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Abstract

Portfolio management in finance is more than a prattical problem of optimizing performance
under risk constraints. A critical factor in priaet portfolio problems is severe uncertainty —
ignorance — due to model uncertainty. In this pagwershow how to find the best portfolios by
adapting the standard risk-return criterion fortfmdio selection to the case of severe uncertainty,
such as might result from limited available dathisToriginal approach is based on the
combination of two commonly conflicting portfoliavestment goals:

1) obtaining high expected portfolio return, and

2) controlling risk.
The two goals conflict if a portfolio has both haglexpected return and higher risk than
competing portfolio(s). They can also conflichifeference curve characterizing a minimally
tolerable portfolio is difficult to beat.

To find the best portfolio in this situation, westi generate setof optimal portfolios.

This set is populated according to a standard mis&rapproach. Then we search the set using
stochastic dominance (SSD) and Information-Gap mhenidentify the preferred one. This
approach permits analysis of the problem even uselsre uncertainty, a situation that we
address because it occurs often, yet needs neweab/éo solve. SSD is attracting attention in
the portfolio analysis community because any ratiorsk-averse investor will prefer portfolye
to portfolioy, if y; has SSD ovey,. The player’s utility function is not relevantttus preference
as long as it is risk averse, which most investoes(e.g. De Giorgi 2005 [7], Berleant et al. 2005

[3).

Keywords: Epistemic uncertainty, finance, imprecise proalité#s, info-gap, information-gap,
portfolio, probability boxes, stochastic dominance.

1 Introduction

A portfolio consists of a set segmentseach of which is predefined as a particular asset
category, such as stocks, bonds, commodities,Sxtving the selection problem means
determining the best proportion each segment shmulof the total investment. The portfolio
selection problem is the subject of a vast bodywark. The process can be divided into two
phases. The first is asset allocation, in whiskestor philosophy, including risk position, is used
to choose the best percentage of the portfolidaogpin each segment. The second, rebalancing,
responds to changes in asset values by adjusengeittentages so that the portfolio continues to
accurately reflect the investment philosophy. Wiisk focuses on allocation. The well

known CAPM leads to various allocation strategiesuding for example BIRR and BARRA



(search the Web for further information about the$ke correct treatment of the risk-reward
problem addressed by Markowitz (1952 [12]) is fundatal to such modern methods, and its
extension to problems characterized by severe taiagr motivates this report.

Little has been done to determine portfolio allamatvhen dependency relationships, such as
correlations, among portfolio segment return distions are unknown. We address this problem
with a novel application of Information-Gap The¢Ben-Haim 2006 [2]), using it together with
the concept o$econd-order stochastic dominan(&SD) to help choose among portfolio
allocations. SSD holds between two distributiornandr, when the curves of their integrals do
not cross. The slower rising curve is then saidaee second-order stochastic dominance over

the other curve. If; has SSD over, then we writer, -, ;. Analogously, FSD (first-order
stochastic dominances, ) applies if the distribution curves themselvesidbcross. However,

most investors are risk averse, and,it-, r, then any risk averse player will prefer(e.g. Perny

et al. 2007 [13]). FSD is thus an unnecessaritynst (and therefore undesirable) constraint for
the risk averse player.

We build on a standard approach to finding optipmatfolios based omeanandrisk and
parameterized by amount of risk aversion, arisingirally from Markowitz (1952 [12]). The
mean is the expectation (i.e. average) for a Bigion describing the investment return, while the
risk expresses the danger of loss or low returdsstypically a measure of the spread of the
return distribution. Optimal portfolios are iddid by finding theweightsof the portfolio
segments such thanaean-riskobjective function is maximized (e.g. Elton et2003 [8]).
“Mean-risk” refers to a tradeoff between seekimgtarn distribution with a high mean, which is
good, while minimizing the higher risk that tendsse associated with a high mean return, which
is bad.

Formally, the problem to be considered is to findrsa portfolio given the constraints

r =Zs:vviri =, R (1)
ZS:Wi =1 (2)

wherer is a portfolio return distribution,is one of thes segments in the portfoliay; is the

weight of segmernit andr; is the return distribution of segméntR is a given reference curve
representing a minimally tolerable bound (the “ligkit”) that the return distribution should not
cross. As an additional constraint set (Eq. Qnmnt weights sum to 1 because each weight is a
proportion of the whole. Each weight may be reggiito be within some interval in order to
enforce a balance across segments, as might béieghdy a company’s business model
constraints and investment policies.

In current practice optimization would typically dene without the-, constraint, but perhaps
with other constraints present such as Value-at-RiaR), which is known to be mathematically
inconsistent, or Conditional VaR (CVAR) which isseintuitive but without VaR’s consistency
problem [3].

A given portfolio’s return distribution can be tedtfor compliance with an SSD constraint using
numerical integration. Numerical integration cardoee straightforwardly by summing areas of
trapezoids under the curve. The size and numbeapézoids to sum is determined by the step



size chosen for the integration process. Giversize, SSD is considered to hold if the
summed areas of all trapezoids to the left of amgrgvaluex; are lower for the return

distributionr of a candidate portfolio than for reference cuReA set of representative return
valuesxy, X, X3, ..., X,that are possible sample value ahould be checked. These points should
cover low and high values of return, as well asasonable number of intermediate points (@.g.
=10 or 20).

An optimal portfolio might or might not comply witln additional requirement that it have

stochastic dominance over a reference culfveA second-order stochastic dominance relation
(* >,") between two distributions ensures that the damirportfolio is preferred by any risk

averse player (De Giorgi 2005 [7]). Risk aversioplies that, given two return distributions
with the same expected return, the one with lessasi(e.g. variance) is preferred. Define
robustnesss the amount by which a portfolio dominates bip @Seference curve (robustness
could be negative if it does not dominate). Byitesvarious optimal portfolios for robustness,
one with the highest robustness available candtifted. Alternatively, one with the highest
expected return that also meets the SSD constmaimd be found. In either case, the strategy is
to search among a set of optimal portfolios prodjdeven if barely, by an under-constrained
optimization problem for the one that is best adiay to a second criterion. This is discussed
next.

2 Searching the optimal portfolios for the best oa

The first step is to generate a set of optimalfpbos to search within for the best. In the
standard approach of Markowitz portfolio theorye thesirability of a portfolio return distribution
r given a value of a parametedescribing the degree of aversion to risk is:

€zr) = mearfr) —z. risk(r). 3

We can build on the concept of Eq. 3 by definifgrection identifying the desirability of the best
portfolio(s) for a given risk position
OPT(2) = SU[.(4, -20;),220 4)
yay
where z> 0 means that the investor is not risk-seekMig the set of portfoliog complying
with constraints (1) and (2), apgand o; are the expected return and variance respectfely

the return of portfoliy. The gist of (4) may be used to define the setptifmal portfolios as:
OPT={y:(yOY)O(QyOY:[z>0: y, - z0; 2 u, - 20;} (5)
where z > 0 restricts the set to portfolios that are optinmeldome risk-averse party. This
restriction is consistent with most investors, atab with our focus on SSD, which is only valid
for ordering the desirability of portfolios if thparty is risk averse. It is possible to account fo
properties of portfolio variation besides varia€aabi-Yo 2004 [5]), but?is nevertheless
widely used to model risk position. The varianppraach can be elaborated to model different
variances for different portfolio segments, andtfar covariances between segments. The

S S
variance of the return distribution for a portfojithen foIIowsaj = ZZWinJ wherew,

ij?
i=1 j=1
andw; are the weights of portfolio segmentndj, andg; is their covariance (whemrj,

g; =0; = o?). Even in this more sophisticated modsk still a simple scalar coefficient.



Thus to generate a set of optimal portfolid®,T(2) can be evaluated repeatedly with different

values ofz (Figure 1).
T ~OFr () = sup s, - z05)
r

»
OPT (2) \

I I
| ZI:I Z]. z —:"
Figure 1. Each value ofimplies some maximum value GPT(2) resulting from some
portfolio(s) in the feasible set.

2.1 OPT(2) and the efficient frontier

Let us now relate Figure 1 (representing an optinaaeoff between mean return and risk) to the
concept, due to Markowitz, of thedficient frontier(Figure 2). The efficient frontier is plotted as
a curve on a plane with axes for mean and variakeeh point on the curve represents a
portfolio that is optimal in that no other portimlas a return distribution with the same (or
higher) mean and lower variance, or the same (@efpvariance and higher mean. Formally, a
portfolioy is on the efficient frontier if

Oy'0Y,- 0y (4, 2 4, Doy <o) O(u, > p, 0o} < 0}).

] ~
TSN

Tariance (JZ) —
Figure 2. An example of part of an efficient frontier.

Because of the well-known virtues of the efficiéantier in portfolio analysis [8, 12], it is uséfu
to establish that points on t#PT(2) curve (Figure 1) are also on the efficient frentiFigure 2),
and that points on the efficient frontier are alesaheOPT(Z) curve.

Lety, i =1, ...,sbe the mean return of portfolio segment.et different segments be
characterized by corresponding random variahleBor every set afreal valued weights;,

with eachw; LI[0, 1], we haveg? =" > ww,o; = E[(r, — E[r,])’], wherer, => wr, is the
i=1 j=1 i=1
return distribution of the corresponding portfojio Therefore, we always have

S S
> > ww,o; 20, i.e., the matrix ofg; is semi-definite.
=1 j=1

Theorem.
» If a portfolioy is on the efficient frontier then it solv&PT(z) for somez (see Eq. 4).
» If a portfolioy belongs to seDPT, it is on the efficient frontier (see Eqg. 5).



We start with a proof of the second statement byradiction. Assume that portfolig 1OPT
is not on the efficient frontier. Theny" (x4, 24y, Lo, <o, )C(u, >p,Co,<0o,). In
that case, u,. - zaj >u, - zaj, contradicting the definition dPT (see Eg. 5).

Now consider the first statement. Assume quyyto(vz), representing portfolig, is on the
efficient frontier (Figure 2). Consider the §etf points f, ¢°) for which u<p,0o%20? for

some portfolioy. We say these points ggedominatecbyy. The matrix of the second
derivatives of the function,” is positive definite, so the function is convekwe have two
portfoliosy’ andy”, then for thelr convex combinatioifw) = wy+(1-w)y” we haveuyw) =

Wty +(1-W) ey, buts? Y <wo? +(1—W)0' v (note the< sign) because the variance of a sum may
be less than the sum of the variances. Thusriearicombination ofy;, o,%) and f, 5,-), that
is, (Wi, +(1-W)uy, Way *+(1-W) 6,7, is p-dominated by portfoligiw) and thus is irP.

In general, if pointp, = (11, 01°) andp. = (u2, 02°) are inP, there exist portfoliog’ andy” which
p-dominate them respectively. Therefong+(1-w)p, is p-dominated byw, +(1-W)u,,

Woy, %+(1-w) oy %), which we already showed is p-dominated by pbdtfay+(1-w)y” = y(w). By
transitivity we conclude thgt=wp,+(1-w)p, is p-dominated by(w), and hence is iR.

Thus seP contains a convex combination of every two opidints and therefore is convex. We
can also prove th& is closed. Indeed, the set of all the portfolobounded and closed hence
compact. I, = (un, 0v2) is p-dominated by some portfoljp andp, — p’ then from the sequence
Y, We can extract a convergent subsequajhg& y. Becausep, is p-dominated byynk we can

conclude that, ak - o, p’is p-dominated by. Thereforg' LI P.

Portfolioy, earlier assumed to be on the efficient front®glearly inP. It cannot be in the
interior of P because if it was, a sufficiently small neighbarti@round it would also be iy and
this neighborhood would contain points with highemd lowers®. Since every point iR is p-
dominated by some portfolio, this portfolio woultetefore have higherand lowers” thany,
contradicting our assumption thais on the efficient frontier.

Thereforey is on the boundary of a closed convexRsett is known (e.g. Rockafeller 1970 [14])
that in this case, there exists a lag— ba,” = ¢, which goes througi such that all points |ﬁ’

are on one side of the line. Dividing b)(for a# 0) we get the line in the desired fopp- z5,” =

¢ (the casa = 0 corresponds to=c). Portfolioy is on this line, while all the others are on the
other side. We thus conclude tlydhdeed is on curv®PT(2).

Since the curve of Figure 1 contains the pointsasgnting the portfolios we need to consider,
we can proceed to analyze the curve of Figurefihtiothe best point. We illustrate this with an
example next.

2.2 Example

Consider a 3-segment portfolio problem in whichseek to optimize the weights of the
segments. The return distribution for segmentism@rmal:r, ~ Normal(@.1, 025). The

distribution for segment two is exponentig): ~ Exponent(1.0, 1.0) . Finally the distribution
for segment three is unifornn; ~Uniform (1.2, 048). Corresponding interval restrictions on
the weights of the segments axel1[0.2, 0.3], w, J[04, 0.6] andw, [J [0.2, 0.3].



Taking into account a full range of assets, theaeof risk aversiorg, for many investors
ranges from 2 to 4 (Grossman and Shiller 1981 [18]default value of = 3, representing a
typical degree of risk aversion (Bodie et al. 1899, implies that a relatively cautious investor
will have z > 3, while a relatively aggressive ista will have z < 3. In practice, such typical
textbook values might not entirely cover the falhge of degrees of risk aversion we would like
to deal with, so we examinedralues for this example over the broader range=08.2 toz = 5.
The optimal portfolios found for various valueszafre shown in Table 1. The return
distributions for the two portfolios that were opél for extremeg= 0.2 andz=5 are shown in
Figure 3. (To reduce clutter, curves for internagglivalues of are not shown).

End of example
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Figure 3. Distributions of the returns of the two portéithat are optimal far= 0.2 (shallower
curve) andz=5. Both have SSD over the sample reference ahroan.

2.2.1 What's next. Finding the best portfolio from the optimal potibs on the efficient

frontier is an investment decision. While it wollle a simple one to make by specifying a value
for z, most investors would not be able to state (oepi)@ny specifiz value as a firm constraint
on their portfolios, so it is not a common decistoiterion. Thus investigation of other criteria

for comparing portfolios is important in reachingnclusions about portfolio composition. Some
potential criteria are relatively straightforwar@thers might be better but not as simple.
Identifying what criteria for portfolio quality ateest under what conditions presents an
interesting problem. In this report we discuss emtipare some criteria and related issues based
on SSD and Info-Gap Theory.



Optimal portfolio
Value | segment weights
of z S S | S3
0.2 0.2 0.E]0.c
0.4 0.2 0.E]0.
0.€ 0.2 0.E]0.c
0.6 0.2 0.E]0.c
1 0.2 0.5 ]0.c
1.2 0.214¢| 0.5 | 0.285¢
14 0.231¢| 0.5 | 0.265¢
1.€ 0.243.| 0.5 | 0.256¢
1.8 0.2527 | 0.5 | 0.247:
2 0.260Z | 0.5 | 0.239°
2.2 0.266% | 0. | 0.233¢
2.4 0.2717| 0.5 | 0.228:
2.€ 0.276:.| 0.E | 0.223¢
2.8 0.279¢| 0.5 | 0.220:
3 0.2832| 0.5 | 0.216¢
3.2 0.28¢ | 0.t | 0.21«
34 0.288f| 0. | 0.211¢
3.€ 0.2907 | 0.5 | 0.209:
3.8 0.2927| 0.5 | 0.207:
4 0.294f | 0.5 | 0.205¢
4.2 0.295¢| 0.5 | 0.204:
4.4 0.297¢| 0.5 | 0.202¢
4.€ 0.29¢ | 0. | 0.201
4.¢ 0.2 0.E]0.z
5 0.2 0.E]0.z

Table 1 Optimal portfolios (i.e. optimal segment weiglttors) for various values af Return
distributions of the segments are assumed to lepantent.

2.3 Criteria for choosing the best portfolio

Each criterion named in itenisthrough4c of Table 2 is described and discussed in its own
subsection. Basic notation is explained next, etethnical details about the meaning of the
horizontal dimension of Table 2Q@uality Metric”) and its vertical dimension Qbjective”)
depend on the cell of the table under consideratimhthus are given later in the detailed item
descriptions.

Notation:

e uis an expected (i.e., mean) return.

* |SSD| is themountby which one distribution dominates another, usia@ criterion
second-order stochastic dominance. This is thénmim horizontal distance between the
integrals of two cumulative distributions (Figure 4n other words, |SSD| measures how
much one curve for the integral of a distributiam de moved toward another one along
thex axisbefore the two curves touch. |SSD| formalizesatheunt of separation between
the integrals of two distributions.



e @ is a parameter expressing the amount of ignorgemreetimes called epistemic
uncertainty) about the shape of a return distrdsutiSpecifyinga =0 will lead us to use
the best-guess estimate of its shape, whikel will lead to a distribution that incorporates
pessimistic assumptions about possible errorsarsitiape of the best-guess distribution.
Intermediate values af are then used to generate distributions by intating between
the distributions implied byr =0 and a =1 using “horizontal averaging” (defined later
when it is used). Our use af is an example of the more general definitiomaoih Info-
Gap Theory (Ben-Haim 2006 [2]).

Integral of the CDF
of a reference

portfolin \)

Integral of the CDF of a
candidate portfolio wath S50
over the reference

The rmurarum horizontal
distance between them
Figure 4. Two curves for the integrals of distributionsdahe separation between them. Recall
that the integral of a density function (PDF) isuanulative distribution (CDF). The integral of
the CDF is what is used in determining SSD.

Quality Metric
|SSC| o (alpha)
o 1.Given R, find the
Maximize |, ¢01i0(s) with the highest
Robustness ~ ~ : ~ S
(to achieve |SSD| overR, i.e., moveR 3: Given R, fl_nd a portfolio with the
secure to the right until further highest possible.
O performance) | movement would disqualify
b every portfolio.
J 4a.Find a portfolio with the highest me
e returnu from among those with SSD ovel
f Maximize 2. Find a portfolioy with refer_ence_curveR for anydependency
i | u(to achieve | retumn distributiorr, such that o anonships among segments.
v | best ~ oY “™| 4b. Generalize 4a by requiring SSD
e | performance | 'y 72 R, choosing one with | only somedependencies. The precise
within the the highest possible mean meaning of “some” is determined by the
risk limit) returnu. value ofo.

4c. Find the demand value of informati
aboute in order to choose what value of
to use in 4b.

Table 2 Approaches to finding a best portfoli(ﬁ is a reference curve.



2.3.1 Computational complexity and searching thee$ of candidate portfolios All

approaches enumerated in Table 2 involve searth@nget of candidate portfolios corresponding
to points on the curve of Figure 1. To initiallyqadate the set with members requires
corresponding evaluations GPT(2), so the time required to populatenis the time required to
evaluateOPT(2). The value ofis the number of points on the curve of Figurerlwhich
corresponding portfolios are to be computed. Tepkdow enough to make the problem
tractable, we used a heuristic approach to seay¢hancurve for a point corresponding to a best
portfolio. The approach will find the maximum life search space is sufficiently well behaved,
otherwise it might get stuck at a local maximunhefe is no indication that ill-behaved search
spaces would be common, but if such a space wasmira more comprehensive search strategy
would be needed to find the maximum.

Algorithm for searching for the optimal portfolio.

1. Given a measure of portfolio quality, evaluate fmdids corresponding ta points on the
curve of Figure 1, selected to be spaced at reprasee values of from the minimum
to the maximum value of interest. In this work emse 6salues forzof 0.2, 1, 2, 3, 4,
and 5, but the precise valuerofs unimportant.

2. Letz be the value df for the best portfolio of those tested. Next tastportfolio that is
optimal forz = z+¢, for ¢ small but not so small that error due to the kaiprecision and
accuracy of machine arithmetic is significanthié toptimal portfolio foz = z+¢ is better
than the optimal portfolio far = z, then search for even better portfolios in theyea,
Z«+1)- Otherwise, search for better portfolios in thage g1, zJ.

3. Definen equally spaced values within the new rangezfitiat we wish to search. Starting
from the value nearest iy test optimal portfolios corresponding to valuég o
progressively further from,, stopping at the value farwithin the range that corresponds
to the best portfolio.

4. Loop back to Step 2, or stop if significant furtimprovement seems unlikely.

Forn values ofz per iterationj iterations, time to evaluat®OPT(2) and test the quality of the
portfolio it returnsthe worst case run time for the algorithrmisi [t.

In the following sections we discuss each criteiiomable 2, starting from itethand
proceeding througtc.

2.3.2 GivenR, find the portfolio(s) with the highest 5SO over R (Table 2, item 1). Given

a minimum acceptable return distributiéh (the “reference” curve), an investor may wishitml f
a portfolio that is as sure as possible to be hataspite errors in its estimated return distrdiut

For a risk-averse investor, if. >, R theny, is better (Section 1). For such an investor anaat
goal is to find the portfolio whose return has hiigghest obtainable |[SSD| ovRr (Figure 4).

While this method explicitly seeks to optimize ke SSD (and not expected return), the
resulting portfolio will often also have a relatiydnigh expected return, simply because
maximizing [SSD| tends to favor curves that atbéaright of curves with less |[SSD|, and hence
have higher means. Although this tendency wouldidleomed by an investor, the point of this
method is actually to maximize robustness in tlmsaef assuring that the distribution of the
chosen portfolio really does stochastically domertae reference curve, even if the distribution is
inaccurately stated. Such inaccuracy is a gerzoneern because of the incompleteness of
information available about future returns.



Example (continued). Building on the example given previously (Secti), portfolios
corresponding to points on the curve of Figurerrépresentative values nfvere computed.

For each, the return distribution was comparedreference curve. Results are shown in Table
3. For the reference curve used, the best porttdltbose tested was that corresponding+at.
The composition of that portfolio was shown in Tealbl

z | |SSD| U

0.2 | 0.266: 1.080(
1 | 0.266: 1.080(
2 10.284: 1.074(
3 |0.287: 1.071°
4 |0.2886 | 1.070¢
5

0.286¢ 1.070(

Table 3. For the giverﬁ, |SSD] is highest far = 4 than forz= 0.2, 1, 2, 3, or 5. (However the
expected returp for z = 4 is not highest.)

2.3.3 Of the portfolios with SSD over R, find one with the highest possiblg (Table 2, item

2). The objective here is to maximimgeanreturn («), instead of |[SSD| as was done in the
previous section. This goal makes sense if arstiovés more concerned about return than about
possible errors in estimating return distributioi$ie idea is to search among portfolios with

SSD over reference curve to find one with the highest expected return. ®heious benefit to
choosing maximum expected return over maximum a@egfé&SD as an objective is its financial
advantage. On the other hand, the rejected prtfibht actually be preferable due to its
greater margin of safety, in the sense that itsidante is more robust to inaccuracies in the
portfolio return distributions.

Maximizing u suffers from another potential pitfall as well. Analyst mlght succumb to the
temptation to try improving results by replacinference curveR with an R' such thatR'- R
becauseR' is tougher to beat. This will tend to shrink #e of qualifying portfolios since it is
likely that fewer will stochastically domina®' than R. This in turn will tend to reduce the
highestu available within that set{y:r, > R} O{y:r, > R} — SUpy, <supy,, whereyis a

ry-R' ry-R
possible portfolio, and, andy, are the return distribution and expected retwespectively, for
portfolioy. In Figure 5, that means disqualifying portfofidbecause it fails to dominate'

despite having a higher expected return fhawhich does dominat®'. (FSD is illustrated for
graphical clarity, but if the curves were all inteigd then the analogous situation for SSD would
be depicted.)

Example. Continuing the example developed earlier, optimoatfolios for selected values of
were analyzed to determine their mean retyrivsaddition to their [SSD|. Whereas in Section
2.3.2 the portfolio corresponding 2&= 4 was chosen because it has the highest |SSBIg(3a
middle column), here we would choose the portfobaresponding ta= 0.2 andz = 1 because,
of those portfolios with [SSD| > 0, it has the legfhexpected retupn(Table 3, right column).
The composition of that portfolio was shown in Tl
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Figure 5. Shifting reference curvl to the right, yieldingﬁ', presents a more difficult FSD
(first order stochastic dominance) requiremenifeandidate portfolio to meet.

2.3.4Given R find the portfolio(s) with the highesta (Table 2, item 3). We introduce this
method by comparing it with a method describedearWe then formalize it, and close with an
example.

Introduction. Let us compare this approach to that of findinggbefolio with the highest

|SSD| over a reference curie (Table 2, iteml; Section 2.3.2). Maximizing |SSD] is suitable
when the goal is to make the chosen portfolio rgbnghat its return distributionwill tend to

have SSD over reference curiReven if its true distribution is somewhat differénom the best
estimate we have far A similar goal is supported by using the Infotima-Gap Theory
uncertainty parameted, instead of |SSD|. However althougmight be less immediately
intuitive than the amount of second order stochakiminance |SSD4, can be better for
modeling how much a distribution stochastically dwetes a reference curve.

A significant problem with |SSD| as a measure btistness, that can circumvent, is that [SSD|
measures robustness by determining how much tegradtof a distribution can be shifted on the
x-axis without intersecting a reference curve (Bjg. This metric is problematic. The accuracy
of a return distribution depends on understandirth@influence of various factors such as
leverage, reliability of historical data, expertigiment, and unspecified dependency relationships
among asset prices. In general, eliminating inaages due to such factors would not
necessarily update a return distribution fnare F(X) tor, = F(x+K), i.e., shift the distribution on
thex-axis without changing its shape. But this is ¢lyaghat [SSD| assumes. Further, since
estimates about the dependency relationships athergprtfolio segments can be a major source
of inaccuracy, it is desirable to account spedifydar this source of error. These needs can be
met using the: parameter to combine the concept of robustness-kém 2006 [2]; Cheong et

al. 2004 [6]) with that of bounding the family asttibutions corresponding to the space of
different possible dependency relationships ambageturn distributions of portfolio segments
(e.g. Zhang and Berleant 2005 [15]).

To combine these concepts, consider first an exantip distribution for portfolio return labeled
“Best-guess return” in Figure 6. This distribution is associatedw#ome portfolio with
segments, segment weights and a particular setpafriencies among the segments (perhaps
that they are independent). Next, suppose one dresparate distribution curve for each
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conceivable dependency relationship among the saigmd he resulting set of curves could be
bounded by “envelope” curves, labela@ft envelope, dependencies unknown” and “Right

envelope, dependencies unknown” in Figure 6. Such envelopes can be obtainedguStatool

(Zhang and Berleant 2005 [15]) or RiskCalc (Ferd082 [9]); others have built ad hoc
calculating software (Helton and Oberkampf 2004)[1Expressing return using these envelopes
represents a refusal to make assumptions abodeffendency relationships among the different
portfolio segments. Such a strategy would maksesaren dependencies are, in fact, unknown,
as might be the case ff little historical data &xis

=04

Best-guess return given

cuvarlance matrix, etc.
Left envelope,

dependencies unknown

Fight envelope,
dependencies unknown

Figure 6. The ‘Best-guess return” distribution for the return of a given portfolis the return
distribution assuming all information used to comst it is correct.

Following the conventions of Info-Gap Theory (Beniid 2006 [2]) we quantify the amount of
epistemic uncertainty (“ignorance”) with a paramet@leda. Info-Gap Theory can use the

value ofa to generate error bounds in model outputs. Theseds define a space of possible
results. If the worst case member of that spaee iscceptable result, the model is robust against
the amount of ignorance expressed by that value ¢fthe model is not robust, then efforts to
reduce ignorance could make it robust, becauserlgrmerance would be expressed with a
smaller value o, implying narrower error bounds. The consequerdlier space of possible
results might be robust where the larger spacenatis

Let the condition of zero epistemic uncertaintg.(iz = 0) correspond to full specification of the
return distribution of a portfolio, such as thee&t-guess return” depicted in Figure 6. This curve
might, for example, be provided by a financial gsal It could be the distribution corresponding
to a default assumption that the portfolio segmargsndependent. Alternatively, it might
assume a specific covariance matrix stating deperiele among the portfolio segments derived
by mining data on previous performance of the sedsne

As suggested by its "Best guess" designation, ¢ifeudt distribution is not necessarily the actual
distribution. Estimating portfolio segment distritons, and therefore the return distribution of
an overall portfolio, may be done using historidala, economic projections, expert judgement,
etc., but conclusions will always be error-proneduese information is almost always limited and
the future almost always contains a major eleménnpredictability. Thus it is desirable to
specify the uncertainty associated with its shaparlier in this section we assigned 0 to
designate a distribution for return with zero utaieity about its shape: theést-guess return”
curve. Now, let us assign= 1 to express some desired maximum amount ofrtaioey about
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the shape of the curve. Values édoetween 0 and 1 express intermediate amountsisieapc
uncertainty.

The details of what bounding envelopes around &s¢-guess curve correspond to a given value
of « depend on the details of the epistemic uncertaingywishes to model. If epistemic
uncertainty is due to ignorance about the dependetationships among the return distributions
of the portfolio segments, a possible modelingsthyawould be,

1) seek envelopes bounding the space containingtathreurves corresponding to any
mathematically possible dependency relationshiprantioe segment return distributions
(corresponding te = 1), and then,

2) interpolate between the best guess curve and tredames to obtain more constraining
bounds, which we will term “sub-envelopes,” nesigithin the envelopes, which bound
families of distributions corresponding to valuésidor 0 <a < 1.

Ultimately, we must be able to determi the maximurmu for which a particular portfolio

return distribution is sure to have stochastic d@nte over a reference cur@a then p) which

of a set of candidate portfolios has a distributigth the highest maximum. These ideas are
described more formally next.

Formalization. The envelopes can be computed using an algothhttan sum the random
variables corresponding to the return distributiohthe portfolio segments. Such an algorithm
should not assume that the random variables aepamtient (or have any other particular
dependency relationship). The DEnv algorithm is sach algorithm (Zhang and Berleant 2005
[15]). That and others are described to varyingreles in Helton and Oberkampf (2004 [11]).
We designate these envelopesit" and 'Right" in Figure 6. The left and right envelopes enelos
a space often called a p-box or probability bog.(Baudrit and Dubois 2005 [1]; the term is
originally due to S. Ferson).

Continuing to develop our model, we have a pardicabncern with the left envelope, because it
relates to worst case portfolio performance. Tioeeawe now associate= 1 with the envelope,
henceforth ignoring the right envelope, which soatontrolled by: and forms the other bound
on the space of distributions representing ourrignce. Having defined the meaningsdar 0
anda = 1, we further detail the parameterization by defining meanings for interiagxvalues

of a. In doing this the concept bbrizontal averagings useful. Horizontal averaging takes two
cumulative distribution&;(.) andF,(.), and returns a third distributidfi_a.{.) which is midway

between them in the sense that for each probalsitye Pr(1[0, 1] on they-axis,

-1 -1
Fh'_lave(Pr): Ry (Pr); R, (Pr) defines the correspondimgcoordinate ofy,_a.{.). An example

is the curve labeleda’= 0.5” in Figure 6. If there are places whé&g (Pr) and F,*(Pr) are
undefined, i.e. there are horizontal segmentstiregry(.) or F(.), then the more general interval

-1 -1
extension can be useB™ 5! (Pr); P (Pr)' We will henceforth usé, ™ (Pr) and

h_ave

(Pr)=

F,*(Pr) for expository simplicity, leaving interval extéoss as an exercise for the interested
reader. The horizontal averaging formula gies(Pr) and F,*(Pr) equal weights of %.
Generalizing this to any pair of weights gives
aF"(Pr)+ (-a)F, " (Pr)

5 (6)

I:h__lave( P r) =
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Figure 6 shows an example o= 0.5. Values of near zero imply envelopes to the left of, but
close to, the best-guess curve, representing litttertainty about the shape of the curve. Values
of « < 0 are ruled out since there cannot be less thamepistemic uncertainty. Valuescohear
one imply envelopes near, but to the right of,lgfieenvelope. A value af > 1 in our

development would imply ignorance of more than jask of knowledge about the dependencies
among segments. Certainly, other sources of igrwardo exist (although uncertainty about
portfolio segment weights is not expressed withut rather is handled with the mean.¥isk
optimization process discussed earlier in this papésuch a curve foF;, ,.{.) was in Figure 6,

it would be to the left of theLéft envelope, dependencies unknown” curve.

Letr, be a best-guess portfolio return distribution hrim a left envelope curve for it
representing the case®of 1. Letl, represent the horizontal averagd.afndry, for a weight of

a (Eq. 6). Them, =L andL =L;. Then we can seek the maximum value sfich thatL , - R

for some reference cun. Checking for FSIO(>-,) involves verifying that curveg,, and R

do not cross, while checking for S§B,) requires integrating the distributions numericalhd

verifying that these integral curves do not crdsseither case the space of candidate best
portfolios provided by the functioDPT(z) must be searched for a portfolio whose maxinaLis
at least as high as that of any other portfolio.

Example. The 3-segment portfolio example used throughitatpaper was analyzed to find
maximum values of for different values of under an SSD constraint. The results are shown in
Table 4. Figure 7 shows the return distributiomhef portfolio forz= 3.98 in more detail. The
curve shown for = 1.5894is the horizontal average (Eq. 6). It seems tasxthe reference

curve. In fact, it does cross it, thereby violgtFSD. However if integrated, the resulting curves
do not cross, so SSD holds, though just barely.

z maxa | u
0.2C | 1.3¢ 1.080(
1.0C| 1.3¢ 1.080(
2.0C | 1.338( | 1.074(
3.0C| 1.341(C | 1.071¢
3.9C | 1.340¢ | 1.0717
3.9¢ | 1.371 1.070¢
3.97|1.373 | 1.070¢
3.9¢ | 1.373 | 1.070¢
3.9¢|1.371 1.070¢
4.0C| 1.370C | 1.071¢
4.01] 1.368( | 1.070¢
4.1C | 1.36: 1.070¢
5.0C| 1.3¢ 1.070(

Table 4. The distribution for the return of the optimalrifolio givenz = 3.97 orz= 3.98 has the
most robust SSD over the reference curve, as methdyn (rather than |[SSD| as in Section
2.3.2).

2.3.5Search for the portfolio with the highest best-guesu among portfolios having a left

envelope with SSD over the reference curve (Table 2em 4a). An investor may want a
portfolio with as high an expected return as pdssttut only if it meets some standard for
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robustness to errors in its estimated return distion. This objective seeks to combine two
needs: robustness and high expected return. Mameafly, we seek a portfolio with mean return

H suchthaty= sup u,, whereR is a reference curve and the supremum is over the
yovY,L,>,R

portfolios whose left envelopes have SSD oRer Recall that, bounds the space of return
distributions of portfolioy containing the distribution for each possible $atapendency
relationships among the segments. Thus, requiiging have SSD oveR ensures that return

distributionr, of portfolioy has SSD oveR regardless of the dependencies among segments in
y. That is useful when we are not sure of whatahdependencies are.

o=1.5594 left envelope (0=1]

1t i
0&r -
OE|  reference 7
04l . hest guess i
Crogsmg
rEo0n
02r g 8
I:I 1 1 1 1
-1 0 1 2 3 4 ]

Return

Figure 7. The curve for = 1.5894 models the presence of more epistemicriaicty than the
left envelope (i.e. the curve far=1). It crosses the reference curve slightly,tbatintegrals of
these curves do not cross, so SSD holds. The areefor the optimal portfolio far= 3.98.

In other words, we are searching for the best @rda®turn available within the set of portfolios
with return distributions whose left envelopes h&8D over the reference curve. This approach
is like Table 2, iten2, except in place of thesést-guess” curve (Figure 6), it uses theéft
envelope, dependencies unknown” curve (Figure 6). This approach is also like T&aB| item3,
except instead of maximizing it usese = 1 as a filter (recall thatis defined to equal 1 for the
left envelope curve), and searches the portfolias make it through the filter for one with the
highestu.

Example. In Table 5, optimal portfolios for each valuezdll have left envelopes with SSD
over the reference curve, as evidenced byl in each case. Of these, the highest mean risturn
provided by the portfolio correspondingzm the range [0, 1] (see Table 1), making thattbst
portfolio under this criterion.
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Z maximum a | U

z=0.z | 1.350( 1.0800
z=1 | 1.350( 1.080(
z2=2 1.530( 1.074(
z2=3 1.589¢ 1.071°
z=1 1.550( 1.070¢
z=5 1.400( 1.070(

Table 5. Risk aversion coefficieng) values, the robustnesses (maximunof the best
portfolios corresponding to those values, and teamreturns of those portfolios.

2.3.6 Find a portfolio that maximizesu, given a value ofx to use as a filter (Table 2, item
4b). This criterion generalizes the one just descriliedn(4ain Table 2) to enable seeking high
return with an investor-determined degree of ratest. In the previous section we sought a
portfolio that maximizeg, and has a left envelope with SSD over the reterenrve (i.e.q¢ = 1).
In this section, we still seek a portfolio that rmaizesy, and wish to allow any value to be
specified fora. An analyst who chooses a value dds in effect stating an ignorance level (the
epistemic uncertainty) corresponding to some sulosetuperset) of the space of distributions
associated with the range of possible dependetatjoreships among the portfolio segments.
Complete ignorance about dependency impliesl, and complete knowledge implies 0.
Intermediate degrees of ignorance imply intermedialues of. Ignorance about the shape of
the return distribution that includes additionaltéas besides the dependency relationships
among the segments can be accounted for by innge@ssoa > 1 is also allowed.

Let some value of be given, representing the amount of epistemiedainty about the shape of
a portfolio return distribution. Then any portfofior which the horizontal average (by Eg. 6),
with weighta, has SSD over the reference curve is eligibledmsideration. Figure 6 illustrates
such an eligible distribution far= 0.5. Any eligible distribution will have SSD ava given
reference curve, with enough of a margin that eliée shape differs from the best-guess shape
by as much as permits, SSD still holds. From among the eligipbetfolios, the one with the
highestu is considered best according to this criterion.

Example. Let the epistemic uncertainty associated witlest-guess portfolio return distribution
be modeled ag = 1.5. This implies the presence of other uncetitzs besides uncertainty about
the dependency relationships among the portfoljoreat distributions. With such a high
ignorance level, the horizontal average curve @ds even farther left than the left envelope.

For the example we have been using (first preseént8ection 2.2), some valueszafesult in
portfolio return distributions whose horizontal eages have SSD over a reference curve chosen
for this analysis, and some do not. Of thosedbathe portfolio that is optimal for to= 2 has a
higher mean returp than the others, and so is the best of thosesexbés Table 6. Note that
because of epistemic uncertainties in the shapdseakturn distributions, the values foim

Table 6 must be regarded as best guess values.

16



a=1.5(

ssb | H
.2 | Negative | 1.0¢
Negative | 1.0¢

Positive | 1.074
Positive | 1.071°
Positive | 1.070¢
Negative | 1.07

O b wWNEFE O|N

Table 6. A rather stringent robustness requirement espgieeas: = 1.50 filters out portfolios
whose return distributions are too steep or tostalied out relative to a reference curve. Of the
eligible portfolios testedz(= 2, 3 & 4), the highest mean return was 1.074.

2.3.7Finding the expected value of information about: to help choose what: to use(Table

2, item 4c). Recall the strategy in the lower half of Table 2raximizing mean retura

involves, first, identifying portfolios that meeat &SD requirement, and second, searching those
portfolios for one with the highest possilple In that light, let us consider next how obtagin
more information about the shape of a portfolieimetdistributionr (i.e. decreasing epistemic
uncertainty about it) will tend to increase theratgthat it will have SSD over a reference curve

(i.e. thatr >, I?{). Such information will tend to move left envelopagtward, consequently

making more portfolios eligible. That in turn wi#nd to raise the maximumavailable due to
the enlarged set of eligible portfolios.

Figure 8 illustrates aLéft envelope, dependencies unknown” curve without FSD over reference

curve R. However, its Left envelope, a = 0.5” curve does have FSD ov&. Thus, reducing
epistemic uncertainty about theest-guess” curve froma = 1 toa = 0.5 moved the portfolio
represented by th&ést-guess” curve into the set of qualified portfolios. Ifithportfolio

happened to have the highest availablhe valuev of the information that reducedto 0.5

would bev = tinewmax— Holdmax Wher€unewmaxiS the expected return of this newly qualifiedtfuio
anduoamaxis the expected return of the best of the quadlifiertfolios prior to reducing to 0.5.

The generalization to SSD is straightforward; tingasion for FSD is shown because it visualizes
well.

We can determine the “demand value” of informagbouta (Ben-Haim 2006 [2]) from a plot
of a vs.u. Figure 9 shows a schematic examplgthe left envelope for portfolipassumingr =
1, has parameterized forlm ,-x. The more uncertainty in the shape of portfoditurn
distributions (expressed as larger values)pthe more leftward are their left envelopes, leenc

the fewer portfolios have left envelopes with SSBroR- This tends to lower the maximum
expected return available from among them.

Functionf(.) in the figure can be used to determine thesimemtal value of obtaining information
that reduces from a, to a;. That value ia\v = f(a;) —f(a2) wherea, is the current value ef and
o1 1s a smaller (i.e. more informative and thus ugefalue. If this information costs belatw,

the expenditure is worth making. An important specase is reducingfrom 1 to 0, that is,
going from no information about the dependenciesranportfolio segments to fully defining the
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dependencies among the portfolio segments. Thettss information is worth paying if it is
belowf(0) —f(1).

Left envelope, a=0%

Eest-guess return given

se ment dependencies, etc.
Left envelope, d P

dependencies

UnkNOWN . Right ervelope,
dependencies unknown

Figure 8. The best-guess distribution has FSD oRerlf = 1 then the Left envelope,
dependencies unknown” curve applies and FSD might not hold, dependingvbat the true but
unknown distribution actually is. On the other haifid = 0.5, FSD does hold.

—f(k)= sup 4,

_}JE}’,L},I.J::;.:F‘-Q P

!

return

0 values & of of —=

Figure 9. Maximum expected retugnover all portfoliosy whose left envelopds, stochastically
dominate reference curve.

3 Conclusion

This paper introduces an approach, and specifiati@ns (Table 2), to determining the best
possible investment plan given the two standardlicting portfolio investment goals of mean
return and risk. On the one hand we seek a higha®d (mean) return. On the other we seek to
control risk. To manage risk we seek to guaratitatthe portfolio model has second-order
stochastic dominance (SSD) over a minimum toleredfierence curve, because it has been
shown that (1) if an SSD relationship exists betw&e return distributions, any risk-averse
investor will prefer the dominant one, and (2) ttagstraint is weaker than the FSD relationship,
which is unnecessarily strong. Strong constraintsundesirable because they reduce the space
of allowable portfolios, tending to limit investntezhoices.
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We find the best portfolio by first generating & aleoptimal portfolios. Then we search the set
using stochastic dominance and Information-Gap mhewidentify the best one. The traditional
approach to portfolio optimization using Markowfkeory is challenged when correlations or
other dependencies among portfolio segments acetbgrovide, return distribution shapes are
uncertain, there is a lack of price data, or vagiother fundamental data are unavailable. The
analyses shown in this paper address the firsofithese challenges, thereby showing how
rational portfolio choice is possible even undefese (epistemic) uncertainty.
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