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ABSTRACT 

 

 Since the nineties, many electric utilities and power network companies have undergone and are 

still experiencing dynamic change in the ways of doing business, from a vertically integrated industry to 

an open market system. The operational planning activity of a generation company (GenCo) is no longer 

a cost-minimizing process, but seeks to maximize its net profit subject to physical constraints and market 

factors. The objective of this research is to develop a strategic bidding decision-making unit that not only 

considers the technical aspects of unit operation such as capacity limits but also incorporates information 

about other market participants and the volatility of the market prices. These additional market factors are 

significant in such an oligopoly market because they influence the amount of electricity sold and 

purchased, hence affecting the net profit gained. This project proposes an economic model that attempts 

to data mine the available historical and current market data in a deterministic two-market-participant 

environment. Further stochastic analysis is performed using the information gap decision theory concept 

to quantify the uncertainty that arises. The data mining approach can also be justified for information 

acquisition to reduce uncertainty, hence improving the information gap model.  

 

 

INTRODUCTION 

 

 Traditionally, the electric power industry was dominated by large utilities that manage overall 

activities in generation, transmission, and distribution of power. The economic incentives to provide 

cheaper and reliable electricity as well as to encourage efficient capacity expansion and investment 

planning have opened up the option to introduce competition in the electricity sector. To date, almost half 

of the states in North America are either fully deregulated or in the transition stages, while others are in 
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the application process1. The restructuring process has introduced increased competition and most 

GenCos no longer employ the conventional unit commitment and economic dispatch techniques to 

produce the optimal price-quantity bids. Instead, GenCo is now faced with a competitive strategic bidding 

environment at a higher uncertainty level since every market player has information only about its own 

production activities and some publicly available information such as market clearing electricity prices 

and fuel prices.   

 In this competitive market mechanism, the behavior of each market participant affects but does 

not control the market, hence leading to an oligopoly market where the market is not perfectly 

competitive. Market players are faced with uncertainties in which electricity can now be considered a type 

commodity and its prices are determined by market forces. Every decision made by the market players is 

dependent on factors that can be described by Porter’s five forces. In this framework, Michael Porter 

illustrates the relationship between competitors within an industry, potential competitors, suppliers, and 

buyers. The five forces are barriers to entry, rivalry among existing competitors, product substitutes, 

market power of buyers, and market power of suppliers.  

 Optimal bidding strategies can be formulated in several ways depending on what type of 

information is available and accessible. Often times, GenCo models its bidding strategy with the aid of 

forecasting tools that estimate the market-clearing price (MCP) of the market in the next trading period 

based on historical fluctuations in prices. A more complicated model will try to include the behavior of 

the competitors in an attempt to outperform their rivals. The following sections begin with the data 

mining approach that analyzes the behavior of the competitors’ policies or strategies in bidding followed 

by the information gap decision concept to quantify uncertainties for the dependent input variables in the 

bidding model.  

 

 

DATA MINING 

 

 Data mining refers to the process of transforming collected raw data into usable information. 

Although data in its raw form is of limited use, it can be manipulated to realize its potential use. Raw data 

can be aggregated and analyzed, together with heuristic knowledge about the nature of the problem, 

providing significant information that can be acted upon in making informed decisions.  

 This section explains the data mining process with a deterministic model. The organization of the 

data mining process comprises the forward and backward process. The forward process aims to provide 

an optimal bidding strategy for GenCos (producers) that includes not only the physical constraints but the 
                                                 
1 Source: Energy Information Administration (EIA) as of February, 2003.  
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demand side as well. This model generates a bid-quantity series as the optimal decision with the given 

information and the inherent structure of the model. The backward process aims to use the output of the 

forward process to reverse the bidding strategies employed. The basic information on the market structure 

includes, but is not limited to, the following: have available data on system outages and forecasted loads; 

loads bid in hourly fashion; forecasted load is available in the day-ahead market; suppliers bid in 

minimum generation blocks and incremental energy blocks with increasing costs; hourly prices, loads 

committed, and generation bids are posted. 

 

The Forward Process 

 The fundamental objective in the forward process is to be able to generate the appropriate price-

quantity bidding curve with respect to market movements such as the price of electricity and fuel. In the 

real market, price and quantity are determined by the market forces, in particular the demand and supply 

for electricity. MCP depends on fuel price, heat rate curve (to calculate fuel cost), variable cost, operating 

and maintenance cost, wheeling cost, new equipment installation, future cost evolution, demand variation, 

and other economic and cost considerations. In our project, we develop a model that consists of the 

following two components: 

• SUPPLY: profit-maximizing competitive producers or utility companies (generation companies) 

• DEMAND: price-taking cost-minimizing consumers 

In the SUPPLY model, the fuel price is assumed to be given and each supplier is maximizing 

profit with the following objective function: 

 

MAXIMIZE Profit = Revenue – Cost 

 

Revenue originates from spot market sell and bilateral power sell, and cost is represented as 

payments for spot market buy, unit operating costs, startup costs, and shut down costs. 
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Where: 

cksk ρρ ,  Spot market price and bilateral contract price for time period k 

kq )(⋅  Amount of power sold, contracted, or bought for time period k 

kikiki usdustw ,,, ,,  Binary variables for unit status (1=ON/startup/startup, 0=OFF/No startup/No 
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shutdown) for time period k for duration i 

ic(min)  Cost of minimum generation for duration i 

kiqg ,  Amount of power generated in addition to minimum generation for time 

period k for duration i 

igc  Generation cost beyond minimum generation cost for duration i 

ii sdst ,  Startup and shutdown costs 

 

First of all, we generate a break-even bid curve by excluding the hedging component of the equation. 

 

Revenue ),,,,,,(min)())(,( ,,,, ikiikikikiiksk sdusdstustgcqgcCostsellq =ρ  

 

 In addition to the quantity sold, we need to consider that there is a fixed payment or minimum 

payment charged to guarantee future flow of the commodity (electricity) sold. This fixed payment can be 

treated as a means to recover fixed cost in the long run. This fixed payment is assumed to recapture the 

minimum generation and startup and shutdown costs. 

Deleted the following bracket at the end 
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where ikiikiikiifixed sdusdstustcwR ⋅+⋅+⋅= ,,,, (min)  

 

The generation cost curve should include the price of fuel (gas) and the average heat rate (AHR) 

curve of the generating unit. The gkρ  in the following equation represents the price of gas for time period 

k and the AHR curve is obtained from the input-output (IO) curve averaged over the quantity of power 

generated. 
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The updated revenue equals cost equation:  
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In this equation, skρ has been replaced with kqB )( because we want to find the relationship 

between the bid price and the generation level kiqg ,  for time period k. The spot market price is the price 

paid, and bids submitted may or may not be accepted. We also know that kik qgsellq ,)( = (ignoring the 

hedging component) and hence our break-even bid curve can be represented by: 
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Assuming that the price of fuel is given, we can produce a break-even bidding curve for the 

supplier. We would then include the maximum profit bid curve by finding the first-order-condition for the 

profit function. The resulting bidding curve is shown in Figure 1.  
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Figure 1. The maximum profit and break-even bid at each generation level. 

 

 The maximum profit is obtained by using the forecasted electricity price that maximizes our 

profit. The break-even curve is found by the equation derived above and is dependent on the natural gas 

prices. Therefore, we have a range of bids at each cross section of the generation level. The amount to bid 

depends on the risk profile of the GenCo, and later sections will explain how to quantify uncertainty in 

determining the price-quantity bid.  
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The Induction Procedure 

 As mentioned in the earlier section, data mining seeks to discover hidden patterns that can inform 

the analyst about the strategy or types of generating unit used. The first data mining approach used in this 

research is the rule or decision tree induction to deduce the pattern discovered from the data. It produces 

patterns that relate to the bidding decision made or other data fields (attributes). The resulting patterns are 

typically generated as a tree with splits on data fields and terminal points (leafs). In order to study the 

bidding behavior of a supplier, we first use this rule induction to separate the active (when bid is 

submitted) bid-quantity-price group from the passive (when no bids are submitted) group.  

 The algorithm used for the decision tree induction is the standard C4.5 algorithm [1,2]. Similar to 

its predecessor, the ID3 algorithm, C4.5 is a top down induction of decision tree that employs the divide 

and conquer concept. However, to select the best splitting attribute, it uses the highest information gain 

ratio2 based on the entropy formula to generate decision tree. The optimal splitting attribute chosen is the 

attribute that results in the smallest tree. The general steps for C4.5 are as follows: (1) Attribute is selected 

for root node and branch is created for each possible attribute; (2) The instances are split into subsets (one 

for each branch extending from the node); (3) Procedure is repeated recursively for each branch, using 

only instances that reach the branch; (4) Procedure stops when all instances have the same class. It infers 

decision tree from the training set to convert the learned tree into an equivalent set of rules.  

 We have developed a basic forward process and used the Java program (Weka3.2) to run C4.5 on 

the data generated by the forward process. The first rule induction process yields the following simple 

result shown in Figure 2.  

 

 

 

 

 

Figure 2. The induced decision tree based on the data generated from the forward process. 

 

Simple as it seems to be, this is a strong result in that this rule matches all the data generated from 

the forward process. From the competitor’s viewpoint, it may only rely on the forecasted electricity price 

to determine whether we, as GenCo 1, will bid or not and adjust its bid accordingly. However, this set of 

data may over-fit the algorithm and thus more data should be used to verify this decision tree. Moreover, 

                                                 
2 Information gain ratio is used to compensate for the number of attributes by normalizing the information encoded 
in the split itself since the information gain formula ignores the number of regions used, hence may lead to bias and 
over-fitting problem. 

Electricity Price

BID BID

Price > $39 Price ≤ $39 
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we cannot conclude that the fuel price is insignificant when it comes to bidding decision. This induction 

process will be extended to include other market factors, such as the fuel prices and market demand, to 

discover the price signals that are used to infer the strategies employed by other market participants. Since 

electricity prices, fuel prices, and other market variables are fuzzy or uncertain, we will next describe a 

model that helps to quantify uncertainty in decision making.   

 

 

USING INFORMATION GAP THEORY TO QUANTIFY UNCERTAINTY 

 

Information gap theory [3] is useful for making decisions in cases where uncertainty is present 

and severe. We have developed an info-gap model based on the bidding model described in Reference 

[4]. Information gap theory handles distributions that may not be fully specified, such as in Figures 3a–

3b.  

 

 
 

Figure 3. The cost functions with respect to bids for the two generators of GenCo 2. 

 

This problem is formulated with two generation companies—GenCo 1 and a competitor, GenCo 

2. Both GenCos are competing to sell XD megawatt-hours (MWh) of electric energy. GenCo 1 attempts to 

model GenCo 2 to determine a bid for an amount and a price that will serve its profit-making interests.  

Suppose that we wish to ensure that the expected monetary value (EMV) of a bid (corresponding 

to the expected profit) meets or exceeds a given minimum value. An information gap model helps to 

identify bids that meet that requirement and the uncertainty-reducing information needed to ensure that 

other, possibly more desirable, bids meet that requirement. An example of such a potentially more 

desirable bid would be one that corresponds to a wide range of possible EMV values, some quite high and 

desirable and others below a minimum tolerable EMV. For example, in Figure 4, the bidder may enjoy a 

high EMV of 74200, at a bid of $145/MWh, but that bid may also result in an EMV of 29680 if the true 

(a) GenCo 2 cost function F2A for G2A. (b) GenCo 2 cost function F2B for G2B. 
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curve happens to be the lowest EMV curve shown.  

 

An information gap model for this example problem may be specified as follows. 

1. Decision variable. This is our bid B2 in $/MWh. 

2. Uncertain variable. Define a cumulative distribution function (CDF) for the competitor’s bid that 

serves in the role of nominal best guess. Any CDF judged to fill this role could be used. For 

purposes of illustration we use “horizontal averaging” of the left and right CDF envelopes of 

Figure 3b, giving the intermediate curve of Figure 6. In horizontal averaging, for each vertical 

axis value yi, the corresponding horizontal axis values of the left envelope, Bl, and of the right 

envelope, Br, are averaged, giving a value Bi=(Bl+Br)/2. The point (Bi, yi) is on the average CDF 

curve, which may be plotted as precisely as desired by using an appropriate set of values for i. 

The average CDF serves as a nominal best guess CDF. Accounting for weights generalizes the 

averaging formula to Bi=(wBl+(1-w)Br)/2. Let the uncertain variable in the info-gap model be the 

weight w of the left envelope, with the weight of the right envelope then being 1-w. Then Figure 5 

describes the EMV values calculated from the CDF envelopes of Figures 3b and 6. 

3. Nominal value of uncertain variable. There seems to be no particular reason to prefer weighting 

one envelope more than the other when doing horizontal averaging, so the default nominal value 

of weight w is w~ =0.5. 

4. Uncertainty parameter. The amount of uncertainty in the model, α, is the amount of deviation 

from the nominal value of the uncertain variable that is to be considered. In this model, that is the 

amount of deviation from w~ =0.5. In the worst case, this might be ±0.5, giving a range of weights 

from 0 to 1. Determining this is the goal of the information gap analysis. 

 
Figure 4. A wide range of possible EMV values for a 

given bid. 

 
Figure 5. EMV curves corresponding to the left envelope 

(lowest curve), the right envelope (highest curve), and the 

horizontal average envelope of Figure 6. 
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5. Uncertainty model. This is the function u(α, w~ ) that describes the amount of uncertainty in the 

uncertain variable w in terms of its nominal value w~  and uncertainty parameter α. Consistent 

with points 2–4 above, we have u (α, w~ )={w: w ≤ | w~ + α|}. 

6. Reward function. The reward is the EMV of a bid. It is determined by the bid value and the EMV 

curve that applies. In this problem, the EMV curve is uncertain, so the worst possible EMV curve 

is used to allow the reward function to provide the minimum EMV that the bid could be 

associated with, as required by the info-gap analysis. The worst possible EMV curve is in turn 

determined by the leftmost possible CDF curve for the competitor’s bid. This curve is found by 

horizontal averaging with an averaging weight of .~ α+w  Using this curve is consistent with the 

ultimate goal of designing the bid and any necessary information-seeking activities to ensure at 

least a minimum EMV. Thus reward function R is defined by  

))()1()(,(),( 22 jBjBjj BFwBFwBEMVwBR ⋅−+⋅=  

Where )( 22 BF B
 is the highest possible envelope around the function F2B (i.e., the left envelope in 

Figure 3b), and )( 22 BF B is the corresponding lowest possible envelope (i.e., the right envelope). 

7. Critical reward. This is the minimum acceptable value of the reward function, call it rc. The 

results of an information gap analysis differ depending on the value assigned to rc,. 

8. Robustness function. This function, ),(ˆ crbα , returns the greatest value of uncertainty parameter α 

for which falling below the critical reward rc is not possible in the model. It therefore measures 

the ability of the model to deliver an acceptable reward in the presence of uncertainty, hence the 

term robustness. Its value is therefore dependent on acceptable reward rc. It is also dependent on 

the bid B2, because the reward is dependent on B2.  

 

 
Figure 6. Best-guess curve between the left and right 

envelopes computed by horizontal averaging and the 

maximum uncertainty α, showing that the space of 

plausible curves is within the envelopes. 

 
Figure 7. Critical reward separates the EMV curves 

into regions. 
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Figure 7 gives information about ),(ˆ crbα  for a range of bid values, and a specific value of rc, which would 

be a business decision provided as a model input. For bid values toward the left of Figure 7 (denoted as 

region ‘X’), the EMV is above rc regardless of which EMV curve is considered, so rc will be safely met for 

any of those bids. However it may be desirable to consider bidding higher in order to reap the potential 

opportunity for greater gain due to potentially higher EMV values such as, for example, the peak feasible 

EMV of $146.25/MWh for region ‘Y’. This is simply an analytical elaboration of the intuition that the 

higher the bid the greater the profit, if the bid is successful, but the higher the chance that a competitor 

will undercut the bid resulting in no profit. Thus, bids in the range designated by ‘Y’ in Figure 7 are not 

guaranteed to have an EMV of at least rc unless new information is obtained that rules out values of w that 

are too close to 0 (thereby moving the worst-case EMV curve upward). The result of an information gap 

analysis is a validation (or invalidation) of a bid value based on whether its EMV meets minimal 

requirements. However, the analysis does not tell us what the best bid is.  

In Reference [4], we presented a discussion on the different decision criteria used to determine 

the bid such as maximizing worst-case EMVs, maximizing expected EMVs, and converting EMVs to 

utilities using risk profiles. Another approach is to seek information by using the data mining techniques 

to reduce the uncertainty in the model. However acquisition of information requires an expenditure of 

resources. Unless the new information leads us to a more informative and robust info-gap model unew, 

which is a subset of u(α, w~ )={w: w ≤ | w~ + α|} mentioned earlier, the acquisition of information is of no 

value added to our model.  

 

 

CONCLUSIONS 

 

This research shows that data mining using an evolutionary technique can be used to infer rivals’ 

strategy. Based on available market information, one can develop algorithms to deduce the policy 

employed by competitors. More work will be implemented to include the forecast of market variables, 

such as prices. However, not all information is free and the acquisition cost of information varies. A 

support tool such as the information gap theory can assist in quantifying severe uncertainty when 

information is scarce and expensive. It helps decision makers to develop preferences, assess risks and 

opportunities, and seek information, given a minimum required level of reward. This minimum level of 

reward could be determined by incorporating risk management methodologies such as value at risk or 

profit at risk. Understanding how to balance the cost of new information with its benefits is an important 

next step. 
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