may be 
expected in engineering from applying uncertainty 
quantification. There is a growth of interest in uncertainty 
quantification by journal special issues [1-2]. Applications to 
problems in electric power [3-4] follow naturally from the 
insights and investigations of other researchers, who have 
found that uncertainty quantification has applicability to power 
problems characterized by severe uncertainty. Prominent 
techniques include intervals [5-6] and fuzzy methods [7-8]. 
The well recognized need for decisions in the presence of 
severe uncertainty, coupled with the grounding of our 
approach in the mathematically well-founded theory of 
probability, support its use in addressing important problems 
in electric power. Guidance can then be obtained regarding 
investment decisions under conditions of uncertainty in which 
standard methods would require extra, unjustified assumptions. 

The volatility of electricity prices caused the uncertain 
return (profit or loss) for an electricity portfolio. Often times, 
standard distributions may not accurately fit the distribution of 
returns. This calls for a methodology that does not depend on 
the type of distribution shape of the return but rather on the 
entire cumulative distribution function (CDF) of the return. 
This paper addresses this problem by optimizing a portfolio 
while satisfying the risk constraint which is represented by the 
second order stochastic dominance constraint.   

In the proposed approach, generating units are modeled as a 
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series of options. The return is represented by spark (gas) or 
dark (coal) spread depending on the fuel used. There are 
generating units for this analysis. They include one nuclear 
unit and 3 thermal units (coal-fired and gas-fired). A two-step 
optimization approach is proposed to find the optimal financial 
portfolio for production. This problem is modeled from a 
viewpoint of a utility that services 4 different industries. The 
first model assumes that this utility company is obligated to 
serve the 4 sectors. The second model relaxes this constraint to 
allow the utility to sell to the forward market should it see 
profitable.  

The following section describes the portfolio optimization 
model. Section III defines the robustness and stochastic 
dominance concepts. Background sections II and III are 
borrowed and modified from a recently submitted journal 
paper. The major differences in this paper as compared to the 
submitted journal paper include the assumption where the sum 
of all weights in the portfolio does not have to add up to 1, the 
return for each segment was generated using spark and dark 
spreads, and Anderson-Darling goodness-of-fit measure are 
used to fit distributions for each return segment. Section IV 
describes the interval algorithm. Section V and VI discuss 
conclusions and future work.    

II.  PORTFOLIO OPTIMIZATION MODEL 

Optimal portfolios are often identified by finding the 
weights of the portfolio segments such that a mean-risk 
objective function is maximized [14]. Formally, the problem to 
be considered is to find such a portfolio given the constraints: 
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where  
R: return distribution of the optimal portfolio  
sj: portfolio segment j 
x(sj): weight of segment s in the portfolio 
r(sj): return distribution of optimal portfolio segment s 

R
~

: a given reference curve that represents the minimum 
tolerable return distribution (“risk limit”)  
 
The symbol “ if ” designates stochastic dominance of ith 

order.  As an additional constraint set, weights x(s1), x(s2), 
x(s3), …, x(sn) has to be within its upper and lower bounds, 
x(s)lb and x(s)ub. Each weight may be required to be within 
some interval in order to enforce a balance across segments, as 
might be specified by a company’s business model constraints 
and investment policies. This model also assumes that the firm 
has no restriction in borrowing money when it sees profitable 
to optimally invest in a particular sector.  

The first step is to generate a set of optimal portfolios to 
search within for the best. A standard approach based on mean 
and risk and parameterized by risk position [17] is used. Let 
the desirability of a portfolio return random variable r be 

determined by the following function of a parameter z 
describing the importance of risk:  

 
      f(z,r) = mean(r) – z *risk(r)               (3) 
 
The following equation builds on the concept of Eq. 3, and 

states that given a risk position z, optimal return distribution is 
obtained by: 
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where  
Y: set of portfolios y complying with constraints (1) and (2) 
µy: expected return of a portfolio y  

2
yσ : variance of the return of a portfolio y 

z: degree of risk aversion 
 
It is possible to account for properties of portfolio variation 

besides variance [11], but 2
yzσ   is nevertheless widely used to 

model risk position. 

III.  STOCHASTIC DOMINANCE AND ROBUSTNESS 

Stochastic dominance constraint can be thought as a ranking 
tool with no assumptions made on the shape of the return 
distribution. It can be used as a profit/risk indicator for any 
given portfolio. Thus, a given portfolio’s return distribution 
can be tested for compliance with stochastic dominance 
constraints. By definition, a return of a portfolio X 
stochastically dominates another portfolio Y, to the first order, 
if the following is true: 

 
)()(1 AYPAXPYX ≤≤≤⇒f       (4) 

 where 
   )( AXP ≤ : Cumulative distribution function of X 

 
Similar to the first order stochastic dominance, the condition 

for second order stochastic dominance constraint is given by:  
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SSD constraint is computed using numerical integration or 

by summing areas of trapezoids under the curve. The size and 
number of trapezoids to sum is determined by the step size 
chosen for the integration process. An optimal portfolio might 
or might not comply with an additional requirement that it has 

stochastic dominance over a given reference return, R
~

. The 

SSD constraint “ 2f ” ensures the dominant portfolio is 

preferred by any risk averse player [13], and has the additional 
virtue of being less constraining than the FSD constraint. Thus, 
SSD constraint is used to be consistent with the degree of risk 
aversion specified in Eq. 3. 

Robustness is defined as the amount by which a portfolio 
dominates a reference curve (robustness would be negative if it 
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does not dominate).  By testing various optimal portfolios for 
robustness, one with the highest robustness can be identified.  
Alternatively, one with the highest expected return that also 
meets the SSD constraint could be found.  In either case, the 
strategy is to search among a set of optimal portfolios provided 
by an under-constrained optimization problem for the one that 
is best according to a second criterion.   

SSD is computed by the minimum horizontal distance 
between the integrals of two cumulative distributions.  In other 
words, |SSD| measures how much one curve for the integral of 
a distribution can be moved toward another one along the x-
axis before the two curves touch.  |SSD| formalizes the amount 
of separation between the integrals of two distributions. 

The amount of epistemic uncertainty is defined by α.  The 
use of α follows the convention in Info-Gap Theory [9]. In this 
paper, maximum of α value is obtained by calling Eq. 6. This 
value determines the robustness of the optimal portfolio. 

 

referenceguessbestleftnew FFFF ≤−+= −)1(max αα
α

    (6) 

where 
Fnew: New curve obtained with max α. This is the α curve 

shown in Fig. 6. 
Fleft: Left envelope based on the addition of 4 portfolio 

segments, given that their dependencies are unknown. This 
refers to the left curve in Fig. 6. 
Fbest-guess: The curve based on the addition of 4 independent 

portfolio segments. This is the best-guess curve shown in 
Fig. 6. 
Freference: This is the minimum tolerable risk level. This is 

the reference curve in Fig. 6.  
 

IV.  INTERVAL ALGORITHM 

The unknown dependency among the portfolio segments is 
computed using Statool [19] that uses the Distribution 
Envelope Determination (DEnv) algorithm. This algorithm 
was developed by Berleant et al [20]. This section briefly 
introduces the algorithm. First, a discrete joint distribution 
tableau is constructed. Each input is discretized by 
representing its probability density function (PDF) with 
intervals (see figure below). 

 
 
 
  
 

 
Figure 1. Discretization process. 

 
These discretized inputs form the marginal of the joint 

distribution tableau, which sets the constraints for each interior 
cell. Each interior cell’s is represented by a range for its 
probability mass distribution. Next, the algorithm finds the 
bounds on the cumulative probability of the derived 
distribution. The left envelope is obtained by the derived 
distribution that rises the fastest and the right envelope is 

obtained by the derived distribution that rises the slowest. This 
is performed iteratively using linear programming to find the 
maximum and minimum values to form the left and right 
envelopes.  

Fig. 2 illustrates the computation graphically. The operation 
is the addition of two random variables, X+Y=Z. X  and Y are 
shown in PDF form and Z is represented in both PDF and CDF 
forms. 

 
 

                  
 

               
 
Figure 2. Illustration of the addition of two random variables, X and Y, given 
their dependency is unknown. 

V. ANALYSIS WITH INDUSTRIAL CUSTOMERS 

The portfolio optimization model accepts two major classes 
of inputs: (i) the decision variables, which are the market 
segments and their profit distributions, and (ii) a reference 
distribution. The reference distribution refers to the cumulative 
distribution of a minimum tolerable return. Although a classic 
approach is to optimize the expected portfolio return subject to 
a risk aversion factor, this model has been modified to 
optimize based on a minimum tolerable “reference” 
distribution, the concepts of second-order stochastic 
dominance and Information-Gap Decision Theory, and market 
share constraints for different customers. 

The decision variables here refer to portfolio segments, 
which are the market shares for customers within the following 
markets: the industry market (s1), middle market (s2), mass 
market (s3), and distribution market (s4). Each market share 
has an allowable range for level of investment determined by 
upper and lower limits. Suppose that the decision variable for 
each market is represented by xi. Then the market share is 
constrained by the following limits: 

 
]0.1,8.0[];8.0,6.0[];0.1,7.0[];0.1,7.0[ 4321 ∈∈∈∈ xxxx  

 
Each number xi represents a percentage of the entire 

European demand in market si. For example, in the industry 
market (s1), the total European demand is 10767 MW/day, so 
the market share limits for this segment are [0.7*10767, 
1*10767] = [7536.90, 10767] MW/day. Therefore, there is no 
constraint indicating that the sum of all market shares has to 
add up to 1. This is true assuming that the European firm is 
able to sell short and would be able to borrow money when 
needed. Notice that this is different than most portfolio 
problem because it is commonly assumed that all the weights 
are fractions of the total budget that has to add up to 1. 

Different customers pay different prices to the company. 

discretization 
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The price charged to each market is given by: 
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where 

sπ : Daily spot price of electricity 

 
The prices above are used to calculate the revenue for each 

market. For example, the revenue for industry market segment 
s1 is in range [37*7,536.90, 37*10,767] = [278,865.3, 
398,379].  

The cost of production is based on the average cost for all 
units if they are committed to sell. The units are committed 
based on the least cost dispatch order. There are 4 generating 
units. If the 3 units with the cheapest production costs can 
meet the demand for that day, then only 3 units are committed 
and the cost of production is the average cost of the 3 units 
times the demand for that day. Average cost is used because 
there is no one-to-one mapping from a specific unit’s output to 
a specific market. In other words, if the gas and nuclear units 
are committed to sell to the industry market (s1) and middle 
market (s2) segments, there is no information on whether s1 is 
getting its electricity from the gas generating unit or the 
nuclear generating unit. 

Profit distributions based on average cost of production for 
each segment is generated to obtain the expected return 
distribution. Since the demand data for the entire year exhibits 
seasonality, the profit distribution exhibits seasonality as well 
(see Fig. 3).  

 

 
Figure 3. Annual return distribution for industry market (s1), middle market 
(s2), mass market (s3), and distribution market (s4). Total return, which is the 
summation of all returns are also shown.  

 
To use the yearly data without accounting for seasonality 

would produce inaccurate results. Since this paper’s focus is 
not on adjusting the data for seasonality, a snapshot of one 
month’s data is used for the analysis, specifically the month of 
July’s data. July data was chosen because it is typical of a peak 
period in the summer. This data is used as an input to the 
portfolio optimization model together with an arbitrarily 
selected reference distribution.   

Table 1 shows the distributions for each demand sector 
based on the Anderson-Darling goodness-of-fit measure [21]. 

The Anderson-Darling statistic (A2) is a test that compares the 
fit of an observed CDF to an expected CDF. Formally, for n 
number of observations, it is defined as: 

 

∑ = +−−+⋅−−−=
n

i ni XFXFi
n

nA
1 11
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where 
F(Xi): CDF of the ordered data, Xi 

 
This is a one-sided test where the critical values depend on 

the specific distribution that is being tested. The hypothesis for 
the distribution to follow a specific shape is rejected the test 
statistic is greater than the critical value.   

From Table 1, the percentage spreads with respect to the 
corresponding mean value is on the order of 10%. Although 
they are in thousands, the values are relatively small if 
compared to the mean values. 

 
TABLE 1 

THE DISTRIBUTION FIT FOR EACH DEMAND SECTOR 

Demand 
Sector 

Distribution Mean 
Standard 
Deviation 

Deviation 

s1 Beta 311,391.84 25,639.18 8.23% 

s2 Beta 368,804.96 36,930.41 10.01% 

s3 Student T 411,659.98 13,752.44 3.34% 

s4 Beta 191,379.79 17,155.56 8.96% 

 

Fig. 4 shows the optimal value for market share for each 
demand segment for different degrees of risk aversion (z = 0 to 
z = 5). The market shares converge to their lower bounds when 
z approaches 5. (Note: Although z<0 is not generally used for 
the degree of risk aversion, the market shares for all negative 
z-values would be at their upper bounds because the variances 
for the demand sectors are high enough that the objective 
function would benefit from their consequent riskiness.) 

 
Market Share vs. Z Values
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Figure 4. Market shares for different risk aversion values (z values) for 
industry market (x1), middle market (x2), mass market (x3), and distribution 
market (x4). 
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Market Share vs. Z Values
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Figure 5. Market shares for different z values from 0 to 0.005 for the industry 
market (x1), middle market (x2), mass market (x3), and distribution market 
(x4). 
 

However, the optimal weights change for very small 
positive values of z. Fig. 5 illustrates how the weights for each 
demand sector move from their upper limits to their lower 
limits from z = 0 to z = 0.005.  

The weights change over a small range of z-values. Since 
the reference distribution was arbitrarily chosen, a few values 
for z with different weights are selected to illustrate how one 
can use the |SSD| and alpha metrics to select the z-value that 
gives the best results. The following tables give the optimal 
values for x1, x2, x3, x4, |SSD|, and max α, and the expected 
returns for z = 0, 0.0003, 0.0006, 0.0008, 0.003, and 1 through 
5. 

 
TABLE 2 

THE OPTIMAL MARKET SHARES FOR EACH DEMAND SECTOR GIVEN Z 

z x1 x2 x3 x4 

0 1 1 0.8 1 

0.0003 1 0.9014 0.8 1 

0.0006 0.7895 0.7 0.8 1 

0.0008 0.7 0.7 0.8 0.8128 

0.003 0.7 0.7 0.7497 0.8 

1.00-5.00 0.7 0.7 0.6 0.8 

 

 
TABLE 3 

THE OPTIMAL |SSD|, MAX ALPHA AND EXPECTED PORTFOLIO RETURN 

z |SSD| Max α µ 

0 86,409.31 1.14 1,200,900.00 

0.0003 56,112.53 0.42 1,164,500.00 

0.0006 -63,392.25 0.00 1,024,700.00 

0.0008 -118,980.54 0.00 961,020.00 

0.003 -141,069.29 0.00 937,870.00 

1.00-5.00 -202,112.57 0.00 876,240.00 

 
Under the specified assumptions and the reference 

distribution used, the best portfolio occurs when z is 0. The 
weight for the middle market (x2) decreases first followed by 
the industry market (x1), distribution market (x4) and mass 
market (x3). As we will discuss later, these results are due to 
the fact that there is no scarcity. 

Fig. 6 shows the left envelope of the unknown dependency 
curve, the best-guess curve, the reference curve and the max 
alpha curves (α=1.14) for z=0.  

 
Figure 6. Left-envelope curve, best-guess curve, reference curve, and the max 
α (1.14) curve for z=0. 

 
The left envelope curve is the curve generated by the 

addition of all profit segments without making any assumption 
about their dependency relationships. Since the left envelope 
provides a worst case bound for portfolio performance under 
uncertainty due to unspecified dependencies among segments, 
a high value of 1 is assigned to α as the measure of uncertainty 
expressed by the left envelope, ignoring the right envelope 
henceforth. The best-guess curve is the curve using the optimal 
weights for z=0, where the weights are all at their upper limits. 
The reference curve is an arbitrary curve. The max alpha curve 
defines the robustness measure of the portfolio. 

VI.  FUTURE WORK 

Other constraints such as resource minimum capacity, ramp 
up rate and maintenance (or possible outages) such that the 
firm cannot sell the committed amount of generation, are not 
included in this model. If these are included, the results could 
be far more beneficial to a firm.  In addition, startup costs and 
the forced outage rate for each unit should be included in order 
to be more complete. 

Another extension to this work would be to look into 
identifying the coherent risk measures to use in the SSD 
constraint. Seasonality of the data has to be accounted for and 
more work needs to be done to adjust for this seasonal trend. 
Multi-period should be a natural extension to this paper as 
portfolio problem for a company should be solved in a multi-
period manner. 
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