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Summary

A common way to model uncertainty in the value of a quantity is to use a probability density function (PDF)
or its integral, a probability distribution function (CDF). When two such values are combined to form a
new value equal to their sum, product, max, etc., the new value is termed a derived distribution (Springer
1979). It is well-known that derived distributions may be obtained by numerical convolution, Monte Carlo
simulation, and analytically for speci�c classes of input distributions, under the assumption that the input
distributions are independent. It is also possible to obtain derived distributions for speci�ed dependency
relationships other than independence. However, it is not always the case that the dependency relationship
is known. Thus there is a need for obtaining solutions that are validated with respect to uncertainty about
the dependency relationship.

Numerical approaches have the advantage of applicability to a very wide class of distributions. There
are two numerical algorithms that have been implemented in software for obtaining solutions to combining
distributions that are validated with respect to uncertainty about their dependency. Both also validate
their solutions with respect to discretization of the input distributions by using intervals to account for
the inexactness of the discretization, eventually producing results that incorporate that inexactness into
the separation of the envelopes. One algorithm is Probabilistic Arithmetic (Williamson and Downs 1990),
which is implemented in the commercially available software tool RiskCalc (Ferson et al. 1998). The second
algorithm is Distribution Envelope analysis (DEnv) (Berleant and Goodman-Strauss 1998). The DEnv
algorithm is implemented in a tool, Statool, that extends our previous tool (Berleant and Cheng 1998)
by eliminating the need to assume independence. While the Statool and RiskCalc tools have fundamental
similarities (Regan et al., submitted) a di�erence that is relevant to the present problem is that the DEnv
algorithm supports, and Statool implements, excess width removal in the underlying interval calculations
for expressions in which the true bounds of the expression occur at corners of the rectangle de�ned by the
input intervals. This simple approach frequently works, as for example in the present application. More
sophisticated approaches to excess width removal, if implemented, could be incorporated into the software
without diÆculty since the details of the interval calculations are decoupled from other parts of the software.
The result of handling excess width is inferred envelopes that are closer together than they would be if excess
width was not handled (Berleant 1993). In this paper we apply the DEnv algorithm to generalize a solution
to the well-known economic dispatch problem in electric power generation to the case where the dependency
relationship between the fuel costs of two generators is unspeci�ed.

1 The Problem

Interval methods have continued to draw the attention of researchers in the power generation community
(e.g. Wang and Alvarado 1992; Shaalan and Broadwater 1993; Shaalan 2000). One electric power problem
that, as traditionally formulated, is well understood is the economic dispatch problem. In this problem it
is desired to determine how much power should be generated by each of two generators, to meet a given
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level of demand such that total generation cost is minimized. One of a number of approaches to solving this
problem is termed LaGrangian Relaxation (Wood and Wollenberg 1996). We added a new dimension to this
problem by incorporating uncertainty into the LaGrangian Relaxation technique for solving the problem, by
modeling uncertainty in the cost of fuel to run the generators with probability distributions, postulating in
addition that the dependency between the two fuel costs of the two generators is unknown (as might occur
if one generator burns oil and the other coal). The uncertainties are then propagated through the algebraic
expression derived by the LaGrangian Relaxation technique.

First, we specify the cost equations as
F1 = v1(8P1 + 0:024P 2

1 + 80)
F2 = v2(6P2 + 0:04P 2

2 + 120)
where P1 and P2 are the power outputs of generators 1 and 2 in megawatts; v1 and v2 are the fuel costs for
generators 1 and 2 in $ per M Btu; and F1 and F2 are the generation costs for given power output levels and
fuel cost rates. Therefore generation costs change nonlinearly with power output according to the following
equations.

dF1=dP1 = v1(8 + 0:048P1) (1)

dF2=dP2 = v2(6 + 0:08P2)

Solving the problem requires minimizing an objective function,
F = F1 + F2 = v1(8P1 + 0:024P 2

1 + 80) + v2(6P2 + 0:04P 2
2 + 120);

subject to the constraint P = P1 + P2 where P is the total customer demand for electric power which for
this example we take as 400 megawatts. This gives a constraint function

P = P1 + P2 = 400: (2)

By the method of Lagrangian multipliers from calculus, at an extreme value of this objective function,

dF1

dP1
=

dF2

dP2
= � (3)

for some �. This is derived from the Lagrange function L which relates objective function F and constraint

(1) according to L = F + � � P , which implies @L

@P1
= dF1(P1)

dP1
� � = 0 for generator 1 and similarly for

generator 2.

From (1) and (3),
v1(8 + 0:048P1) = � = v2(6 + 0:08P2)
P2 = 400� P1

and solving simultaneous equations for P1 gives

P1 =
38v2 � 8v1

0:08v2 + 0:048v1
(4)

P2 = 400� P1

as the most economical amounts of power to generate from generators 1 and 2 to meet the demand (assuming
those amounts are within the capacity of both generators). P1 and P2 are easily calculated for real values
of v1 and v2, but given distribution functions for v1 and v2, the problem requires evaluating an expression
on random variables v1 and v2 involving a sum, di�erence and quotient. Solving it by dividing a di�erence
of random variables by a sum results in excessively wide envelopes on the CDFs for P1 and P2 because the
same operands occur in both terms, leading to excess width in the underlying interval calculations. Instead
the entire expression must be treated as a single binary operation on v1 and v2. Figure 1 shows the results
given PDFs describing v1 and v2.
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2 Discussion and Conclusion

Statool currently has certain limitations. Planned extensions include the following.

1. Asymptotic pdf tails. The process of discretizing a pdf into a histogram does not presently allow for
the case where a pdf tail trails o� to plus or minus in�nity. Yet this implies setting de�nite bounds,
though any speci�c such bounds might be hard to justify. Indeed unusual and extreme values can
occur in the electric power domain, as happened for example in the California power crises recently.
The solution is to allow the discretization to include open intervals with an end point at 1 or �1.
This in turn would require the arithmetic operations to be de�ned on such intervals. Fortunately this
is possible, e.g., [1;1) + [1; 2] = [2;1); (�1;�1] � [�2;�1] = [1;1); [1; 2]=[�1; 1] = (�1;1); etc.

2. Partial dependency. While the system currently can calculate either under the assumption of inde-
pendence, or with no assumption about dependency, partial information about dependency is often
present in real problems. Correlation values are a typical example. An example would be prices of
di�erent fuels, for which one would expect a generally positive correlation. We are currently working
on this issue.

Figure 1. Solution for P1 of equation (4), given the histogram-discretized PDFs for v1 and v2 shown. The
CDF for optimum power generation from generator 1 will be within the interior envelopes if the inputs
v1 and v2 are independent, and within the exterior envelopes regardless of the dependency relationship
between inputs v1 and v2. When the dependency relationship is not known, the exterior envelopes might
be suÆcient for a decision, or might point out the need for additional information gathering to sharpen the
input distributions and/or identify their dependency relationship suÆciently to support a decision.

The overhead in time complexity due to use of interval calculations is a relevant consideration. For DEnv,
time complexity overhead is attributable mainly to the increased time complexity of computing interval
operations in place of what would otherwise be numerical ones. Thus a complex excess width removal
algorithm would have a correspondingly great e�ect on run time. The simple method employed in Statool
typically adds approximately 25% to the run time, as tested by doing elementary arithmetic operations with
and without the excess width handling algorithm, when the dependency relationship between the operands
is considered to be unknown. However when the operands are assumed to be independent, using the excess
width algorithm leads to a slowdown by an approximate factor of 10, because a higher proportion of the
computations done by the program in this case are interval operations, and therefore slowing them has a
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correspondingly greater e�ect. These results (25% and 10x) suggest comparing the speed of computation
when the dependency relationship as unknown (that is, when the DEnv algorithm is used), with the speed
when the operands are assumed independent. When the operands are each discretized into 16 intervals (a
16x16 problem), simple arithmetic operations on the operands take about 30 sec., or 25% more with excess
width handling, on an Intel-based PC running at 500MHz. In comparison, assuming independence allows
the same problems to run interactively without noticeable delay when excess width handling is not used,
and in about 2.5 seconds when it is used.

In the presentation we will explain the DEnv algorithm, and also include explanations and �gures showing
how assuming independence results in stronger results, while excess width in the interval evaluation of
equation (4) leads to weaker results. We will also remark on the implications of envelopes around distributions
to decision-makers.
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