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Abstract. This paper develops a novel approach to modeling and predicting advancement in 
spacecraft technology for deep space exploration. As spacecraft lifetimes increase, ever more 
elaborate missions and even quasi-permanent bases become more and more possible. We use the 
NASA (National Aeronautical and Space Agency) yearly budget along with the time variable to 
model their relationship with spacecraft lifespans and compare the level of fit of our model with an 
exponential (generalized Moore's law) model. The results indicate that our model provides a better 
curve fit, suggesting the usefulness of NASA’s budget in predicting the progression of space 
exploration technology. Additionally, the evidence that the NASA budget has a statistically 
significant impact on spacecraft lifespans suggests that the government could increase future funding 
of NASA to foster quicker technological improvement in space exploration technology. 
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1 Introduction 

Many technologies have been shown to conform to the general form of Moore’s law, which is the empirical 
observation that technologies often improve as exponential functions of time, enabling predictions about their 
future, although at different rates of change for different technologies [9]. Another observed regularity, Wright’s law 
(also called the power law or experience curve), also provides approximations for the pace of technological 
improvement that are usually similar and of comparable quality [6, 17, 20, 23]. While these laws have served as 
models of technology progress in various technological domains, only a few studies have demonstrated that space 
exploration technology follows similar patterns [12]. The fact that the human population of space has historically 
exhibited a general upward growth trend [8, 28] also suggests that space exploration technology may follow an 
exponential growth pattern. Yet, some have argued that progress in human space exploration has come to a stop [3, 
11]. Despite (or perhaps because of) these arguments, it remains debatable what proxies to use for measuring the 
performance of space exploration technology over time since progress in space exploration is a qualitative concept 
and thus not directly and quantitatively measurable. 

A recent use of spacecraft lifetimes as a proxy for advancement in space exploration technology [6] found an 
exponential trend, as has been found for many other technological domains. Howell et al. [13] later compared the rate 
of spacecraft technology progress in the United States to that of the Soviet Union during the space race period and 
concluded that the former had a higher rate of improvement than the latter. Both of these studies chose to use a single 
proxy variable rather than a weighted combination of variables, thus helping to lower the risk of overfitting. Ultimately 
an overfitted curve may provide a perfect fit to the data but have limited predictive power and thus limited value [14]. 
Our study incorporates an additional causatively relevant variable into an otherwise exponential trend formula to 
pursue a more detailed model of advancement in deep space exploration vessels. Specifically, we utilize NASA’s 
budget along with the time variable to model their relationship with spacecraft lifespans. Our goal is to identify a 
model that provides a good fit, useful forecasts, is intuitive and is readily applied. 



 

First, we survey the previous work in applying Moore’s law to study technological advancement, followed by a 
review of literature investigating the potential explanatory variables that affect technological progress. Then, we 
introduce our methodology of modeling advancement in space exploration technology. Next, the data fitting results 
and the extrapolation predictions for the progression of space exploration technology are presented, followed by a 
conclusion. 

2 Literature Review 

In 1965, Gordon Moore, a co-founder of Intel and Fairchild Semiconductor, published an article observing that the 
number of components per integrated circuit had doubled approximately every year from 1959 until 1965 [22]. He 
predicted that this growth would continue at around the same pace for at least the next ten years. He then in 1975 
revised the growth rate to a doubling time of every two years [21]. The exponential progress in the number of 
components on a state-of-the-art integrated circuit eventually became known as Moore's law. Over the years, a 
generalized version of Moore's law has taken on a meaning as an exponential growth trend in a technology [23, 27, 
30]. 

The generalized Moore’s law has been observed in many other technologies besides integrated circuit chips since 
Moore’s article. For instance, Nielsen [25] looked into internet bandwidth growth rates and projected that “a high-end 
user's connection speed grows by 50% per year,” which suggests that internet bandwidth doubles almost every 21 
months. Kryder proposed that disk drive areal density was increasing 1,000-fold every 10.5 years [33], which is 
approximately equivalent to a doubling of storage capacity every 13 months. Additionally, Carlson found evidence 
that the doubling rate of cost per performance of DNA sequencing and synthesis technologies has followed an even 
faster trajectory [29]. Sometimes referred to as the Carlson Curve, this exponential growth has come to be known as 
the biotechnological equivalent of Moore’s law. More recently, Bailey et al. [1] and Nagy et al. [23] examined the 
cost and production data of 62 different technologies and found exponential relationships between performance and 
time in all of them. 

Other studies have also contributed to strengthening the exponential curve as a model of technological 
advancement. For example, Koh and Magee [15, 16] studied the technological development of the information and 
energy technology domains with a broad functional category approach. They assessed the three functional categories 
of storage, transportation, and transformation for both domains and developed associated non-device functional 
performance metrics to analyze their technological improvement trends [5]. They found exponential progress in 
technology over time for all cases. Similarly, Magee et al. [20] looked at 28 different technology domains and 
employed 71 metrics to study how their performances evolve with time. The results show that these 28 technologies 
also seem to exhibit exponential progress, analogous to the original Moore’s law for electronic chips. 

As discussed above, considerable research has demonstrated that the performances of a broad range of technologies 
increase exponentially over time. Nevertheless it is unclear why the exponential should be assumed to provide the 
most accurate possible predictions of technological performance. Moreover, the exponential alone cannot explain what 
influences technological improvements. As MacDonald and Schrattenholzer [18] stated: "technology design that is 
left on the shelf does not become better the longer it sits unused." This suggests the need for knowing the factors that 
shape technology performance in order to build even better models for predicting technological performance. 

Prior research has explored various explanatory variables that affect technological progress. Some studies have 
measured technology improvement rates based on insights obtained from patents [4, 5, 20, 26, 32], while others 
suggested using production, R&D spending, sales revenue, etc. [1, 9, 20]. Despite these efforts, the existing literature 
is often inconclusive about the preferable type of metrics. Magee et al. [20] propose techno-econometric metrics 
focused on value to the user (e.g. performance/cost figures) in preference to market-based metrics (e.g. number sold) 
and engineering metrics (e.g. digital chip pitch): 

“The ‘ideal’ metric for assessing technical performance is one that would assess the economic value 
of an artifact independently of purely economic variables such as scarcity and strength of demand. An 
ideal metric would combine (in the ‘correct’ weight) all performance factors that have a role in a 
purchase/use decision. Thus, these ‘techno-economic’ metrics would measure the performance of an 
artifact as viewed by a user and not design variables as viewed by an engineer (the technical metrics) 
and also not the number of users or depletion effects as present in metrics focused more on marketing 
or economic impact.” 



 

Some scholars take a broader view, looking at the driving forces behind technological innovation, which comprise 
pull drivers, such as market demand and profitability potential, and push drivers, such as new technology and 
innovative manufacturing processes [7, 19]. They argued that these two drivers are indispensable for technology 
evolution and a lack of either would change the path of technological advancement. 

A number of researchers have emphasized the importance of public policies and government funding for the 
evolution of certain technologies [2, 31]. For many such technologies, the private sector may have limited incentive 
or ability to support research because the time needed to obtain benefit from the research results is often measured in 
years, if not decades, and they cannot assume the risks inherent in such research, nor can they continue funding 
research in a particular field over a long period of time if the payback is unclear. In our view, the importance of 
continued government funding in space exploration technology cannot be emphasized enough as space exploration is 
a long-term endeavor and requires steady funding to stay on schedule. A decreased level of funding would certainly 
result in delays in the development of new technology. This motivates our consideration of NASA's budget in 
modeling advancement in space exploration technology. Additionally, NASA's budget acts as both push and pull 
drivers for the advancement of space exploration technology. Not only does NASA funded research facilitate the 
creation of new technology (a push driver), but NASA funded missions provide applications (a pull driver) that 
motivate creating the required new technologies. 

By fitting a curve defined by a new metric to space mission data and NASA’s budget data, the results of our study 
will contribute to the literature related to the advancement in space exploration technology over time. Indeed, 
understanding technological performance in space exploration over time will enable better foresight in formulating 
technology policy and planning for exploration missions to distant astronomical objects [10]. 

3 Methodology 

The space mission data for the period 1959 to 2020 is updated from the work of Hall et al. [10]1. NASA's annual 
budget data was extracted from Wikipedia [34]. We used the data from the column showing budget in 2014 Constant 
Dollars, which takes inflation into account and thus provides a more meaningful assessment than the data from the 
column containing Nominal Dollars. Our study fits the following log linear model to the data: 

log2 Lt = α + β1t + β2log2 St + ε                                                               (1) 

The dependent variable Lt represents the maximum lifetimes in years of all the spacecraft launched in year t. A lifetime 
is calculated by subtracting the launch date of a spacecraft from its failure date and is measured in years. Variable t, 
the year that a spacecraft launched, ranges from 1959 to 1999 to account for the years for which all spacecraft launched 
are no longer operating (except for Voyager 1 and 2 launched in 1977, whose projected lifetime figures are based on 
published estimates). St represents a moving average of some specified window size in years for NASA’s annual 
budget calculated for year t and measured in US$ millions. The parameters α, β1, and β2 are fitted using the method 
of ordinary least squares. The error terms, ε, are generated from the discrepancies between the fitted curve and each 
data point. We assume that the error terms exhibit a mean of zero and constant variance. 

We fitted the model to the moving average data for each window size from 1 to 20 using root-mean-square error 
(RMSE) to measure the goodness-of-fit. Then we compared the resulting RMSE values and chose the window size 
that produced the lowest RMSE. This process produced the model with the best RMSE over all window sizes and 
model parameter values. 

4 Results 

The plots of RMSE vs. window size allow us to find the best fit to the data, based on the parameters and window size 
with the lowest RMSE. Figure 1 shows the minimum RMSE for the various window sizes. The minimum RMSE starts 
at 2.23 and decreases to a low of 2.13 at a window size of 9 before gradually increasing to 2.16 at window size 20. 
For comparison, we next included the Voyager 1 and 2 spacecraft which were launched in 1977 and are still operating. 
Their lifetimes were estimated using NASA's estimate [24] that the Voyagers will continue operating until 2025, 

                                                           
1 Data was compiled into a Google Sheet file that can be viewed and/or acquired by accessing the following web address: 
https://docs.google.com/spreadsheets/d/1fpYB3pMHcq77vQPMvpkA-sWFPzr2zlcWnEsDyawVfyI/edit#gid=846789546 



 

giving both spacecraft estimated lifetimes of 48 years. Figure 2 shows the minimum RMSE over the various window 
sizes for the data with the Voyager missions included. It can be seen that the window size with the lowest possible 
RMSE changes to 13 with a minimum RMSE of 2.22. 

 

 

Fig. 1. Minimum RMSE vs. window size (excluding the Voyagers) 

 

 

Fig. 2. Minimum RMSE vs. window size (including the Voyagers) 

Figures 1 and 2 show that applying moving averages with window size 13 and 9 on NASA’s annual budget (variable 

St) best fit the data with and without the Voyagers included respectively. Our next step is, therefore, to regress Eq. (1) 
to optimize its parameter values for each of the two cases, (1) excluding the two Voyager spacecraft and using a 
moving window of width 9, and (2) including the Voyagers with estimate lifetimes and a moving window of width 
13. 

Tables 1 and 2 show the parameter values of the fitted curve. Excluding the Voyagers from the analysis, when 
holding the other predictor variables fixed, a 1% increase in NASA's annual budget would raise the expected mean 
lifespans by approximately β2=0.9365%, while including the Voyagers, a 1% increase would lead to approximately 
β2=1.0593% increase. This is implied by Eq. (1) for values of β2 near 1. The F-statistic indicates that in each model 
the explanatory variables are jointly significant in determining the lifespan in Eq. (1). The p-values are significant, 
and so permit excluding the null hypothesis that β1 and β2 are positive due to chance, thus indicating that time and 
budget really are associated with increasing lifespan. Thus we conclude that US government funding has a significant 
impact on the evolution of spacecraft lifespan. 



 

 

 

Table 1. Results of curve fitting (excluding the Voyagers) 

Coefficient Value t-stat. p-value 

β1 0.0892 2.343 0.027 

β2 0.9365 2.307 0.029 

Probability (F-statistic): 0.000583; Adj R-squared: 0.381. 

 

Table 2. Results of curve fitting (including the Voyagers) 

Coefficient Value t-stat. p-value 

β1 0.0823 2.050 0.050 

β2 1.0593 2.401 0.023 

Probability (F-statistic): 0.000662; Adj R-squared: 0.365. 

Figures 3 and 4 present the logs of the lifespan values (log2 Lt) and the fitted curves. As can be seen from both figures, 
our models achieve greater accuracy in fitting the data than exponential curves, as a result of a lower value of the 
RMSE. To compare the predictions of the standard Moore’s law (exponential) and budget-augmented models, we also 
used each of the models to extrapolate the fitted curves from year 2000 up to 2020. Actual spacecraft lifespan data is 
also shown for years since 2000, depicting a downward trend, a serious artifact attributable to recency bias wherein a 
significant proportion of spacecraft launched in recent years are still operating, so only the shortest-lived ones have 
failed thus downward-biasing the maximum lifetime figures for such years. This problem becomes progressively 
worse for more recent years since, for example, the maximum lifetime of spacecraft launched 2 years ago that have 
failed can be no more than 2 years. To complement the log scaled plots in Figures 3 and 4, we also generated linearly 
scaled plots in Figures 5 and 6. 
 



 

 

Fig. 3. Fitted curve vs. Moore's law (excluding the Voyagers from the analysis) 

 



 

 

Fig. 4. Fitted curve vs. Moore's law (including the Voyagers in the analysis) 

 



 

 

Fig. 5. Fitted curve vs. Moore's law (excluding the Voyagers) with linear scaling 

 



 

 

Fig. 6. Fitted curve vs. Moore's law (including the Voyagers), linearly scaled 

 

To extrapolate predictions of future spacecraft lifespans from the fitted models, we next tested hypothetical NASA 
annual budgets for the years 2021-2030 using 5% and -5% annual growth rates. The extrapolations are illustrated in 
Figures 7 and 8. The plots demonstrate that NASA's future budget is predicted to have a significant impact on 
advancements in spacecraft lifespan. Figures 9 and 10 show these projections in linear space. 
 



 

 

Fig. 7. Predicted lifespans of spacecraft during 2021-2030 (excluding the Voyagers from the analysis) 

 



 

 

Fig. 8. Predicted lifespans of the spacecraft during 2021-2030 (including the Voyagers in the analysis) 

 



 

 

Fig. 9. Predicted lifespans of spacecraft from 2021-2030, linearly scaled (excluding the Voyagers from the analysis) 

 



 

 

Fig. 10. Predicted lifespans of spacecraft during 2021-2030 with linear scaling (including the Voyagers) 

5 Conclusions 

We have established an improved model of advancement in space exploration technology by augmenting a basic 
exponential model with an additional factor, the NASA budget. We tested our model against data on the lifespans of 
deep space exploration spacecraft, finding lifespan to be a useful proxy for space exploration technology performance. 
We first showed that accounting for the NASA budget enables models with improved fit to the data. We then 
extrapolated the model to show how the future NASA budget is predicted to significantly impact the lifespans of future 
launches, thus highlighting the importance of continued government funding in advancing the technical performance 
of deep space exploration vessels. 

Overall, the empirical results of this study identify our model as fitting data about the technical performance of 
deep space exploration technology better than the general exponential curve. Furthermore, we found statistically 
robust evidence that increases in NASA's budget can be expected to boost technical performance of future spacecraft. 
This result can be useful in crafting government policies regarding future funding of deep space exploration. 

This work could be usefully extended in future research in multiple ways. One direction is to test the validity of the 
model on new data as more spacecraft lifespans becomes available in the coming years. It may also be valuable to 
devise more accurate models by introducing other relevant independent variables besides time and NASA’s budget 
into the model. A natural example of that would be to incorporate space program budgetary data from other 
organizations that fund deep space missions. Modeling efforts in general often must balance model detail with model 
parsimony to best achieve validity, accuracy, understandability, and maintainability while avoiding overfitting. 
Further investigation of product lifespans as a measure of technical performance will cross-fertilize the fields of 
reliability analysis and technology foresight. That is expected to enable identifying, understanding, and applying new 
techniques for technology foresight. 
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