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Abstract:  

This paper describes the initial development of a tool 
that helps find and visualize metabolic networks. The 
tool is written in Java™ and consists of two parts. The 
first part is a text-mining tool that pulls out potential 
metabolic relationships from the existing database 
PubMed. These relationships are then reviewed by a 
domain expert and added to an existing network model. 
The result is visualized using a graph display module. 
The basic metabolic or regulatory flow is illustrated 
using a binary network. An example from the 
regulatory network for the plant hormone gibberellin 
shows how this tool operates.  

I. Introduction 

Despite the large amounts of research in genomics, 
more effort is needed for development of 
methodologies to identify and analyze complex 
biological networks.  RNA profiling analysis is yielding 
vast amounts of data on gene expression.  New 
techniques such as proteomics will further add to this 
glut of information.  

The goal of this project is to develop a publicly 
available software suite called the Gene Expression 
Toolkit. This toolkit will aid in the analysis and 
comparison of large microarray, proteomics, and 
metabolomics data sets. The user can select parameters 
for comparison such as species, experimental 
conditions, and developmental stage. Two of the key 
tools in the Gene Expression Toolkit are a text-mining 
tool, called PathBinder, which permits the mining of 
online literature and a network modeling tool called 
FCModeler.  The PathBinder citations will be available 
to the researcher and smoothly transferable for use in 
annotating displays in other parts of the package and as 
links in building models. The FCModeler tool for gene 
regulatory and metabolic networks is intended to easily 
capture the intuitions of biologists and help test 
hypotheses along with providing a modeling framework 
for assessing the large amounts of data captured by 
microarrays and other high-throughput experiments. 
This tool uses fuzzy methods for modeling networks 

and interprets the results using fuzzy cognitive maps 
(Dickerson and Kosko 1994; Kosko 1986; Kosko 
1986). 

II. Structure of Concepts and Links 

Metabolic networks form the basis for the net 
accumulation of biomolecules in living organisms. 
Regulatory networks modulate the action of these 
metabolic networks, leading to physiological and 
morphological changes. The modeling tool will 
integrate our understanding of the interactions within 
and between these regulatory and metabolic networks.  
The nodes represent specific biochemicals such as 
proteins, RNA, and small molecules, or stimuli, such as 
light, heat, or nutrients.  Three types of links are 
specified as shown in Figure 1.  In a conversion link 
(black arrow), a node (typically a chemical(s)) is 
converted into another node (chemical(s)), and used up 
in the process.  In a regulatory link (green and red 
arrows), the node activates or deactivates another node, 
and is not used up in the process.  A catalytic link (blue 
arrows) represents an enzyme that enables a chemical 
conversion and does not get used up in the process. 

Other key features include concentrations of the 
molecules (nodes), strengths of the links, and 
subcellular compartmentation.  These data can be added 
as they are identified experimentally.  Currently the 
biologist user can include or ignore a variety of 
parameters, such as subcellular compartmentation and 
link strength.  Furthermore, because the node and link 
data is entered on simple Microsoft Excel™ 
spreadsheets, individual biologists can easily sort, 
share, and post data on the web.   

Future versions will distinguish between regulation that 
results in changes in concentrations of the regulated 
molecule, and regulation that involves a reversible 
activation or deactivation. 

III. PathBinder: Document Processing Tool 
for Finding Metabolic Pathways 

PathBinder identifies information about the pathways 
that mediate biological processes from the scientific  
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Figure 1: Links in the metabolic and regulatory
network model. Black arrows indicate conversion
links. Blue arrows represent catalytic links, green
and red arrows are positive and negative.
regulatory links, respectively. 

literature. Sentences are useful units of information for 
this purpose, and are relatively straightforward units 
into which to segment a document.  This tool searches 
through documents in Medline and Agricola for 
sentences containing terms that indicate relevance to 
signal transduction or metabolic pathways.  Microarray 
data can be used to hypothesize causal relationships 
between genes, and PathBinder will then mine Medline 
and Agricola for information about these putative 
pathways, extracting passages most likely to be relevant 
to a particular pathway and storing this desired 
information in highly concentrated form.  The 
information is presented in a user-friendly format that 
supports efficiently investigating the pathways.  

A number of researchers have addressed extraction of 
protein interactions from MEDLINE. Blaschke et al. 
(1999) extracts by first identifying phrases conforming 
to the template: …protein …verbclass…protein…, 
where verbclass is one of 14 sets of pathway relevant 
verbs (such as “bind”) and inflections. Ng and Wong 
(1999) describe a system, of which BioNLP is one 
component which extracts sentences containing 
pathway relevant verbs and applies templates to 
identify path relevant relationships among proteins. 
Rindflesch et al. (1999) apply non-trivial NLP to 
extract assertions about binding relationships in 
particular. Thomas et al. (2000) distinguish between 
verbs that are relatively more and less reliable in 
indicating protein interactions in their extraction work. 
The PathBinder work differs from these due to a 
combination of system design decisions. PathBinder 
avoids syntactic analysis of text in favor of word 
experts for pathway relevant verbs. Word experts are 
sets of rules for interpreting words (Berleant 1995). 
PathBinder also is oriented toward assisting humans in 
constructing pathways rather than fully automatic 
construction, thus avoiding information retrieval 
precision limitations. We are also investigating the 
relative performances of several algorithms for 
identifying relevant sentences, including verb-free 
algorithms that rely instead on protein term co-
occurrences. 

How PathBinder Works 

Step 1: user input. Keyboard input of biomolecule 
names in pathways of interest by the user.  

Step 2: synonym extraction. A user-editable synonym 
file combined with a more advanced module that will 
automatically access the HUGO 
(www.gene.ucl.ac.uk.publicfiles/ 
nomen/nomenclature.txt) and OMIM 
(www.ncbi.nlm.nih.gov/htbinpost/Omim/) 
nomenclature databases, and extract synonyms.  

Step 3: document retrieval. The PubMed and Agricola 
document repositories are accessed and queried using 
terms input in Step 1.  The output of this step is a list of 
URLs with high relevance probabilities.  

Step 4: sentence extraction. Each URL is downloaded 
and scanned for pathway-relevant sentences that satisfy 
the query. These sentences constitute pathway-relevant 
information “nuggets.”   

Repetition of steps 2 through 4, using different 
biomolecule names extracted from qualifying 
sentences. These new biomolecule names are 
candidates for inclusion in the pathways of interest. 
Step 5: sentence index. Process the messy collection of 
qualifying sentences into a far more user-friendly form, 
a multi-level index, with the number of levels 
dependent on the sentence extraction criteria.  This 
index conforms to a pattern (Figure 2), displayed by a 
Web browser, and the sentences in it are clickable.  
When a sentence is clicked, the document from which it 
came appears in the Web browser.   

Step 6: integration with the rest of the software and the 
microarray data sets. The index can be used to create a 
graphical representation in which verbs are represented 
by lines, interconnecting the biomolecule names and 
forming a web-like relationship diagram of the 
extracted information.  

PathBinder is useful as both a standalone tool and an 
integrated subsystem of the complete system. The 
multilevel indexes transform naturally into inputs for 
the network modeling tools. The networks that 
PathBinder helps identify will form valuable input to 
the clustering, display, and analysis software modules. 

Example of a sample PathBinder Query:  

The query is to find sentences containing (either 
gibberellin, gibberellins, or GA) AND (either SPY, 
SPY-4, SPY-5, or SPY-7). Three relevant results were 
found and incorporated into the metabolic and 
regulatory visualization.  A single sentence example is 
show below. 



Protein A 
        Protein B 
                Associates/Associated/etc. 
                        Sentence1 
                        Sentence2 
                        . . . 
                Binds/Binding/Bind/etc. 
                        SentenceM 
                        SentenceN 
                        . . . 
                Regulates/Regulating/etc. 
                . . . 
        Protein C 
                Associates/Associated/etc. 
                        SentenceY 
                        . . . 
                Binds/Binding/Bind/etc. 
                . . . 
Protein B 
        Protein D 
                Associates/Associated/etc. 
                        Sentence1000 
. . .   . . .   . . .   . . . 

Figure 2. Format of index produced by the
PathBinder software. A, B, C, etc., are placeholders
for the "official" name of a protein followed by a list
of its synonyms, and the SentenceN’s stand for
actual extracted sentences.  

Sentence: “The results of these experiments show that 
spy-7 and gar2-1 affect the GA dose-response 
relationship for a wide range of GA responses and 
suggest that all GA-regulated processes are controlled 
through a negatively acting GA-signaling pathway.” 

Source Information:  UI  - 99214450, Peng J,  Richards 
DE, Moritz T,  Cano-Delgado A, Harberd NP, Plant 
Physiol 1999 Apr;119(4):1199-208. 

IV. Visualizing the  Network 

The next step is to visualize the known and unknown 
biological information using a graph visualization 
program called Graphviz developed at AT&T research 
labs (http://www.research.att.com/sw/tools/graphviz/) 
to do the initial graph layout.  The front end of the 
FCModeler tool is a Java TM interface that reads and 
displays data from an ExcelTM spreadsheet of links and 
nodes.  This system handles such non-standard 
graphing techniques as links that modify other links as 
in a catalytic reaction.  Figure 3a shows a small part of 
a graph for the Arabadopsis metabolic and regulatory 
network.  Figure 3b shows the original graph plus the 
three new links discovered in the PathBinder search. 

Eventually, the expression of the strength of a 
connection relative to another connection will be added 

to the graph. Connection strength can also reflect the 
user’s confidence in the link between concepts. The 
system will check for conflicts between different 
network models by looking for paths that cancel each 
other out will be added to the software. When 
hypothesized edges are added, the software will check 
for direct and indirect causal conflicts as well as 
redundant information between pairs of concepts or 
nodes. When conflicts are discovered, the source of the 
conflict will be reported to the scientist doing the 
modeling. 

V. FCModeler: Fuzzy Cognitive Map 
Modeling Tool for Regulatory Networks 

The FCModeler tool models regulatory networks so 
that important relationships and hypotheses can be 
mined from the data. Some types of models that have 
been studied for representing gene regulatory networks 
are Boolean networks (Liang, 1998; Akutsu, 1999), 
linear weighting networks (Weaver, 1999), differential 
equations (Akutsu 2000), and Petri nets (Matsuno et al 
2000). Circuit simulations and differential equations 
require detailed information that is not yet known about 
the regulatory mechanisms between genes. Boolean 
networks analyze binary state transition matrices to 
look for patterns in gene expression. Each part of the 
network is either on or off depending on whether a 
signal is above or below a pre-determined threshold. 
Linear weighting networks have the advantage of 
simplicity since they use simple weight matrices to 
additively combine the contributions of different 
regulatory elements. Petri nets can handle a wide 
variety of information however their complexity does 
not scale up well to systems that have both continuous 
and discrete inputs (Alla, 1998; Reisig, 1998).  

Fuzzy cognitive maps (FCMs) have the potential to 
answer many of the concerns that arise from the 
existing models. Fuzzy logic allows a concept or gene 
expression to occur to a degree – it does not have to be 
either on or off (Kosko 1986). FCMs have been 
successfully applied to systems that have uncertain and 
incomplete models that cannot be expressed compactly 
or conveniently in equations. Some examples are 
modeling human psychology (Hagiwara 1992), 
modeling slurry rheology (Banini and Bearman 1998), 
and on-line fault diagnosis at power plants (Lee et al., 
1996). All of these problems have some common 
features. The first is the lack of quantitative information 
on how different variables interact.   The second is that 
the direction of causality is at least partly known and 
can be articulated by a domain expert. The third is that 
they link concepts from different domains together 
using arrows of causality.  These features are shared by 
the problem of modeling the signal transduction and 
gene regulatory networks.   



We will use a series of +/- links that model known 
signal transduction pathways and hypothesized 
pathways. A third link type will suggest a relationship 
between concepts with no implied causality. These 
links will be constructed by mining the literature using 
PathBinder and from the expert knowledge of 
biologists. Given the partial signal transduction network 
so constructed, we will augment the system with 
advanced tools that: 

��Locate and visualize closely coupled 
subgraphs or signal transduction networks. 

��Develop simulation tools for modeling 
intervention in the network (e.g. what happens 
when a node is shut off) and search for critical 
paths and control points in the network.  

��Capture information about how edges between 
graph nodes change when different regulatory 
factors are present  

Fuzzy cognitive maps are fuzzy digraphs that model 
causal flow between concepts or in this case genes, 
proteins, and transcription factors (Kosko 1986; Kosko 
1986). The concepts are linked by edges that show the 
degree to which the concepts depend on each other. 
FCMs can be binary state systems with causality 
directions that are +1, a positive causal connection, -1, 
a negative connection, or zero, no causal connection. 
Simple binary limit cycles show "hidden patterns" of 
actions. The fuzzy structure allows the gene expression 
to be expressed in the continuous range [0, 1]. The 
input is the sum of the product of the fuzzy edge values.  
The system nonlinearly transforms the weighted input 
to each node using a threshold function or other 
nonlinear activation. 

The edges between nodes can also be time dependent 
functions that create a complex dynamical system. 
Neural learning laws and expert heuristics encode limit 
cycles and causal patterns.  One learning method is 
differential Hebbian learning in which the edge matrix 
updates when a causal change occurs at the input 
(Dickerson and Kosko 1994).  

VI. Conclusions   

The integration of FCModeler with PathBinder will 
allow biologists to gather and combine information 
from the literature, their expert knowledge, and the 
public databases of mRNA results.  
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Figure 3. a) shows a small part of a graph for the Arabadopsis metabolic and regulatory network. b) 
shows the original graph plus the three new links discovered in the PathBinder search which are 
highlighted in yellow. 
 


