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Abstract 

In this paper we compare four methods for the reliable propagation of uncertainty through 

calculations involving the binary operations of addition, multiplication, subtraction and division. 

The methods we investigate are: i) dependency bounds convolution; ii) Distribution Envelope 

Determination; iii) interval probabilities; and iv) Dempster-Shafer belief functions. We show that 

although each of these methods were constructed for different types of applications, they 

converge to equivalent methods when they are restricted to cumulative distribution functions on 

the positive reals. We also show that while some of the methods have been formally constructed 

to deal only with operations on random variables under an assumption of independence, all of the 

methods can be extended to deal with unknown dependencies and perfect positive and negative 

dependence among variables.   

 

Keywords: dependency bounds, Dempster-Shafer belief functions, interval probabilities, 

uncertainty propagation 
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Introduction 

In this paper we address the general problem of performing convolutions of real-valued 

continuous random variables under binary operations, when there exists variation and uncertainty 

in the constituent random variables and uncertainty in the dependency between them. 

Suppose we wish to add, subtract, multiply or divide two continuous real-valued random 

variables, A and B, to produce a new random variable. Denoting the binary operation by *, we 

wish to describe the distribution of A*B from the distributions of A and B. The general 

formulation of the distribution for A*B, given marginal distributions for A and B and assuming A 

and B are independent, can be described by the following convolution: 

( )( ) ( ) ( )∫
∞

−=∗
0

ydFyzFzFF BABA                                                        (1) 

where A and B are real-valued random variables, FA(x) and FB(y) are the marginal cumulative 

distribution functions (cdfs) for A and B respectively, and * is a binary operation, specifically * 

∈ {+, −, ×, ÷}. It is well known that analytic solutions for equation (1) may only be derived for 

simple functions FA(x) and FB(y) (e.g., when FA(x) and FB(y) are uniform distribution functions, 

and a few other cases). Numerical integration algorithms are usually used to solve the integral in 

equation (1), even for the simple cases when analytic solutions are available. Monte Carlo 

simulations are the best known, and most commonly applied, numerical methods for solving 

convolutions of this type.  

 The Monte Carlo method for performing convolutions of the type in equation (1) 

involves selecting uniformly distributed random deviates, Ux and Uy, between 0 and 1 for each 

random variable A and B respectively. The inverse functions, FA
(-1)(Ux) and FB

(-1)(Uy), are then 

calculated and x*y = FA 
(-1)(Ux) * FB 

(-1)(Uy) is formed. The process is repeated many times such 
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that the inverse cumulative distribution functions FA
(-1) and FB

(-1) are sampled sufficiently well 

across their full range of values. Once a satisfactory number of samples are calculated for A*B 

the cumulative distribution function FA*B can be formed via simple frequency-based cumulative 

probabilities.  

 The convolution in equation (1) and the Monte Carlo method described above to solve it, 

both rely on a couple of important assumptions. First, the random variables A and B are assumed 

to be independent. There are many practical situations where there is a specified dependency 

relationship between the random variables. More importantly, there are many more cases where 

the dependency relationship is only partially specified (e.g., there exists a restricted range of 

relevant dependency structures for A and B but which of these is the true structure is unknown) 

or even completely unknown. The Monte Carlo method described above can be extended to 

cases where a specific dependency structure is known. For example, when A and B are perfectly 

positively correlated (i.e., when the value of A is large relative to its full range, so is the value of 

B, likewise when A is small relative to its full range, so is the value of B) then Ux = Uy for each 

pair of samples in the simulation. Conversely, if A and B are perfectly negatively correlated, Ux = 

1 ─ Uy for each pair of samples in the simulation. There are also methods for Monte Carlo 

simulation when A and B exhibit other types of specific dependency relationship (e.g. when the 

correlation coefficient for A and B is a specific value between 0 and 1; see [1] for details). 

However, for the more general and realistic case where the dependency relationship is only 

partially known or completely unknown, there is no strategy within the Monte Carlo 

methodology for performing convolutions under binary operations. 

  A second assumption behind equation (1) and the Monte Carlo method described above, 

is that all the uncertainty in the random variables A and B is represented in their distribution 
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functions FA(x) and FB(y), and that these functions are known without error. In many practical 

instances uncertainty will arise from natural variation and from observation error [2,3]. A single 

cumulative distribution function FA(x) is intended to model the uncertainty in A due to variation 

alone. However, the shape of FA(x) may itself be uncertain due to observation error [1,4,5]. 

When this is the case, the true distribution for the variable of interest, A, will be one of a range of 

likely candidates. In many situations, they can be effectively bounded within upper and lower 

cdfs, )(xF A and )(xF A (Figure 1). 2nd-order Monte Carlo methods are sometimes employed to 

deal with convolutions of variables described by lower and upper bounds on the respective cdfs. 

2nd-order Monte Carlo simulations are carried out in much the same way as described above, 

however, )(
)1(
UF

−
 and )()1( UF −  are also calculated for A and B, where the uniformly distributed 

random deviates may or may not be correlated depending on what is known about the 

dependence between A and B. In addition to specifying the functions FA(x) and FB(y), 2nd-order 

Monte Carlo simulations require assumptions regarding the realistic range of possible input 

distributions. Hence, the more uncertain a variable is, the more data is required to assign bounds 

on its cdf. This is counterintuitive. The more data available, the more certain we should be of the 

form of the cdf. Furthermore, the bounding cdfs, )(xF A and )(xF A , are usually expressed as 

upper and lower percentiles on the full range of cdfs. For instance, )(xF A and )(xF A  might 

represent the 5th and 95th percentile cdfs of the full range of possible bounding cdfs on FA(x). 

Hence, they do not encompass the full extent of uncertainty due to variation and observation 

error. As a result, 2nd-order Monte Carlo simulation is often an unsatisfactory and misleading 

treatment of compounding uncertainty. This is due, in part, to the fact that Monte Carlo methods 

were not originally designed to deal with both variation and uncertainty in random variables and 
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so their extension to 2nd-order simulation for the treatment of both variation and observation 

error is somewhat ad hoc. 

 In this paper we present methods that were specifically designed for the treatment of 

unknown dependency between variables, or for uncertainty in the shape of cdfs, or for both.  We 

analyze and compare four well-developed methods for propagating uncertainty through 

calculations when the uncertainty in the input variables can be represented as bounds on 

probability distributions.  These methods are: 

i. dependency bounds convolution [6,7],  

ii. Distribution Envelope Determination, or DEnv [8,9], 

iii. interval probabilities [10],  

iv. Dempster-Shafer belief functions [11]. 

We show that while each of these methods was constructed for a different purpose, they all 

converge on the same results when the domain is restricted to the positive reals, ℜ+, and the 

operands and outputs are expressed in the cumulative distributional form and, for Dempster-

Shafer belief functions, the additional restriction that focal elements be closed intervals of the 

positive real line (this caveat will be explained in detail in latter sections).  We also show that 

while some of the methods have been formally constructed to deal only with independent 

random variables, they all can be extended to deal with unknown dependencies as well as 

perfect positive and negative dependence amongst variables.   

 The structure of this paper is as follows: in the next section we present a background to 

the problem of convolutions of random variables with unknown dependency structure, and the 

formulation of its solutions. In the following sections we present methods for the construction of 

bounds on random variables and convolutions of bounded variables (where “bounded” here 
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means the form of the cdf for a random variable is uncertain but lies within known bounds). In 

the remainder of the paper we show how the methods presented here are equivalent under the set 

of restrictions outlined above and how they can be extended to include treatments of uncertainty 

in the cumulative distribution functions and uncertainty in the dependency between random 

variables. This equivalence relies on constructing bounding cdfs for each random variable, such 

as in Figure 1, then deconstructing these bounds into a set of intervals with associated 

probability mass and performing convolutions of the set of intervals. 

 

Unknown dependency between random variables 

The following well-known problem is attributed to Kolmogorov: given marginal cumulative 

probability distributions FA(x) and FB(y) for random variables A and B, what is the resultant 

distribution for A+B when the dependency structure between A and B is unknown? Fréchet had 

solved a similar problem for events A and B, with respective probabilities P(A) and P(B), and the 

binary operations conjunction (AND, ∧) and disjunction (OR, ∨): 

P(A∧B) = [max(0, P(A) + P(B) – 1), min(P(A), P(B))] 

P(A∨B) = [max(P(A), P(B)), min(1, P(A) + P(B))]                                   (2) 

However, these bounds do not immediately and obviously carry over to the case where FA(x) and 

FB(y) are marginal distributions. It was not until 1987 that it was fully solved operations by 

Frank, Nelson, and Schweizer [6], not only for addition but for a large class of functions L: ℜ2 

→ ℜ, where L are functions from [─∞, ∞] × [─∞, ∞] onto [─∞, ∞] that are non-decreasing 

everywhere and continuous, except possibly at the points (─∞, ∞) and (∞,─∞) [16] (although for 

a previous solution for the binary operation of addition see [12]). The result gave bounds for the 

distribution function resulting from the binary operation between two random variables, where 
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such bounds could be explicitly determined in only a number of special cases. This solution was 

operationalized by Williamson and Downs [7] to give explicit determination of the bounds 

resulting from convolutions of two random variables under unknown dependency for binary 

operations * ∈ {+, −, ×, ÷}. Both treatments of Kolmogorov’s problem rely on the theory of 

copulas [13] (first introduced by Sklar in 1959 [14]) and are summarized in the following 

theorem: 

Theorem 1 (modified from [6,7]) 

Let A and B be almost surely positive random variables with distributions FA and FB, and let Z = 

A*B, where { }÷×−+∈∗ ,,, . The lower and upper dependency bounds, ZF  and ZF  respectively, 

for ZF   are given by 

( ) ( ) ( )[ ]{ }

( ) ( ) ( )[ ]{ }
( ) ( ) ( )[ ]{ }

( ) ( ) ( )[ ]{ }
( ) ( ) ( )[ ]{ }

( ) ( ) ( )[ ]{ }
( ) ( ) ( )[ ]{ }

( ) ( ) ( )[ ]{ }0,/1minmin1

0,/1maxmax
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0,1maxmax

0,minmin1

0,maxmax
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0,1maxmax

yFxFzF
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yFxFzF

yFxFzF

yFxFzF

yFxFzF

BAzyxBA
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BAzyxBA

BAzyxBA
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+=

−+=

−−+=

−−=
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−+=

=×÷

=×
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=××

=×
×

=+−

=+
−
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=+
+

 

In fact, in the case where ∗ is addition or subtraction, the bounds hold for any pair of marginals, 

FA and FB, not just those for positive A and B. This is proved in [6] and [7] for all the arithmetic 

operators { }÷×−+∈∗ ,,, . Note that here, the upper and lower bounds on the convolution result 

from uncertainty in the dependency of A and B, and not from uncertainty in the marginal 

distributions. The result above (and its operationalizations outlined below) is referred to here as 
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dependency bounds convolution. A noticeable and satisfying feature of the theorem above is that 

it relies on an analogy of Fréchet’s bounds. While this is not surprising in and of itself (the 

theory of copulas relies, to an extent, on Fréchet’s bounds), the fact that it is extremely nontrivial 

to extend Fréchet’s bounds to solve Kolmogorov’s problem is testament to the fact that what 

often appears obvious in mathematics, at face value, is very often confoundingly difficult to 

prove with the theory at hand. In this case, the theory of copulas was necessary to make the 

extension from Fréchet bounds to dependency bounds convolution.  

The bounds expressed in Theorem (1) are point-wise best possible. This means that the 

bounds are wide enough to permit inclusion of all possible dependencies of A and B and no 

wider. That is, every point on either )(* zF BA or )(* zF BA refers to the cumulative probability of 

the realization of A*B under some dependency between the two random variables and there is no 

possible dependency structure that lies outside these bounds.  

We will not dwell on the theory of copulas employed to solve Kolmogorov’s problem, 

because, as in the case of equation (1), analytic expressions are difficult to extract for many 

realizations of FA(x) and FB(y). Rather, we are interested in the operationalization of this 

theorem. Williamson and Downs convert the assignments in Theorem (1) into a numerical 

algorithm to accommodate discretized cumulative distributions functions (see [7] and [15] for 

implementations of this). The approach to performing convolutions of A and B under binary 

operations described by Williamson and Downs [7] involves discretizing each precise cdf, FA(x) 

and FB(y), into upper and lower cdfs with n steps of equal height throughout (in fact, for some 

cases the number of steps may be different for each random variable). The way this is achieved is 

by first partitioning the cumulative probability into n equal parts from 0 to 1 (see Figure 2 for an 

example of this). This will result in a partition of the probability scale into n equal intervals, each 
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of length pi = 1/n where i = 1, …, n. The partition of the probability scale [0, 1], will consist of 

the intervals [0, 1/n], (1/n, 2/n], (2/n, 3/n], …, ((n ─ 1)/n, 1]. This can be summarized as 

],(
1

00
∑∑
+

==

j

i
i

j

i
i pp  where j = 0, …, n ─ 1, and p0 = 0.  For each interval along the cumulative 

probability axis the inverse cumulative distribution function is calculated as 

],[],[ 1,1,

1

0

)1(

0

)1(
++

+

=

−

=

− =














 ∑∑ jUjL

j

i
i

j

i
i aapFpF                                       (3) 

where j = 0, …, n ─ 1, and p0 = 0 (see Figure 2 for a diagram of this). (For distributions with 

infinite tails we first truncate the tails at extreme finite ends). Note that in equation (3) 

njaa jUjL ,,1,1, K=∀= −
 because the intervals along the cumulative probability form a 

partition. For a random variable A this results in the following step functions for upper and lower 

cdfs: 

( )




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
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K                              (4a) 
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where njaa jUjL ,,1,1,, K=∀= −
 and 1,,1,1 −=∀= + nipp ii K  (see also Figure 2). The original 

function FA(x) is enclosed by AF (x) and AF (x). Note that these upper and lower bounds do not 

refer to bounds due to any dependency considerations in a convolution. They are merely the 

result of discretizing the cdf in such a way that all values FA(x) are surely contained within the 
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bounds AF (x) and AF (x). For example, in Figure 2, n = 5, and the precise cdf for random 

variable A is discretized into upper and lower cdfs, each with 5 steps at equal increments in the 

cumulative probability.  In this case 5,,1,5/1 K=∀= ipi .   

Now suppose we wish to perform the convolution of random variables A and B under a 

binary operation given the discretization of their respective cumulative distribution functions as 

specified in equation (4). We will first demonstrate how this works under an assumption of 

independence between the random variables (because this is the simplest case) and then extend 

this to perfect positive and negative dependence and then finally we will use a modification of 

Theorem 1 to address the more difficult case of unknown dependency. The numerical method for 

calculating the bounds on the cumulative distribution of A∗B using the bounds specified in 

equation (4) (and similar bounds calculated on FB(y)) involves calculating the inverse of the 

discretized upper and lower cdfs for each random variable. In fact, in equation (3) we have 

already specified the inverse intervals of the discretized upper and lower cdf for random variable 

A. For the random variable B the inverse intervals are specified as 

],[],[ 1,1,

1

0

)1(
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+
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



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where l = 0, …, m ─ 1, and q0 = 0. Note that here the cumulative probability is partitioned into m 

intervals for FB(y), whereas for FA(x) the cumulative probability is partitioned into n intervals. 

Also note that the intervals in equations (3) and (5) may be specified as 

],[],[],[ ,,
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by taking the inverse of equations (4) at each upper interval endpoint ∑
=

=∀
j

i
i njp

1
,,1, K and 

∑
=

=∀
l

k
k mlq

1

,,1, K  (also see Figure 2). Similar relationships would be obtained by considering 

each lower interval endpoint, however, to perform the convolution it is convenient here to 

consider only the upper endpoints of the probability intervals. Throughout this paper, the 

following inequalities hold for the intervals in equation (6): 1,,,,  , +≤≤ jLjLjUjL aaaa  and 

1,, +≤ jUjU aa . We refer to equations (6) as a deconstruction into intervals of the lower and upper 

bounds on the cdfs for random variables A and B. Each interval ],[ ,, jUjL aa  has probability mass 

pi = 1/n associated with it. Likewise, each interval ],[ ,, lUlL bb  has an associated probability mass 

qk = 1/m.  

 In order to perform a convolution of A and B under a binary operation { }÷×−+∈∗ ,,, , 

regardless of the dependency structure between them, we appeal to interval arithmetic. Interval 

arithmetic, as suggested by its name, refers to arithmetic performed on intervals and is carried 

out in the following way for general intervals A' = [a1, a2] and B' = [b1, b2] where a1 ≤ a2 and b1 ≤ 

b2 (in keeping with Theorem 1 we will assume that the intervals are surely positive, but in fact 

the calculations hold for addition and subtraction on any pair of intervals not just those that are 

positive):  

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]12212121

22112121

12212121

22112121

,,,
,,,
,,,
,,,

bababbaa
bababbaa
bababbaa
bababbaa

÷÷=÷
××=×
−−=−
++=+

                                          (7) 



 13

The bounds in equations (7) are calculated to give the maximum interval length for the result on 

the RHS given the interval lengths in the inputs on the LHS. In this way, if two uncertain 

quantities a' and b' surely lie somewhere within the bounds A' and B', the bounds A' * B' will 

surely contain the uncertainty quantity a' * b'. For a binary operation under the assumption of 

independence, all pairwise combinations of ],[ ,, jUjL aa  and ],[ ,, lUlL bb  are selected and the 

calculations in equations (7) are applied according to which binary operation is of interest. For 

example, if we wish to calculate the convolution A + B, we would calculate 

],[ ,, jUjL aa  + ],[ ,, lUlL bb  = ],[ ,,,, lUjUlLjL baba ++ mlnj ,,1 and  ,,1 KK ==∀ . 

If FA is discretized into n steps and FB is discretized into m steps, there will be n × m pairwise 

combinations. Recall that ],[ ,, jUjL aa  and ],[ ,, lUlL bb  have associated probability masses of pi = 

1/n and qk = 1/m respectively. The result of a binary operation applied to each pairwise 

combination of ],[ ,, jUjL aa  and ],[ ,, lUlL bb  must also have an associated probability mass. Since 

we are initially operating under an assumption of independence, this will simply be 
mn×

1  (recall 

that the probability of two independent events is the product of the probabilities for each event). 

The lower bound for the sum A+B is then constructed by sorting the values 
lLjL ba ,, +  into 

ascending order. This will give the set of values ( ){ }mnhbaba lLjLhL ×=+=+ ,,1:,, K  from 

which the upper bound can be constructed as 

( )


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
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+≥
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= ++
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where +ind refers to addition under independence. A similar construction for the lower bound for 

A + B yields  

( )









+>

−=+≤<+
×

+≤

= ++

mnU

hUhU
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h
bax

xF
ind

,
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1,

)( if1

1,,2,)()( if

)( if0

K .       (8b) 

This construction is identical to equations (4), where a is replaced by a + b. 

The approach for calculating the joint distribution of A and B under an assumption of 

perfect positive or negative dependence is the same as that for independence except for a few 

minor differences. Suppose that FA and FB are discretized to give upper and lower cdfs as 

described above, but this time with the same number of equal steps in the cumulative probability.  

That is, both FA and FB are discretized into n steps each. Since the cumulative probability is 

discretized uniformly for both cdfs, the addition of two random variables under the assumption 

of perfect positive dependence is simply the addition of values of each random variable at equal 

level along the probability axis. Hence, instead of adding all pairwise combinations of 

],[ ,, jUjL aa  and ],[ ,, lUlL bb , we calculate  

],[ ,, jUjL aa  + ],[ ,, jUjL bb  = [ jUjUjLjL baba ,,,, , ++ ],     nj ,,1K=∀  

The associated probability mass for each resultant interval is simply 1/n. The construction of 

upper and lower bounds is then identical to the case for independence.  

For perfect negative dependence, intervals of one random variable at each probability 

level, r, are added to intervals of the other random variable at the opposite probability level, 1─r. 

Hence, for addition, we have the following: 

],[ ,, jUjL aa  + ],[ 1,1, +−+− jnUjnL bb  = ],[ 1,,1,, +−+− ++ jnUjUjnLjL baba  ,,1 nj K=∀  
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The associated probability mass and the method for construction of upper and lower bounds are 

identical to the case for perfect positive dependence. 

 Our description so far of the Williamson and Downs operationalization of the 

dependency bounds convolution has not yet dealt with the case for which it was originally 

formulated—convolutions with unknown dependency between random variables.  However, we 

have established the main components to which we will apply Williamson and Downs’ 

operationalization. These main components are: the upper and lower bounds on the marginal 

cdfs; the intervals resulting from a deconstruction of the bounds on the marginal cdfs; and their 

associated probabilities. For dependency bounds convolution of two random variables A and B, 

each with cdfs that have been discretized into n equal steps along the cumulative probability, to 

give lower and upper bounds on the respective cdfs, the following modification of Theorem 1 

applies: 

Theorem 2 [7] 

Let A and B be almost surely positive random variables with discretized distributions  to give 

upper and  lower  bounds AF  and AF  for random variable A and  BF  and BF  for random 

variable B. Let Z = A*B, where { }÷×−+∈∗ ,,, . The upper and lower dependency bounds ( ZF  

and ZF  respectively) for ZF , the distribution of Z, are given by 
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This theorem and its proof are provided in [8]. As for Theorem 1, in the case where ∗ is addition 

or subtraction, the bounds hold for any pair of bounds on marginal distributions, not just those 

for positive A and B. We see that the equations in Theorem 2 are analogous to the interval 

arithmetic specified above, where the upper and lower bounds on the cdfs form the endpoints of 

the intervals. If the bounds on FA and FB are deconstructed into n intervals, as described above, 

then the following holds for addition, for each j = 1,…, n: 
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(Refer to [8, 16] for formulation of the inverses of the functions in Theorem 2). Because 
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Similar relations can be derived for subtraction, multiplication and division using Theorem 2 (see 

[8] for details). The bounds ( )zF BA+  and ( )zF BA+  are then formed by taking the inverse of 

equations (10). This involves sorting the values 





−

+ n
jF BA

)1(  from least to greatest (for the upper 

bound) and then assigning cumulative probabilities 
n
j , (for j = 1,…, n) to these values in 

ascending order. The same procedure applies to the lower bound ( )zF BA+  using the values 







−

+ n
jF BA

)1( . The resulting bounds are point-wise best possible for the discretizations of FA and FB.  

 Hence, we have presented convolutions of A and B under the binary operations 

{ }÷×−+∈∗ ,,,  for discretizations of cdfs FA and FB under assumptions of independence, perfect 

positive and negative dependence and the general case of unknown dependency. In the following 

section we present an alternative method for calculating dependency bounds, known as 

Distribution Envelope Determination, when the cdfs FA and FB are uncertain. It is our aim to 

show that the two approaches to convolution are equivalent for independence, perfect positive 

and negative dependence and unknown dependence.  

 

Distribution Envelope Determination 

Distribution Envelope Determination is a convolution-based method for determining dependency 

bounds on cdfs for the results of binary arithmetic operations on random variables A and B under 
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binary arithmetic operations when the input cdfs may themselves be uncertain. It was devised by 

Berleant and Goodman-Strauss in 1998 [16] independently of the dependency bounds 

convolution method described above and differs in the procedure for determining the bounds. 

Berleant and Goodman-Strauss start by describing A and B with probability density 

functions (pdfs), )(xf A  and )(yf B  respectively. These pdfs are then discretized using 

histograms (Figure 3a). This is achieved by forming a partition of the range of values of A and B 

and calculating the probability under the curves )(xf A  and )(yf B  for each interval in the 

partition. To handle the problem of discretization error, each histogram interval may be 

interpreted as stating a range (from its left side to its right side) and a probability mass (its area) 

distributed over its range, with no assumption made about how the mass is distributed within the 

range.  

Generalizing the histogram concept, we can allow the intervals of A and B to overlap. 

Each interval is interpreted as expressing a probability mass distributed within a range, just as 

described above (Figure 3b). Let us call this range of intervals with accompanying probabilities a 

thicket to suggest a collection of bars that may overlap. Binary arithmetic on thickets is described 

by Berleant and Goodman-Strauss [16]. The type of algorithm used is called Distribution 

Envelope Determination, or DEnv [8,9]. In DEnv, each random variable is first discretized into a 

thicket. This allows operations on distributions to become operations on sets of intervals and 

their associated probabilities. For example, suppose the discretization of )(xf A  yields the 2-

element set  







 =∈=∈

2
1])4,2[(,

2
1])2,1[( xPxP  

and the discretization of )(yf B  yields the 3-element set  
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.
4
1])5,4[(,

2
1])4,3[(,

4
1])3,2[(







 =∈=∈=∈ yPyPyP  

More generally, we can write a discretization for a pdf )(xf A  as },...,1:)({ nipAxP ii ==∈ , 

where P represents a probability measure on intervals of the domain of A, ( ) 1
1

=∑
=

n

i
iAP  and 

where the various iA  might or might not overlap, and similarly for )(yf B . 

Now suppose we wish to calculate the probability distribution for a new random variable 

Z, where each sample of Z is the sum of a sample of A and a sample of B, i.e. Z = A*B. For ease 

of exposition we start with the assumption of independence, writing it as BAZ ind+=  where 

“ ind+ ” indicates addition of samples of random variables under the assumption of classical 

independence. A thicket that defines the probability distribution of Z is obtained by performing 

interval addition on each pair of intervals Ai and Bj in the thicket discretizations of A and B to get 

jiij BAZ +=  where “+” here indicates interval addition, as defined in the previous section. 

(Note that when adding intervals iA  and jB , specification of the dependency structure is 

irrelevant. It is only in the assignment of probability mass to the resultant intervals that 

dependency between the random variables becomes an issue). Because A and B are independent, 

( ) ( ) ( )jiij BPAPZP ×= . For the two simple thickets described above, this results in the joint 

distribution tableau shown in Table 1. 

A joint distribution tableau implies bounds on a corresponding cumulative distribution 

function (cdf), which are constructed as follows. To obtain the left envelope (Figure 4 contains a 

left and a right envelope), the distribution of the probability mass of each interval in the joint 

distribution tableau is assumed to be concentrated at the lower bound of the interval, because this 
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will cause the cumulation to rise as fast as possible while still being consistent with the joint 

distribution tableau. The envelope is then constructed by numerical integration (the low bounds 

are sorted from smallest to greatest, and the cumulative distribution curve is stepped increased by 

the amount of the probability concentrated at that low bound). This envelope is referred to here 

as the left envelope (which corresponds to the upper bounding cdf).  To construct the right 

envelope, the probability mass for each interval is assumed to be concentrated at the upper bound 

of the interval and then the probability mass is integrated across all the upper bounds. Figure 4 

displays the bounds for the cumulative distribution of A +ind B, constructed from Table 1. 

In the case of perfect positive dependence, whenever one random variable is sampled, the 

value of the second random variable is sampled at the same probability level. For perfect 

negative dependence, a value of one random variable at probability level r of its distribution is 

convolved with a value of the other random variable at the opposite probability level, 1─ r, of its 

distribution. In this example all the intervals in the joint distribution tableau remain the same, as 

do the probabilities of the marginal intervals; it is just the calculation of the probabilities 

associated with the resultant intervals in the joint distribution that change according to the 

dependency structure of the two variables.  The joint distribution tableau for A+B under 

assumptions of perfect positive and perfect negative dependence for the example above, appear 

in Table 2. Bounds on the cumulative distribution function for A+B are then constructed from the 

probabilities of Table 2 in the same way as described above for the case where A and B are 

assumed independent. 

Berleant and Goodman-Strauss [8,9,16] also describe a method for calculating A*B, * ∈ 

{+, −, ×, ÷}, when the dependency relationship between A and B is unknown. As noted above, 

different dependency relationships result in different probability assignments to the intervals, 
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which in turn result in different envelopes on the cumulative probability distributions. For the 

case of an unknown dependency relationship between A and B, the envelope around the 

cumulative distribution of a random variable Z = A*B must enclose all the distributions that 

result from all possible specific dependency relationships. To find a point on this dependency 

envelope, the probability masses associated with the intervals in the joint distribution matrices 

(such as appear in Tables 1 and 2) must be considered variable, but this variability is limited by 

the constraints imposed by the discretized operand distributions that form the margins of the joint 

distribution tableau [17]. In particular, the sum of the resultant probabilities in a row or column 

of a joint distribution tableau is constrained to equal the probability of the marginal cell 

associated with that row or column. For example, the constraints imposed by the joint 

distribution tableau of Table 1 appear in Table 3. The constraints imposed in Table 3 by the joint 

distribution tableau shown in Table 2 are exactly the same as those imposed by Table 1, because 

the tables differ only in the alternative sets of values for the various pij, yet those sets of values 

are consistent with exactly the same constraints imposed by the marginal cells of the tables.  

The variability of the pij’s, though limited, requires finding values for them that lead to 

left or right extremes in the cumulation, i.e., points on the overall envelopes that are free of 

dependency assumptions. Because these constraints, exemplified in the previous paragraph, are 

linear, the desired extremes may be found using linear programming (or for very small problems, 

careful inspection) to maximize (for the left envelope) or minimize (for the right envelope) the 

probability cumulated up to a given value of Z=A*B. For example, the maximum cumulation 

possible for x + y, x∈A and y∈B, for values of x + y ≤ 4.5, given the marginals of Table 1, 

occurs for the dependency relationship expressed by the various pij  shown in Table 4. Each pij, if 

assumed to be concentrated at the low bound of its corresponding interval, would cause the 



 22

cumulation to rise faster than any other distribution of the pij’s over their intervals. Then the 

entire amount of p11, p21, and p12 would appear in the cumulation at x+ y = 4.5, implying that the 

left envelope has a height of p11+ p21+ p12 = 0.75 at x+ y = 4.5. Note that the envelopes 

themselves are not necessarily cdfs resulting from any single dependency relationship. Rather, 

different portions of them may be implied by different dependency relationships. The bounds 

derived in this fashion are point-wise best possible in the same way as the bounds resulting from 

dependency bounds convolution (Berleant and Goodman-Strauss [16]).  

 

Deconstruction of bounded cdfs into a thicket 

Thickets derived directly from discretization of a continuous pdf will typically be histograms. (If 

the pdf has infinite tail(s) then either the tails are truncated or infinite interval bounds must be 

allowed.) However, thickets can also be specified by the interior cells of a joint distribution 

tableau. 

For example, the thicket for the sum A+B in Table 1 would consist of one interval for each pij. 

This interval has mass pij and has a width and location on the horizontal axis defined by the 

interval in the same cell as pij. This thicket will typically have overlapping intervals.  

A thicket may also be derived directly from envelopes via deconstruction, in the same 

way that a discretized cdf was deconstructed into intervals in the previous section. Figure 5 

illustrates this process. More formally, deconstruction of a pair of envelopes, such as appear in 

Figure 5, into a thicket occurs as follows: we are given two discretized bounds on the cumulative 

distribution function for some random variable A,  
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such that )()(, xFxFx AA ≥∀ , i.e. )(xF A  is the left envelope (or upper bound) and )(xF A  is the 

right envelope (or lower bound), and such that qh+1 ≥ qh and rj+1 ≥ rj. Note that equations (11) are 

general in that they could have resulted from the DEnv procedure applied to two pdfs or they 

could have been derived as discretizations of bounds assigned to a cdf due to multiple sources of 

uncertainty in the random variable A, as in Figure 1. We wish to construct a thicket such that the 

lower bounds of the intervals in the thicket are elements of the set { }kha hL ,...,1:, =  and the 

upper bounds are elements of the set { }mja hU ,...,1:, = . 

Define the inverse of )(xF A and )(xF A as follows: 
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The thicket, },1,...,1:)({ −+==∈ mkipAaP ii  is then constructed as follows (see also Figure 

5). Let }1,,...,,...,{ 1111 −−= mk rrqqS . Sort the elements of S  from smallest to largest and rename 

them s1…sk+m-1.  Let pi represent the value P(ν∈[ )(),( )1()1(

iAiA sFsF −−
] ), .1,...,1 −+= mki Then  
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
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The corresponding intervals for each pi will be [ )(),( )1()1(

iAiA sFsF −−
], .1,...,1 −+= mki  One 

outcome of such a decomposition into intervals is that although the intervals may overlap, and in 

some cases may even be nested with one coincident endpoint (i.e., two intervals [a, b] and [a, c] 

or [a, b] and [c, b] may result) one interval will never be completely subsumed within another 

(i.e., it is impossible to decompose equations (12) into intervals [a, b] and [c, d] where a < c and 

d < b). Once the pair of envelopes has been decomposed into a set of intervals with associated 

probabilities in this way, the random variable can be convolved with another, using a binary 

operation and the procedure for Distribution Envelope Determination described above.  Thus, 

two random variables can be convolved when they are represented as:  

a) discretizations of continuous pdfs;  

b) envelopes resulting from binary operations applied to two discretized pdfs;  

c) discretized left and right envelopes bounding a cdf; or 

d) each falls into a different one of categories a), b), and c). 

Theorem 3. 

Let A and B be positive real-valued random variables described by lower and upper bounds on 

the cdf AF , AF , BF  and BF .  For uniform discretizations of the input bounds on cdfs, 

dependency bounds convolution and Distribution Envelope Determination result in identical 

bounds on the cdf resulting from the convolution A*B under assumptions of independence, 

perfect positive and perfect negative dependence and under unknown dependence between the 

random variables.  
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Proof 

We first discretize the bounds AF , AF , BF  and BF  uniformly into n steps along the cumulative 

probability axis (according to equations (4)) to give: 
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where here 1,,1,1
1 −=∀== + ni

n
pp ii K  but jLa ,  ≤ nja jU ,,1,1 K=∀−

 and likewise for the 

endpoints 
jLb ,
 ≤ 

1, −jUb , i.e. in this case the intervals [
jLa ,
, 

jUa ,
] may overlap, likewise for the 

intervals [
jLb ,
, 

jUb ,
]. This last qualification is important because for dependency bounds 

convolution this is an extension of the formulation to accommodate bounds that treat multiple 

sources of uncertainty in the random variables. If 
jLa ,
= nja jU ,,1,1, K=∀−

 then the bounds in 

(14) are a discretization of a single precise cdf, however if 
1,, −< jUjL aa  for some j = 1, …, n, 



 26

then equations (14) specify a discretization of bounding cdfs on the uncertain function. Equations 

(14) are a special case of the bounds formulated for Distribution Envelope Determination, in that 

instead of a non-uniform partition of the cumulative probability scale, here we have identical 

uniform partitions of the cumulative probability for both random variables, A and B. Hence, the 

cumulative probabilities expressed as qh and rj in equations (11) are expressed here as∑
=

j

i
ip

1
. 

Equations (14) can be deconstructed into intervals using equations (6) for dependency bounds 

convolution or equations (12) for DEnv. Note that both deconstructions will give the same set of 

intervals, namely [ jUjL aa ,, , ] and [ jUjL bb ,, , ] for j=1,..., n, with accompanying probability mass 

pi. This is straightforward for dependency bounds convolution. To see this for the DEnv 

deconstruction, note that here },...,1,{
1
∑
=

=∀==
j

i
ij njpsS , and hence each pi will have a 

corresponding interval [ ]jUjL

j

i
iA

j

i
iA aapFpF ,,

1

)1(

1

)1(
,)(),( =







 ∑∑
=

−

=

−
 . Likewise for the 

deconstruction of the bounding cdfs for B. It is now a simple matter to show that dependency 

bounds convolution and DEnv give the same results under assumptions of independence and 

perfect positive and perfect negative dependence. For an assumption of independence both 

methods apply interval arithmetic to all pairwise combinations of intervals and assign a 

probability mass of 2

1
n

 to each interval. For both dependency bounds convolution and DEnv, the 

resultant bounding cdfs are then constructed as (for addition but analogous equations hold for the 

other binary operations): 
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where the endpoints (a + b)L,h and (a + b)U,h have been sorted in ascending order with respect to 

h. 

For perfect positive dependence, only intervals that correspond to identical fractiles of the 

cumulative probability are convolved via interval arithmetic. For both methods this results in 

intervals of the form [ jUjUjLjL baba ,,,, , ++ ] (for addition, but analogous equations hold for the 

other binary operations). Since identical probability masses accompany each interval of A and B, 

the resultant probability mass associated with [ jUjUjLjL baba ,,,, , ++ ] is nj
n

,...,1,1
=∀ for both 

dependency bounds convolution and DEnv. The bounding cdfs are then constructed as above, 

however, here 
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where the endpoints (a + b)L,h and (a + b)U,h have been sorted in ascending order with respect to 

h. 
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Since all intervals have identical probability mass, for perfect negative dependence 

interval arithmetic is applied to [ jUjL aa , ] and [ 11, −−−− jnUjnL bb ] nj ,...,1=∀  and the associated 

probability mass for each resultant interval is
n
1 . The bounding cdfs are then constructed as (for 

addition but analogous construction holds for the other binary operations):   
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where the endpoints (a + b)L,h and (a + b)U,h have been sorted in ascending order with respect to 

h. 

 To show equivalence of the two methods under no assumptions of density dependence 

we appeal to the fact that both dependency bounds convolution and DEnv give point-wise best 

possible bounds on the resultant convolution. Point-wise best possible bounds, by definition, are 

unique, hence it follows that that both methods must give identical bounds when the 

deconstruction into intervals with associated probabilities for both methods is identical. □ 

So we see that Williamson and Downs’ convolution of two random variables is 

equivalent to the thicket approach of convolving random variables in the sense that the 

discretized cdfs can be reduced to a set of intervals with associated probabilities. Indeed, the only 

differences between dependency bounds convolution and thickets are that the method proposed 

by Williamson and Downs requires cdfs to be discretized uniformly along the cumulative 
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probability, whereas the discretization may be irregular in the case of thickets. Perhaps more 

improtantly, for unknown dependencies, analytic methods are invoked to determine the resultant 

bounds in dependency bounds convolution, whereas linear programming methods are adopted in 

the case of thickets.  

 

Interval probabilities 

In the two methods described above, uncertainty about the values of a random variable is 

represented as bounds on cdfs. In this section we will focus on uncertainty in the probability 

associated with the values of random variables, i.e. interval probabilities. For interval 

probabilities, bounds are assigned to the probability of an event in the form of upper and lower 

probabilities, i.e. intervals on probability values.  The imprecision can reflect the quality of the 

information used to assign the probability value, indeterminate beliefs about events, indecision, 

group beliefs and decisions, and others [10].    

The construction of an interval probability involves assigning upper and lower probabilities 

to distinct events.  Upper or lower probabilities are real-valued functions ( P  and P , 

respectively) defined on a domain S (usually referred to as the sample space) which is an 

arbitrary subset of a universal set (or universe of discourse) Ω. A probability measure P must 

satisfy the following conditions, sometimes known as the probability calculus, but more 

commonly referred to as Kolmogorov’s axioms: 

i. ( ) SXXP ii ∈∀≤≤ ,10 ; 

ii. ( ) ( ) 0,1 =∅= PSP  where ∅ denotes the empty set; 

iii. ( ) ( ) ( ) ∅=∩∈∀+=∪ jijijiji XXSXXXPXPXXP such that ,, . 
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Upper and lower probability measures P  and P , on the other hand, have the basic properties 

[18]: 

a.   ( ) ( ) SXXPXP iii ∈∀≤≤≤ ,10 ; 

b.   ( ) ( ) ( ) ( ) 0,1 =∅=∅== PPSPSP ; 

c.  ( ) ( ) 1=+ c
ii XPXP  where c

iX  is the complement of Xi ; 

d. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),jijijijiji XPXPXXPXPXPXXPXPXP +≤∪≤+≤∪≤+

∅=∩∈∀ jiji XXSXX such that ,  

An interval probability is characterized as [ ( ) ( )APAP , ], i.e. it is an interval bounded 

below by the lower probability assignment P  and above by the upper probability 

assignment P . It differs from the intervals constructed in the previous sections in that here, the 

intervals consist of probabilities, whereas the intervals in the previous sections consisted of 

values of the random variable coupled with an associated probability. Our task here is to convert 

a set of interval probabilities to a set of intervals of the random variable A, with associated 

probabilities on those intervals.  

Here we restrict the universal set Ω to the positive reals (in keeping with Theorems 1 to 

3). Once upper and lower probabilities have been assigned for each event in the sample space we 

can then define upper and lower distribution functions of a random variable A with respect to the 

upper and lower probability functions.  The upper and lower cumulative distribution functions 

( )xF A  and ( )xF A   given ( )AP  and ( )AP  are defined as 

( ) ( ) ( )
( ) ( ) ( )xAPxAPxF

xAPxAPxF

A

A

>−=≤=

>−=≤=

1
1

                                         (15) 
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respectively, for all positive real values x.  Hence, for any pair of upper and lower probability 

functions defined on ℜ, there exist corresponding upper and lower cumulative distribution 

functions.  Our analysis of interval probabilities now becomes an analysis of upper and lower 

cdfs. It is important to point out that converting a set of upper and lower probability assignments 

into upper and lower cumulative distribution functions is information losing by virtue of property 

d) above. That is, the resultant bounding cdfs may not necessarily be deconstructed to give back 

the original interval probabilities from which the bounding cdfs were constructed. Interval 

probabilities resulting from a deconstruction of equations (15) will generally result in wider 

bounds than the original ( )AP  and ( )AP  that were used to construct equations (15). However, 

for our purposes it suffices to construct the bounding cdfs and then deconstruct these into a set of 

intervals of the random variable with associated probabilities, rather than the original probability 

intervals of connected subsets of the reals. For cases where ( )xF A , ( )xF A , ( )yF B  and 

( )yF B are step functions, as in Figures 4 and 5, deconstruction must be performed in such a way 

as to ensure equal probability mass assignments for each resultant interval. This may involve 

selecting a partition of the cumulative probability with a resolution fine enough that multiple 

copies of an interval results. For instance, if the deconstruction of probability bounds for random 

variable A resulted in a set of intervals with associated probability mass of 0.1 each, then for the 

probability bounds on A appearing in Figure 2, there would be two occurrences of each interval, 

each with associated probabilities 0.1. 

Convolving two random variables A and B is now a matter of discretizing each cdf or 

each pair of bounds on a cdf and deconstructing into thickets via equations (6) (or equivalently, 

equations (12)) with equal steps along the cumulative probability axis. The methods described in 
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the previous sections are then applied to calculate the resultant upper and lower cdfs for A∗B 

under assumptions of independence, perfect positive or negative dependence or under no 

assumptions of dependency structure. So we see that for the special case of an ℜ+-valued 

domain, a reconstruction of interval probabilities into bounds on cdfs coincides with both DEnv 

and dependency bounds convolution. Once a set of intervals with associated probabilities are 

obtained from the bounding cdfs for each random variable, it readily follows from Theorem 3 

that applying either of the dependency bounds methods described above to a convolution of 

random variables will lead to the same results.  

 

Dempster-Shafer belief functions 

Dempster-Shafer (D-S) belief functions are probabilities that are constructed from evidence [11].  

The difference between traditional probability and Dempster-Shafer theory is that in the 

traditional probabilistic framework evidence is associated with a single event, whereas in 

Dempster-Shafer theory evidence can be associated with multiple possible events, or sets of 

events (Sentz and Ferson 2002). Dempster-Shafer theory relies on three main functions: the basic 

probability assignment (bpa), the belief function (denoted Bel) and the plausibility function 

(denoted Pl).   

Suppose we have a universal set Ω, the power set of which is denoted by ( )Ω℘ .  A lower 

probability P , defined on ( )Ω℘ , is a belief function (denoted Bel) if and only if it can be written 

in the form 

( ) ( ) ( ) Ω⊆⊂∀== ∑
⊂

ABBmABelAP
AB

,                               (16) 

where m is a measure on ( )Ω℘  such that 
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     i)    ( ) Ω⊂∀≤≤ BBm 10 , 

ii)   ( ) 0=∅m , 

iii) ( ) 1=∑
Ω⊆B

Bm . 

The function m is called the basic probability assignment.  A focal element is any subset 

B of Ω such that ( ) 0≥Bm . The basic probability assignment represents the proportion of all 

relevant and available evidence that supports the claim that a particular element of Ω belongs to 

the set B. For example, suppose Ω = {M, P, J} and basic probability assignments m({M}) = 0.3 

and m({M, P}) = 0.2. Since we know nothing about the remaining probability it is allocated to 

the whole frame of discernment, i.e. m({M, P, J}) = 0.5, and m(A) = 0 for all other A⊂ Ω. The 

value m(B) relates to B only and does not imply any additional probability assignments for any 

other subsets of Ω including subsets or complements of the set B. Hence the belief function Bel 

is the sum of the basic probability assignments for all proper subsets of the set of interest, A. 

The upper probability can be defined in terms of its conjugate lower probability as 

( ) ( ) ( ) ( ) Ω⊆∀==−= ∑
∅≠∩

BABmAPlAPAP
BA

B

c ,1
such that 

                         (17) 

where Ac is the complement of A. In Dempster-Shafer theory, the upper probability is referred to 

as the plausibility function (denoted Pl). It is the sum of all the basic probability assignments for 

all sets that intersect the subset of interest, A. Bel(A) and Pl(A) may be viewed as lower and 

upper bounds on the actual probability P(A). Table 5 displays the upper and lower probability 

assignments (i.e. degrees of plausibility and belief, respectively) for all A ⊆ Ω in the example 

above. 
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Yager [20] shows how to construct upper and lower bounds on the cumulative basic 

probability assignment via the belief and plausibility functions when the domain is restricted to 

ℜ.  Let’s suppose that the universal set is the reals, ℜ, and the basic probability assignment 

defined over all subsets of ℜ is denoted by m. The focal elements of the set of all subsets of ℜ, 

with respect to m, are denoted Ai, i = 1, …, n. Furthermore, let ( )xG  denote the set of numbers 

less than or equal to x, i.e. 

( ) { }ℜ∈≤= xxzzxG ,: . 

The lower and upper bounds on the cdf can be constructed as 

( ) ( )( ) ( )( )
( ) ( )( )zIAm

xGxGPxF

iAxzi
i ≤
⋅=

==

∑ max
Pl

                                                   (18a) 

( ) ( )( ) ( )( )
( ) ( )( )





 −⋅=

==

>∑ zIAm

xGxGPxF

iA
xz

i
i

c

max1

Bel

                                        (18b) 

where ( )xGc  is the complement of G(x), and the indicator function 
iAI  takes the value 1 if z  is 

in iA  and 0 otherwise [20]. Hence, an unknown real variable A, the values of which are 

described by a Dempster-Shafer structure with basic probability assignment mA, has a cdf, FA, 

that lies between upper and lower bounds as constructed above. That is, 

( ) ( ) ( )xFxFxF AAA ≤≤ . 

Such a construction is generally information losing in the same way that a conversion of interval 

probabilities to a pair of bounding cdfs is information losing—the cumulative bounds cannot be 

deconstructed, in general, to give the original belief and plausibility functions.  
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Suppose now that we have two Dempster-Shafer structures for two unknown real 

variables, A and B, with basic probability assignments mA and mB and focal elements denoted by 

Ai and Bj, respectively, where Ai and Bj are intervals on the real line, and Ai may be a set of 

overlapping intervals, likewise for intervals Bj.  Further suppose we wish to convolve the 

variables A and B via a binary operation to form A∗B.  Yager’s method for calculating the 

resultant probability assignment under an assumption of independence is  

( ) ( ) ( )jB

DBA
ji

iA BmAmDm

ji

×= ∑
=∗

∀ ,
                                                  (19) 

where D = {Ai∗Bj, ∀ i, j}. The resultant probability assignment is also a Dempster-Shafer 

structure for A∗B since m: D → [0, 1] satisfies i) to iii) above [20]. Note that if Ai and Bj are 

intervals then D is the result of interval arithmetic on the two intervals. The associated basic 

probability assignment is then simply calculated as the product of the two respective basic 

probability assignments. This is essentially identical to the DEnv determination on thickets and 

Williamson and Downs algorithm for convolving independent random variables. 

In order to see that Yager’s method for convolving two random variables is equivalent to 

the method described by Berleant and Goodman-Strauss [16] and Williamson and Downs [7] for 

independent random variables, we simply need to recognize that, for the variable A, say, the 

thicket consists precisely of the intervals Ai with associated probabilities ( )iA Am . Likewise, for 

the variable B, the thicket consists precisely of the intervals Bj with associated probabilities 

( )jB Bm .  It is now a simple matter to convolve the two variables as A∗B using equation (19) and 

interval arithmetic.  Let’s suppose that Ai = [aLi, aUi], where 
1,, +≤ iLiL aa  and 

1,, +≤ iUiU aa , and Bj 
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= [bL,j, bU,j], where 1,, +≤ jLjL bb  and 1,, +≤ jUjU bb ,.  The upper and lower bounds on the cdf 

resulting from the convolution D = A+B, say, can be rewritten as  

( )
( )

( )( ) ( ) ( )( ) ( ) ( )
( )









+≥

−×=+<≤+⋅+

+<

=

×

+++≤

−×

=
++ ∑

mnU

kLkLBAyxwk

mn

k
BA

L

BA

baz

mnkbazbawIBAm

baz

zF
k

,

1,,

1

1

1,

for 1

,1,,1,formax

for 0

K

                  (20a) 

   

( )

( )

( )( ) ( ) ( )( ) ( ) ( )

( )









+>

−×=+≤<+









−⋅+

+≤

=

×

+

−×

= +>
++∑

mnU

kUkU

mn

k yxw
BAkBA

U

A

baz

mnkbazbawIBAm

baz

xF
k

,

1,,

1

1

1,

for 1

,1,,1,formax1

for 0

K

.        (20b) 

where the endpoints for the lower and upper bounds have each been sorted into ascending order, 

as for the construction of bounds in equations (8). A similar construction works for the other 

binary operations, with appropriate care in the interval artithmetic.  

Hence, the convolution of independent random variables described by a Dempster-Shafer 

structure is identical to that of thickets and dependency bounds convolution when Ai and Bj form 

a partition of the positive real line.  Furthermore, the formalism of DEnv on thickets allows us to 

extend Yager’s method [20] of convolution to the case where the dependency structure is 

perfectly positive or negative, or unknown in the manner described in the sections above. 

Recognition that the set of intervals with basic probability assignments (i.e., the particular 

Dempster-Shafer structures we have restricted this discussion to) forms a thicket allows us to do 

this.   

 

Conclusion 
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In this paper we have reviewed four probabilistic methods for the reliable propagation of 

uncertainty. We showed that each method can be reformulated and/or extended so that all 

methods are essentially the same for the restricted domain of the positive reals ℜ+, and with 

additional restrictions for Dempster-Shafer structures.  

The convergence of the methods to equivalent formulations for the domain ℜ+ now 

makes it possible to do calculations with Dempster-Shafer belief structures and interval 

probabilities under a variety of dependency assumptions (but see caveats above for D-S 

structures). These include assumptions of independence, perfect positive and negative 

dependence, and unknown dependency. The software RAMAS Risk Calc [15], originally 

designed for dependency bounds convolution, can thus be used for any of the approaches 

described here. Software is also available to perform Dependency Envelope Determination [8], 

and can likewise be used for any of the approaches described above. (Statool 

http://class.ee.iastate.edu/berleant/home/Research/Pdfs/versions/statool/distribution/index.htm) 

Our results enable reliable propagation of uncertainty through calculations when very 

little is known about the dependency structure, and require minimal knowledge (or assumptions) 

about the underlying true probability distribution. The treatment here extends the flexibility and 

utility of these methods to problems beyond those with simple and often unrealistic assumptions 

of independence, resulting in the reliable propagation of uncertainty through calculations.  
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Table 1. Table of intervals with their associated probabilities (a “joint distribution tableau”) 

describing A +ind B, the sum of distributions A and B under the assumption of independence. The 

interior intervals (bolded) are the result of interval addition on the pairs Ai and Bj and the 

probability associated with each interior interval is calculated as pij = pi × qj due to the 

assumption of independence of A and B. 

A+indB   

⇒∈ Axx :  

⇓∈ Byy :  

x ∈ A1,  A1= [1, 2] 

p1 = 1/2 

x ∈ A2,  A2= [2, 4] 

p2 = 1/2  

y ∈ B1,  B1=[2, 3] 

q1 = 1/4  

x + y ∈ [3, 5] 

p11 = 1/8         

x + y ∈ [4, 7] 

p21 = 1/8    

y ∈ B2,  B2= [3, 4] 

q2 = 1/2 

x + y ∈ [4, 6] 

p12 = 1/4 

x + y ∈ [5, 8] 

p22= 1/4 

y ∈ B3,  B3= [4, 5] 

q3 = 1/4  

x + y ∈ [5, 7] 

p13 = 1/8 

x + y ∈ [6, 9] 

p23 = 1/8 
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Table 2. Tables of the intervals and associated probabilities that define the distribution function 

of A + B under assumptions of a) perfect positive and b) perfect negative dependence. The 

intervals are the result of interval addition on the pairs Ai and Bj. The probabilities pij refer to the 

joint distribution of A and B under the assumptions of a) perfect positive and b) perfect negative 

dependence.  

a) 

A+B                         x→ 

                          y↓ 

x ∈ [1, 2] 

p1 = 1/2 

x ∈ [2, 4] 

p2 = 1/2  

y ∈ [2, 3] 

q1 = 1/4 

x + y ∈ [3, 5] 

p11 = 1/4 

x + y ∈ [4, 7] 

p21 = 0 

y ∈ [3, 4] 

q2 = 1/2 

x + y ∈ [4, 6] 

p12 = 1/4 

x + y ∈ [5, 8] 

p22 = 1/4 

y ∈ [4, 5] 

q3 = 1/4 

x + y ∈ [5, 7] 

p13 = 0 

x + y ∈ [6, 9] 

p23 = 1/4 

 

 

b) 

A+B                         x→ 

                          y↓ 

x ∈ [1, 2] 

p1 = 1/2 

x ∈ [2, 4] 

p2 = 1/2  

y ∈ [2, 3] 

q1 = 1/4 

x + y ∈ [3, 5] 

p11 = 0         

x + y ∈ [4, 7] 

p21 = 1/4    

y ∈ [3, 4] 

q2 = 1/2 

x + y ∈ [4, 6] 

p12 = 1/4 

x + y ∈ [5, 8] 

p22 = 1/4 

y ∈ [4, 5] 

q3 = 1/4 

x + y ∈ [5, 7] 

p13 = 1/4 

x + y ∈ [6, 9] 

p23 = 0 
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Table 3. Constraints imposed by the joint distribution tableau of Table 1 in the method for 

Distribution Envelope Determination. 

Column constraints Row constraints 

1/2 = p11+ p12 + p13 

1/2 = p21+ p22 + p23 

1/4 = p11 + p21 

1/2 = p12 + p22 

1/4 = p13 + p23 
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Table 4. Tables of the intervals and associated probabilities that define the distribution function 

of A + B under no dependency assumptions. The intervals are the result of interval addition on 

the pairs Ai and Bj. The probabilities pij refer to the joint distribution of A and B under no 

dependency assumptions and are obtained using the method described for Distribution Envelope 

Determination.  

 
A+B                         x→ 

                          y↓ 

x ∈ [1, 2] 

p1 = 1/2 

x ∈ [2, 4] 

p2 = 1/2 

y ∈ [2, 3] 

q1 = 1/4 

x + y ∈ [3, 5] 

p11= 0 

x + y ∈ [4, 7] 

p21 = 1/4 

y ∈ [3, 4] 

q2 = 1/2  

x + y ∈ [4, 6] 

p12 = 1/2 

x + y ∈ [5, 8] 

p22 = 0 

y ∈ [4, 5] 

q3 = 1/4 

x + y ∈ [5, 7] 

p13 = 0 

x + y ∈ [6, 9] 

p23 = 1/4 
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Table 5. Basic probability assignments (b.p.a.s), and degrees of belief and plausibility (i.e. lower 

and upper probabilities) as assigned in the Dempster-Shafer theory of evidence framework for Ω 

= {M, J, P}, m({M}) = 0.3, m({M, P}) = 0.2, m(Ω) = 0.5 and m(A) = 0 for all other A ⊂ Ω. 

 

Subsets of  

Ω = {M, J, P} 

∅ {M} {J} {P} {M, J} {M, P} {J, P} {M, J, P} 

m(A) 0 0.3 0 0 0 0.2 0 0.5 

Bel(B) 0 0.3 0 0 0.3 0.5 0 1 

Plaus(B) 0 1 0 0 1 1 0 1 
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Figure 1. Upper ( ( )xFA ) and lower ( ( )xF A ) bounds on a cumulative distribution function FA(x) 

for real-valued random variable A. While ( )xFA  and ( )xF A  form the upper and lower bounds 

on the cumulative distribution function, respectively, their inverses form lower and upper 

bounds, respectively, on subsets of the random variable. 

 

Figure 2. Discretization of cumulative probability distribution. The function ( )xFA  is 

discretized into two functions, a left bound ( )xFA
, and a right bound ( )xF A , both with n steps of 

equal height.    

 

Figure 3. A probability distribution function discretized with a histogram. The height of the 

histogram bars refers to the probability mass under the pdf for each respective interval. 3a) 

shows a histogram for a partition of the real line. 3b) shows a histogram for overlapping 

intervals. 

 

Figure 4. Bounds for the cumulative distribution of A +ind B, constructed from Table 1. The left 

and right bounds are formed by cumulating the probabilities for the left and right sets of 

endpoints spearately. 

 

Figure 5. Diagram of decomposition of probability bounds, ( )xFA  and ( )xF A , into a thicket. 

The values along the vertical axis correspond to the probability mass associated with each 

interval resulting from the decomposition. The values along the horizontal axis provide the upper 

and lower bounds on each interval. For example, the interval A1 = [ ( ) ( )1
)1(

1
)1( , sFsF AA

−− ] = 
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[ ( ) ( )1
)1(

1
)1( , rFrF AA

−− ] has associated probability mass r1, the interval A2 = 

[ ( ) ( )2
)1(

2
)1( , sFsF AA

−− ] = [ ( ) ( )1
)1(

1
)1( , qFqF AA

−− ] has associated probability mass q1 – r1 etc. 
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Figure 1.  
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Figures 3a and 3b 
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Figure 4 
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Figure 5 
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