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Abstract 
 
Portfolio management in finance is more than a mathematical problem of optimizing performance 
under risk constraints.  A critical factor in practical portfolio problems is severe uncertainty – 
ignorance – due to model uncertainty. In this paper, we show how to find the best portfolios by 
adapting the standard risk-return criterion for portfolio selection to the case of severe uncertainty, 
such as might result from limited available data. This original approach is based on the  
combination of two commonly conflicting portfolio investment goals: 

1) obtaining high expected portfolio return, and 
2) controlling risk. 

The two goals conflict if a portfolio has both higher expected return and higher risk than 
competing portfolio(s).  They can also conflict if a reference curve characterizing a minimally 
tolerable portfolio is difficult to beat.  

To find the best portfolio in this situation, we first generate a set of optimal portfolios. 
This set is populated according to a standard mean-risk approach. Then we search the set using 
stochastic dominance (SSD) and Information-Gap Theory to identify the preferred one.  This 
approach permits analysis of the problem even under severe uncertainty, a situation that we 
address because it occurs often, yet needs new advances to solve.  SSD is attracting attention in 
the portfolio analysis community because any rational, risk-averse investor will prefer portfolio y1 
to portfolio y2 if y1 has SSD over y2.  The player’s utility function is not relevant to this preference 
as long as it is risk averse, which most investors are (e.g. De Giorgi 2005 [7], Berleant et al. 2005 
[3]). 

 
Keywords:  Epistemic uncertainty, finance, imprecise probabilities, info-gap, information-gap, 
portfolio, probability boxes, stochastic dominance. 

 
1  Introduction 

 
A portfolio consists of a set of segments, each of which is predefined as a particular asset 
category, such as stocks, bonds, commodities, etc.  Solving the selection problem means 
determining the best proportion each segment should be of the total investment. The portfolio 
selection problem is the subject of a vast body of work.  The process can be divided into two 
phases.  The first is asset allocation, in which investor philosophy, including risk position, is used 
to choose the best percentage of the portfolio to place in each segment. The second, rebalancing, 
responds to changes in asset values by adjusting the percentages so that the portfolio continues to 
accurately reflect the investment philosophy.  This work focuses on allocation.  The well  
known CAPM leads to various allocation strategies, including for example BIRR and BARRA 
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(search the Web for further information about these). The correct treatment of the risk-reward 
problem addressed by Markowitz (1952 [12]) is fundamental to such modern methods, and its 
extension to problems characterized by severe uncertainty motivates this report.  
 
Little has been done to determine portfolio allocation when dependency relationships, such as 
correlations, among portfolio segment return distributions are unknown.  We address this problem 
with a novel application of Information-Gap Theory (Ben-Haim 2006 [2]), using it together with 
the concept of second-order stochastic dominance (SSD) to help choose among portfolio 
allocations.  SSD holds between two distributions r1 and r2 when the curves of their integrals do 
not cross.  The slower rising curve is then said to have second-order stochastic dominance over 
the other curve.  If r2 has SSD over r1, then we write 122 rr f .  Analogously, FSD (first-order 

stochastic dominance, 1p ) applies if the distribution curves themselves do not cross.  However, 

most investors are risk averse, and if 122 rr f  then any risk averse player will prefer r2 (e.g. Perny 
et al. 2007 [13]).  FSD is thus an unnecessarily strong (and therefore undesirable) constraint for 
the risk averse player.  
 
We build on a standard approach to finding optimal portfolios based on mean and risk and 
parameterized by amount of risk aversion, arising originally from Markowitz (1952 [12]).  The 
mean is the expectation (i.e. average) for a distribution describing the investment return, while the 
risk expresses the danger of loss or low returns and is typically a measure of the spread of the 
return distribution.  Optimal portfolios are identified by finding the weights of the portfolio 
segments such that a mean-risk objective function is maximized (e.g. Elton et al. 2003 [8]).  
“Mean-risk” refers to a tradeoff between seeking a return distribution with a high mean, which is 
good, while minimizing the higher risk that tends to be associated with a high mean return, which 
is bad.   
 
Formally, the problem to be considered is to find such a portfolio given the constraints 
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where r is a portfolio return distribution, i is one of the s segments in the portfolio, wi is the 

weight of segment i, and r i is the return distribution of segment i.  R
~

 is a given reference curve 
representing a minimally tolerable bound (the “risk limit”) that the return distribution should not 
cross.  As an additional constraint set (Eq. 2), segment weights sum to 1 because each weight is a 
proportion of the whole.  Each weight may be required to be within some interval in order to 
enforce a balance across segments, as might be specified by a company’s business model 
constraints and investment policies.   
 
In current practice optimization would typically be done without the 2f  constraint, but perhaps 
with other constraints present such as Value-at-Risk (VaR), which is known to be mathematically 
inconsistent, or Conditional VaR (CVAR) which is less intuitive but without VaR’s consistency 
problem [3]. 
 
A given portfolio’s return distribution can be tested for compliance with an SSD constraint using 
numerical integration. Numerical integration can be done straightforwardly by summing areas of 
trapezoids under the curve. The size and number of trapezoids to sum is determined by the step 
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size chosen for the integration process. Given a step size, SSD is considered to hold if the 
summed areas of all trapezoids to the left of any given value xi are lower for the return 

distribution r of a candidate portfolio than for reference curve .
~
R  A set of representative return 

values x1, x2, x3, …, xn that are possible sample value of r should be checked.  These points should 
cover low and high values of return, as well as a reasonable number of intermediate points (e.g. m 
= 10 or 20).  
 
An optimal portfolio might or might not comply with an additional requirement that it have 

stochastic dominance over a reference curve R
~

.  A second-order stochastic dominance relation 
(“ 2f ”) between two distributions ensures that the dominant portfolio is preferred by any risk 
averse player (De Giorgi 2005 [7]).  Risk aversion implies that, given two return distributions 
with the same expected return, the one with less spread (e.g. variance) is preferred.  Define 
robustness as the amount by which a portfolio dominates by SSD a reference curve (robustness 
could be negative if it does not dominate).  By testing various optimal portfolios for robustness, 
one with the highest robustness available can be identified.  Alternatively, one with the highest 
expected return that also meets the SSD constraint could be found.  In either case, the strategy is 
to search among a set of optimal portfolios provided, even if barely, by an under-constrained 
optimization problem for the one that is best according to a second criterion.  This is discussed 
next. 

 
2  Searching the optimal portfolios for the best one 

 
The first step is to generate a set of optimal portfolios to search within for the best.  In the 
standard approach of Markowitz portfolio theory, the desirability of a portfolio return distribution 
r given a value of a parameter z describing the degree of aversion to risk is:  
 
                                                                f(z,r) = mean(r) – z * risk(r).                                      (3) 

 
We can build on the concept of Eq. 3 by defining a function identifying the desirability of the best 
portfolio(s) for a given risk position z: 
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where 0≥z  means that the investor is not risk-seeking, Y is the set of portfolios y complying 
with constraints (1) and (2), and µy and 2

yσ  are the expected return and variance respectively of 

the return of portfolio y.  The gist of (4) may be used to define the set of optimal portfolios as: 
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where 0>z  restricts the set to portfolios that are optimal for some risk-averse party.  This 
restriction is consistent with most investors, and also with our focus on SSD, which is only valid 
for ordering the desirability of portfolios if the party is risk averse.  It is possible to account for 
properties of portfolio variation besides variance (Chabi-Yo 2004 [5]), but σ2 is nevertheless 
widely used to model risk position.  The variance approach can be elaborated to model different 
variances for different portfolio segments, and for the covariances between segments. The 

variance of the return distribution for a portfolio y then follows ij
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and wj are the weights of portfolio segments i and j, and 
ijσ  is their covariance (when i=j, 

2
iiiij σσσ == ).  Even in this more sophisticated model, z is still a simple scalar coefficient. 
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Thus to generate a set of optimal portfolios, OPT(z) can be evaluated repeatedly with different 
values of  z (Figure 1).  

 
Figure 1.  Each value of z implies some maximum value of OPT(z) resulting from some 
portfolio(s) in the feasible set. 
 
2.1  OPT(z) and the efficient frontier 
 
Let us now relate Figure 1 (representing an optimal tradeoff between mean return and risk) to the 
concept, due to Markowitz, of the efficient frontier (Figure 2).  The efficient frontier is plotted as 
a curve on a plane with axes for mean and variance.  Each point on the curve represents a 
portfolio that is optimal in that no other portfolio has a return distribution with the same (or 
higher) mean and lower variance, or the same (or lower) variance and higher mean.  Formally, a 
portfolio y is on the efficient frontier if 

).()(:',' 22
''

22
'' yyyyyyyyyYy σσµµσσµµ ≤∧>∨<∧≥¬∃∈∀  

 

 
Figure 2.  An example of part of an efficient frontier. 

 
Because of the well-known virtues of the efficient frontier in portfolio analysis [8, 12], it is useful 
to establish that points on the OPT(z) curve (Figure 1) are also on the efficient frontier (Figure 2), 
and that points on the efficient frontier are also on the OPT(z) curve.  
  
Let µi, i = 1, …, s be the mean return of portfolio segment i.  Let different segments be 
characterized by corresponding random variables r i.  For every set of s real valued weights wi, 

with each wi ∈[0, 1], we have ],])[[( 2
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return distribution of the corresponding portfolio y.  Therefore, we always have 
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Theorem.   

• If a portfolio y is on the efficient frontier then it solves OPT(z) for some z (see Eq. 4). 
• If a portfolio y belongs to set OPT, it is on the efficient frontier (see Eq. 5). 
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We start with a proof of the second statement by contradiction.  Assume that portfolio OPTy∈  

is not on the efficient frontier.  Then, ).()(:' '''' yyyyyyyyy σσµµσσµµ ≤∧>∨<∧≥∃   In 

that case,  ,22
'' yyyy zz σµσµ −>−  contradicting the definition of OPT (see Eq. 5). 

 
Now consider the first statement.  Assume point (µy, σy

2), representing portfolio y, is on the 
efficient frontier (Figure 2).  Consider the set P of points (µ, σ2) for which 22

yy σσµµ ≥∧≤  for 

some portfolio y.  We say these points are p-dominated by y.  The matrix of the second 
derivatives of the function σy

2 is positive definite, so the function is convex.  If we have two 
portfolios y’ and y”, then for their convex combination y(w) = wy’+(1–w)y” we have µy(w) = 
wµy’+(1–w)µy”, but σ2

y(w) ≤ wσ2
y’+(1–w)σ2

y” (note the ≤  sign) because the variance of a sum may 
be less than the sum of the variances.  Thus the linear combination of (µy’, σy’

2) and (µy”, σy”
2), that 

is, (wµy’+(1–w)µy”, wσy’
2+(1–w) σy”

2), is p-dominated by portfolio y(w) and thus is in P. 
 
In general, if points p1 = (µ1, σ1

2) and p2 = (µ2, σ2
2) are in P, there exist portfolios y’ and y” which 

p-dominate them respectively.  Therefore wp1+(1–w)p2 is p-dominated by (wµy’+(1–w)µy”, 
wσy’

2+(1–w) σy”
2), which we already showed is p-dominated by portfolio wy’+(1–w)y” = y(w). By 

transitivity we conclude that p=wp1+(1-w)p2 is p-dominated by y(w), and hence is in P. 
 
Thus set P contains a convex combination of every two of its points and therefore is convex. We 
can also prove that P is closed.  Indeed, the set of all the portfolios is bounded and closed hence 
compact.  If pn = (µn, σn

2) is p-dominated by some portfolio yn and pn →p’ then from the sequence 
yn we can extract a convergent subsequence .yy

kn →   Because 
knp is p-dominated by 

kny we can 

conclude that, as ,∞→k  p’ is p-dominated by y.  Therefore p’ ∈ P.  
 
Portfolio y, earlier assumed to be on the efficient frontier, is clearly in P. It cannot be in the 
interior of P because if it was, a sufficiently small neighborhood around it would also be in P, and 
this neighborhood would contain points with higher µ and lower σ2.  Since every point in P is p-
dominated by some portfolio, this portfolio would therefore have higher µ and lower σ2 than y, 
contradicting our assumption that y is on the efficient frontier. 
 
Therefore y is on the boundary of a closed convex set P.  It is known (e.g. Rockafeller 1970 [14]) 
that in this case, there exists a line aµy – bσy

2 = ca which goes through y such that all points in P 
are on one side of the line. Dividing by a (for a≠ 0) we get the line in the desired form µy – zσy

2 = 
c (the case a = 0 corresponds to z =∞ ).  Portfolio y is on this line, while all the others are on the 
other side. We thus conclude that y indeed is on curve OPT(z). 
 
Since the curve of Figure 1 contains the points representing the portfolios we need to consider, 
we can proceed to analyze the curve of Figure 1 to find the best point. We illustrate this with an 
example next. 
 
2.2  Example 
 
Consider a 3-segment portfolio problem in which we seek to optimize the weights of the 
segments.  The return distribution for segment one is normal: )25.0,1.1(~1 Normalr .  The 

distribution for segment two is exponential: )0.1,0.1(~2 Exponentr .  Finally the distribution 

for segment three is uniform: )48.0,2.1(~3 Uniformr .  Corresponding interval restrictions on 

the weights of the segments are ],3.0,2.0[1 ∈w  ]6.0,4.0[2 ∈w  and ].3.0,2.0[3 ∈w  
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Taking into account a full range of assets, the degree of risk aversion, z, for many investors 
ranges from 2 to 4 (Grossman and Shiller 1981 [10]).  A default value of z = 3, representing a 
typical degree of risk aversion (Bodie et al. 1999 [4]), implies that a relatively cautious investor 
will have z > 3, while a relatively aggressive investor will have z < 3.  In practice, such typical 
textbook values might not entirely cover the full range of degrees of risk aversion we would like 
to deal with, so we examined z values for this example over the broader range of z = 0.2 to z = 5.  
The optimal portfolios found for various values of z are shown in Table 1.  The return 
distributions for the two portfolios that were optimal for extremes z = 0.2 and z = 5 are shown in 
Figure 3.  (To reduce clutter, curves for intermediate values of z are not shown).   

End of example 
 

 
Figure 3.  Distributions of the returns of the two portfolios that are optimal for z = 0.2 (shallower 
curve) and z = 5.  Both have SSD over the sample reference curve shown. 
 
2.2.1  What’s next.  Finding the best portfolio from the optimal portfolios on the efficient 
frontier is an investment decision.  While it would be a simple one to make by specifying a value 
for z, most investors would not be able to state (or accept) any specific z value as a firm constraint 
on their portfolios, so it is not a common decision criterion. Thus investigation of other criteria 
for comparing portfolios is important in reaching conclusions about portfolio composition.  Some 
potential criteria are relatively straightforward.  Others might be better but not as simple.  
Identifying what criteria for portfolio quality are best under what conditions presents an 
interesting problem.  In this report we discuss and compare some criteria and related issues based 
on SSD and Info-Gap Theory. 
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Value 
of z 

Optimal portfolio 
segment weights 
  s1   s2   s3 

0.2 0.2 0.5 0.3 
0.4 0.2 0.5 0.3 
0.6 0.2 0.5 0.3 
0.8 0.2 0.5 0.3 
1 0.2 0.5 0.3 
1.2 0.2146 0.5 0.2854 
1.4 0.2316 0.5 0.2654 
1.6 0.2432 0.5 0.2568 
1.8 0.2527 0.5 0.2473 
2 0.2603 0.5 0.2397 
2.2 0.2665 0.5 0.2335 
2.4 0.2717 0.5 0.2283 
2.6 0.2761 0.5 0.2239 
2.8 0.2798 0.5 0.2202 
3 0.2831 0.5 0.2169 
3.2 0.286 0.5 0.214 
3.4 0.2885 0.5 0.2115 
3.6 0.2907 0.5 0.2093 
3.8 0.2927 0.5 0.2073 
4 0.2945 0.5 0.2055 
4.2 0.2959 0.5 0.2041 
4.4 0.2976 0.5 0.2024 
4.6 0.299 0.5 0.201 
4.8 0.3 0.5 0.2 
5 0.3 0.5 0.2 

 
Table 1.  Optimal portfolios (i.e. optimal segment weight vectors) for various values of z.  Return 
distributions of the segments are assumed to be independent. 
 
2.3 Criteria for choosing the best portfolio 
 
Each criterion named in items 1 through 4c of Table 2 is described and discussed in its own 
subsection.  Basic notation is explained next, while technical details about the meaning of the 
horizontal dimension of Table 2 (“Quality Metric”) and its vertical dimension (“Objective”) 
depend on the cell of the table under consideration and thus are given later in the detailed item 
descriptions. 
 
Notation:  

• µ is an expected (i.e., mean) return. 
• |SSD| is the amount by which one distribution dominates another, using as a criterion 

second-order stochastic dominance.  This is the minimum horizontal distance between the 
integrals of two cumulative distributions (Figure 4).  In other words, |SSD| measures how 
much one curve for the integral of a distribution can be moved toward another one along 
the x axis before the two curves touch.  |SSD| formalizes the amount of separation between 
the integrals of two distributions. 
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• α  is a parameter expressing the amount of ignorance (sometimes called epistemic 
uncertainty) about the shape of a return distribution.  Specifying 0=α  will lead us to use 
the best-guess estimate of its shape, while 1=α  will lead to a distribution that incorporates 
pessimistic assumptions about possible errors in the shape of the best-guess distribution.  
Intermediate values of α  are then used to generate distributions by interpolating between 
the distributions implied by 0=α  and 1=α  using “horizontal averaging” (defined later 
when it is used).  Our use of α  is an example of the more general definition of α in Info-
Gap Theory (Ben-Haim 2006 [2]). 

 

 
Figure 4.  Two curves for the integrals of distributions, and the separation between them.  Recall 
that the integral of a density function (PDF) is a cumulative distribution (CDF). The integral of 
the CDF is what is used in determining SSD. 
 
 
                                    Quality Metric 
  |SSD| α (alpha) 

O 
b 
j 
e 
c 
t 
i 
v 
e 

Maximize 
Robustness 
(to achieve 
secure 
performance) 

1. Given ,
~
R  find the 

portfolio(s) with the highest 

|SSD| over ,
~
R  i.e., move R

~
 

to the right until further 
movement would disqualify 
every portfolio. 

3. Given ,
~
R  find a portfolio with the 

highest possible α. 

Maximize 
µ (to achieve 
best 
performance 
within the 
risk limit)  

2. Find a portfolio y with 
return distribution ry such that 

,
~

2 Rry f   choosing one with 

the highest possible mean 
return µ. 

4a. Find a portfolio with the highest mean 
return µ from among those with SSD over 

reference curve R
~

 for any dependency 
relationships among segments. 
4b. Generalize 4a by requiring SSD for 
only some dependencies.  The precise 
meaning of “some” is determined by the 
value of α. 
4c. Find the demand value of information 
about α in order to choose what value of α 
to use in 4b. 

Table 2.  Approaches to finding a best portfolio.  R
~

is a reference curve. 
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2.3.1  Computational complexity and searching the set of candidate portfolios. All 
approaches enumerated in Table 2 involve searching the set of candidate portfolios corresponding 
to points on the curve of Figure 1. To initially populate the set with n members requires n 
corresponding evaluations of OPT(z), so the time required to populate is n × the time required to 
evaluate OPT(z).  The value of n is the number of points on the curve of Figure 1 for which 
corresponding portfolios are to be computed.  To keep n low enough to make the problem 
tractable, we used a heuristic approach to searching the curve for a point corresponding to a best 
portfolio.  The approach will find the maximum if the search space is sufficiently well behaved, 
otherwise it might get stuck at a local maximum.  There is no indication that ill-behaved search 
spaces would be common, but if such a space was present a more comprehensive search strategy 
would be needed to find the maximum.  
 
Algorithm for searching for the optimal portfolio.  

1. Given a measure of portfolio quality, evaluate portfolios corresponding to n points on the 
curve of Figure 1, selected to be spaced at representative values of z from the minimum 
to the maximum value of interest.  In this work we chose 6 values for z of 0.2, 1, 2, 3, 4, 
and 5, but the precise value of n is unimportant. 

2. Let zk be the value of z for the best portfolio of those tested. Next test the portfolio that is 
optimal for z = zk+ε, for ε small but not so small that error due to the limited precision and 
accuracy of machine arithmetic is significant. If the optimal portfolio for z = zk+ε is better 
than the optimal portfolio for z = zk, then search for even better portfolios in the range [zk, 
zk+1]. Otherwise, search for better portfolios in the range [zk–1, zk].  

3. Define n equally spaced values within the new range for z that we wish to search. Starting 
from the value nearest to zk, test optimal portfolios corresponding to values of z 
progressively further from zk, stopping at the value for z within the range that corresponds 
to the best portfolio. 

4. Loop back to Step 2, or stop if significant further improvement seems unlikely. 
 

For n values of z per iteration, i iterations, time t to evaluate OPT(z) and test the quality of the 
portfolio it returns, the worst case run time for the algorithm is .tin ⋅⋅  
 
In the following sections we discuss each criterion in Table 2, starting from item 1 and 
proceeding through 4c. 
 

2.3.2  Given R
~

, find the portfolio(s) with the highest |SSD| over R
~

 (Table 2, item 1).  Given 

a minimum acceptable return distribution R
~

 (the “reference” curve), an investor may wish to find 
a portfolio that is as sure as possible to be better, despite errors in its estimated return distribution.  

For a risk-averse investor, if Ryr

~
2f  then yr is better (Section 1).  For such an investor a natural 

goal is to find the portfolio whose return has the highest obtainable |SSD| over R
~

 (Figure 4).   
 
While this method explicitly seeks to optimize based on SSD (and not expected return), the 
resulting portfolio will often also have a relatively high expected return, simply because 
maximizing |SSD| tends to favor curves that are to the right of curves with less |SSD|, and hence 
have higher means. Although this tendency would be welcomed by an investor, the point of this 
method is actually to maximize robustness in the sense of assuring that the distribution of the 
chosen portfolio really does stochastically dominate the reference curve, even if the distribution is 
inaccurately stated.  Such inaccuracy is a genuine concern because of the incompleteness of 
information available about future returns.  
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Example (continued).  Building on the example given previously (Section 2.2), portfolios 
corresponding to points on the curve of Figure 1 for representative values of z were computed. 
For each, the return distribution was compared to a reference curve.  Results are shown in Table 
3. For the reference curve used, the best portfolio of those tested was that corresponding to z = 4. 
The composition of that portfolio was shown in Table 1.  
 
 

z |SSD| µ  
0.2 0.2662 1.0800 
1 0.2662 1.0800 
2 0.2841 1.0740 
3 0.2872 1.0717 
4 0.2886 1.0705 
5 0.2864 1.0700 

Table 3.  For the given ,
~
R  |SSD| is highest for z = 4 than for z = 0.2, 1, 2, 3, or 5. (However the 

expected return µ for z = 4 is not highest.)  
 

2.3.3  Of the portfolios with SSD over R
~

, find one with the highest possible µ (Table 2, item 
2).  The objective here is to maximize mean return (µ), instead of |SSD| as was done in the 
previous section.  This goal makes sense if an investor is more concerned about return than about 
possible errors in estimating return distributions.  The idea is to search among portfolios with 

SSD over reference curve R
~

 to find one with the highest expected return.  The obvious benefit to 
choosing maximum expected return over maximum degree of SSD as an objective is its financial 
advantage.  On the other hand, the rejected portfolio might actually be preferable due to its 
greater margin of safety, in the sense that its dominance is more robust to inaccuracies in the 
portfolio return distributions.  
 
Maximizing µ suffers from another potential pitfall as well. An analyst might succumb to the 

temptation to try improving results by replacing reference curve R
~

 with an '
~
R  such that ,

~
'

~
RR f  

because '
~
R  is tougher to beat.  This will tend to shrink the set of qualifying portfolios since it is 

likely that fewer will stochastically dominate '
~
R  than .

~
R   This in turn will tend to reduce the 

highest µ available within that set:  y
Rr

y
Rr

yy
yy

RryRry µµ
~

'
~

supsup}
~

:{}'
~

:{
ff

ff ≤→⊆ ,  where y is a 

possible portfolio, and ry and µr are the return distribution and expected return, respectively, for 
portfolio y. In Figure 5, that means disqualifying portfolio y2 because it fails to dominate '

~
R  

despite having a higher expected return than y1, which does dominate '.
~
R  (FSD is illustrated for 

graphical clarity, but if the curves were all integrated then the analogous situation for SSD would 
be depicted.) 
 
Example.  Continuing the example developed earlier, optimal portfolios for selected values of z 
were analyzed to determine their mean returns µ in addition to their |SSD|. Whereas in Section 
2.3.2 the portfolio corresponding to z = 4 was chosen because it has the highest |SSD| (Table 3, 
middle column), here we would choose the portfolio corresponding to z = 0.2 and z = 1 because, 
of those portfolios with |SSD| > 0, it has the highest expected return µ (Table 3, right column).  
The composition of that portfolio was shown in Table 1. 
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Figure 5.  Shifting reference curve R

~
 to the right, yielding ,'

~
R  presents a more difficult FSD 

(first order stochastic dominance) requirement for a candidate portfolio to meet.  
 

2.3.4 Given R
~

 find the portfolio(s) with the highest α (Table 2, item 3).  We introduce this 
method by comparing it with a method described earlier.  We then formalize it, and close with an 
example. 
    
Introduction.  Let us compare this approach to that of finding the portfolio with the highest 

|SSD| over a reference curve R
~

 (Table 2, item 1; Section 2.3.2).  Maximizing |SSD| is suitable 
when the goal is to make the chosen portfolio robust, in that its return distribution r will tend to 

have SSD over reference curve R
~

 even if its true distribution is somewhat different from the best 
estimate we have for r.  A similar goal is supported by using the Information-Gap Theory 
uncertainty parameter, α, instead of |SSD|.  However although α might be less immediately 
intuitive than the amount of second order stochastic dominance |SSD|, α can be better for 
modeling how much a distribution stochastically dominates a reference curve.  
 
A significant problem with |SSD| as a measure of robustness, that α can circumvent, is that |SSD| 
measures robustness by determining how much the integral of a distribution can be shifted on the 
x-axis without intersecting a reference curve (Fig. 4).  This metric is problematic.  The accuracy 
of a return distribution depends on understanding of the influence of various factors such as 
leverage, reliability of historical data, expert judgment, and unspecified dependency relationships 
among asset prices.  In general, eliminating inaccuracies due to such factors would not 
necessarily update a return distribution from r1 = F(x) to r2 = F(x+k), i.e., shift the distribution on 
the x-axis without changing its shape.  But this is exactly what |SSD| assumes.  Further, since 
estimates about the dependency relationships among the portfolio segments can be a major source 
of inaccuracy, it is desirable to account specifically for this source of error.  These needs can be 
met using the α parameter to combine the concept of robustness (Ben-Haim 2006 [2]; Cheong et 
al. 2004 [6]) with that of bounding the family of distributions corresponding to the space of 
different possible dependency relationships among the return distributions of portfolio segments 
(e.g. Zhang and Berleant 2005 [15]).  
 
To combine these concepts, consider first an example, the distribution for portfolio return labeled 
“Best-guess return” in Figure 6.  This distribution is associated with some portfolio with 
segments, segment weights and a particular set of dependencies among the segments (perhaps 
that they are independent).  Next, suppose one drew a separate distribution curve for each 
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conceivable dependency relationship among the segments.  The resulting set of curves could be 
bounded by “envelope” curves, labeled “Left envelope, dependencies unknown” and “Right 
envelope, dependencies unknown” in Figure 6.  Such envelopes can be obtained using Statool 
(Zhang and Berleant 2005 [15]) or RiskCalc (Ferson 2002 [9]); others have built ad hoc 
calculating software (Helton and Oberkampf 2004 [11]).  Expressing return using these envelopes 
represents a refusal to make assumptions about the dependency relationships among the different 
portfolio segments.  Such a strategy would make sense when dependencies are, in fact, unknown, 
as might be the case if little historical data exists. 

 

 
Figure 6.  The “Best-guess return” distribution for the return of a given portfolio is the return 
distribution assuming all information used to construct it is correct.  
 
Following the conventions of Info-Gap Theory (Ben-Haim 2006 [2]) we quantify the amount of 
epistemic uncertainty (“ignorance”) with a parameter called α.  Info-Gap Theory can use the 
value of α to generate error bounds in model outputs.  These bounds define a space of possible 
results.  If the worst case member of that space is an acceptable result, the model is robust against 
the amount of ignorance expressed by that value of α.  If the model is not robust, then efforts to 
reduce ignorance could make it robust, because lower ignorance would be expressed with a 
smaller value of α, implying narrower error bounds.  The consequent smaller space of possible 
results might be robust where the larger space was not.   
 
Let the condition of zero epistemic uncertainty (i.e., α = 0) correspond to full specification of the 
return distribution of a portfolio, such as the “Best-guess return” depicted in Figure 6.  This curve 
might, for example, be provided by a financial analyst.  It could be the distribution corresponding 
to a default assumption that the portfolio segments are independent. Alternatively, it might 
assume a specific covariance matrix stating dependencies among the portfolio segments derived 
by mining data on previous performance of the segments. 
 
As suggested by its "Best guess" designation, the default distribution is not necessarily the actual 
distribution.  Estimating portfolio segment distributions, and therefore the return distribution of 
an overall portfolio, may be done using historical data, economic projections, expert judgement, 
etc., but conclusions will always be error-prone because information is almost always limited and 
the future almost always contains a major element of unpredictability.  Thus it is desirable to 
specify the uncertainty associated with its shape.  Earlier in this section we assigned α = 0 to 
designate a distribution for return with zero uncertainty about its shape: the “Best-guess return” 
curve.  Now, let us assign α = 1 to express some desired maximum amount of uncertainty about 
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the shape of the curve.  Values for α between 0 and 1 express intermediate amounts of epistemic 
uncertainty.   
 
The details of what bounding envelopes around the best-guess curve correspond to a given value 
of α depend on the details of the epistemic uncertainty one wishes to model.  If epistemic 
uncertainty is due to ignorance about the dependency relationships among the return distributions 
of the portfolio segments, a possible modeling strategy would be, 

1) seek envelopes bounding the space containing all return curves corresponding to any 
mathematically possible dependency relationship among the segment return distributions 
(corresponding to α = 1), and then, 

2) interpolate between the best guess curve and the envelopes to obtain more constraining 
bounds, which we will term “sub-envelopes,” nested within the envelopes, which bound 
families of distributions corresponding to values of α for 0 < α < 1.  

Ultimately, we must be able to determine (a) the maximum α for which a particular portfolio 

return distribution is sure to have stochastic dominance over a reference curve ,
~
R  then (b) which 

of a set of candidate portfolios has a distribution with the highest maximum α.  These ideas are 
described more formally next.  
 
Formalization.  The envelopes can be computed using an algorithm that can sum the random 
variables corresponding to the return distributions of the portfolio segments. Such an algorithm 
should not assume that the random variables are independent (or have any other particular 
dependency relationship).  The DEnv algorithm is one such algorithm (Zhang and Berleant 2005 
[15]).  That and others are described to varying degrees in Helton and Oberkampf (2004 [11]). 
We designate these envelopes "Left" and "Right" in Figure 6.  The left and right envelopes enclose 
a space often called a p-box or probability box (e.g. Baudrit and Dubois 2005 [1]; the term is 
originally due to S. Ferson).  
 
Continuing to develop our model, we have a particular concern with the left envelope, because it 
relates to worst case portfolio performance.  Therefore we now associate α = 1 with the envelope, 
henceforth ignoring the right envelope, which is also controlled by α and forms the other bound 
on the space of distributions representing our ignorance.  Having defined the meanings for α = 0 
and α = 1, we further detail the α parameterization by defining meanings for intermediate values 
of α.  In doing this the concept of horizontal averaging is useful.  Horizontal averaging takes two 
cumulative distributions F1(.) and F2(.), and returns a third distribution Fh_ave(.) which is midway 
between them in the sense that for each probability value ]1,0[Pr∈  on the y-axis, 

2

(Pr)(Pr)
(Pr)

1
2

1
11

_

−−
− += FF

F aveh  defines the corresponding x-coordinate of Fh_ave(.). An example 

is the curve labeled “α = 0.5” in Figure 6.  If there are places where (Pr)1
1
−F  and (Pr)1

2
−F  are 

undefined, i.e. there are horizontal segments in either F1(.) or F2(.), then the more general interval 

extension can be used: 
2
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F aveh .  We will henceforth use (Pr)1
1
−F  and 

(Pr)1
2
−F  for expository simplicity, leaving interval extensions as an exercise for the interested 

reader.  The horizontal averaging formula gives (Pr)1
1
−F  and (Pr)1

2
−F  equal weights of ½.  

Generalizing this to any pair of weights gives  
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αα
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Figure 6 shows an example for α = 0.5.  Values of α near zero imply envelopes to the left of, but 
close to, the best-guess curve, representing little uncertainty about the shape of the curve.  Values 
of α < 0 are ruled out since there cannot be less than zero epistemic uncertainty.  Values of α near 
one imply envelopes near, but to the right of, the left envelope.  A value of α > 1 in our 
development would imply ignorance of more than just lack of knowledge about the dependencies 
among segments.  Certainly, other sources of ignorance do exist (although uncertainty about 
portfolio segment weights is not expressed with α but rather is handled with the mean – z * risk 
optimization process discussed earlier in this paper).  If such a curve for Fh_ave(.) was in Figure 6, 
it would be to the left of the “Left envelope, dependencies unknown” curve.   
 
Let rb be a best-guess portfolio return distribution and L be a left envelope curve for it 
representing the case of α = 1.  Let Lα represent the horizontal average of L and rb for a weight of 

α (Eq. 6). Then rb = L0 and L = L1.  Then we can seek the maximum value of α such that RL
~

fα  

for some reference curve .
~
R   Checking for FSD )( 1f involves verifying that curves αL  and R

~
 

do not cross, while checking for SSD )( 2f  requires integrating the distributions numerically and 
verifying that these integral curves do not cross.  In either case the space of candidate best 
portfolios provided by the function OPT(z) must be searched for a portfolio whose maximum α is 
at least as high as that of any other portfolio.   
 
Example.  The 3-segment portfolio example used throughout this paper was analyzed to find 
maximum values of α for different values of z under an SSD constraint.  The results are shown in 
Table 4.  Figure 7 shows the return distribution of the portfolio for z = 3.98 in more detail.  The 
curve shown for α = 1.5894 is the horizontal average (Eq. 6).  It seems to cross the reference 
curve.  In fact, it does cross it, thereby violating FSD.  However if integrated, the resulting curves 
do not cross, so SSD holds, though just barely. 
 
 

z max α  µ 
0.20 1.33 1.0800 
1.00 1.33 1.0800 
2.00 1.3380 1.0740 
3.00 1.3410 1.0718 
3.90 1.3408 1.0717 
3.96 1.371 1.0706 
3.97 1.373 1.0706 
3.98 1.373 1.0706 
3.99 1.371 1.0706 
4.00 1.3700 1.0715 
4.01 1.3680 1.0705 
4.10 1.362 1.0705 
5.00 1.36 1.0700 

 
Table 4.  The distribution for the return of the optimal portfolio given z = 3.97 or z = 3.98 has the 
most robust SSD over the reference curve, as measured by α (rather than |SSD| as in Section 
2.3.2).  
 
2.3.5 Search for the portfolio with the highest best-guess µ among portfolios having a left 
envelope with SSD over the reference curve (Table 2, item 4a).  An investor may want a 
portfolio with as high an expected return as possible, but only if it meets some standard for 



 15

robustness to errors in its estimated return distribution.  This objective seeks to combine two 
needs: robustness and high expected return.  More formally, we seek a portfolio with mean return 

µ  such that  ,sup
~

, 2

y
RLYy y

µµ
f∈

=  where R
~

 is a reference curve and the supremum is over the 

portfolios whose left envelopes have SSD over .
~
R   Recall that Ly bounds the space of return 

distributions of portfolio y containing the distribution for each possible set of dependency 

relationships among the segments.  Thus, requiring Ly to have SSD over R
~

 ensures that return 

distribution ry of portfolio y has SSD over R
~

 regardless of the dependencies among segments in 
y.  That is useful when we are not sure of what those dependencies are.  
 
 

 
Figure 7.  The curve for α = 1.5894 models the presence of more epistemic uncertainty than the 
left envelope (i.e. the curve for α = 1).  It crosses the reference curve slightly, but the integrals of 
these curves do not cross, so SSD holds.  The curves are for the optimal portfolio for z = 3.98.  
 
In other words, we are searching for the best expected return available within the set of portfolios 
with return distributions whose left envelopes have SSD over the reference curve. This approach 
is like Table 2, item 2, except in place of the “Best-guess” curve (Figure 6), it uses the “Left 
envelope, dependencies unknown” curve (Figure 6). This approach is also like Table 2, item 3, 
except instead of maximizing α, it uses α = 1 as a filter (recall that α is defined to equal 1 for the 
left envelope curve), and searches the portfolios that make it through the filter for one with the 
highest µ. 
 
Example.  In Table 5, optimal portfolios for each value of z all have left envelopes with SSD 
over the reference curve, as evidenced by α > 1 in each case. Of these, the highest mean return is 
provided by the portfolio corresponding to z in the range [0, 1] (see Table 1), making that the best 
portfolio under this criterion. 
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Z maximum  α µ 
z = 0.2 1.3500 1.0800 
z = 1 1.3500 1.0800 
z = 2 1.5300 1.0740 
z = 3 1.5894 1.0717 
z = 4 1.5500 1.0705 
z = 5 1.4000 1.0700 

 
Table 5.  Risk aversion coefficient (z) values, the robustnesses (maximum α) of the best 
portfolios corresponding to those values, and the mean returns of those portfolios.  
 
2.3.6  Find a portfolio that maximizes µ, given a value of α to use as a filter (Table 2, item 
4b).  This criterion generalizes the one just described (item 4a in Table 2) to enable seeking high 
return with an investor-determined degree of robustness.  In the previous section we sought a 
portfolio that maximizes µ, and has a left envelope with SSD over the reference curve (i.e., α = 1).  
In this section, we still seek a portfolio that maximizes µ, and wish to allow any value to be 
specified for α.  An analyst who chooses a value for α is in effect stating an ignorance level (the 
epistemic uncertainty) corresponding to some subset (or superset) of the space of distributions 
associated with the range of possible dependency relationships among the portfolio segments.  
Complete ignorance about dependency implies α = 1, and complete knowledge implies α = 0.  
Intermediate degrees of ignorance imply intermediate values of α.  Ignorance about the shape of 
the return distribution that includes additional factors besides the dependency relationships 
among the segments can be accounted for by increasing α, so α > 1 is also allowed. 
 
Let some value of α be given, representing the amount of epistemic uncertainty about the shape of 
a portfolio return distribution.  Then any portfolio for which the horizontal average (by Eq. 6), 
with weight α, has SSD over the reference curve is eligible for consideration.  Figure 6 illustrates 
such an eligible distribution for α = 0.5.  Any eligible distribution will have SSD over a given 
reference curve, with enough of a margin that even if its shape differs from the best-guess shape 
by as much as α permits, SSD still holds.  From among the eligible portfolios, the one with the 
highest µ is considered best according to this criterion.  
 
Example.  Let the epistemic uncertainty associated with a best-guess portfolio return distribution 
be modeled as α = 1.5.  This implies the presence of other uncertainties besides uncertainty about 
the dependency relationships among the portfolio segment distributions.  With such a high 
ignorance level, the horizontal average curve (Eq. 6) is even farther left than the left envelope.  
For the example we have been using (first presented in Section 2.2), some values of z result in 
portfolio return distributions whose horizontal averages have SSD over a reference curve chosen 
for this analysis, and some do not.  Of those that do, the portfolio that is optimal for to z = 2 has a 
higher mean return µ than the others, and so is the best of those assessed in Table 6.  Note that 
because of epistemic uncertainties in the shapes of the return distributions, the values for µ in 
Table 6 must be regarded as best guess values. 
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α = 1.50 
µ  

z |SSD| 
0.2 Negative 1.08 
1 Negative 1.08 
2 Positive 1.074 
3 Positive 1.0717 
4 Positive 1.0705 
5 Negative 1.07 

 
Table 6.  A rather stringent robustness requirement expressed as α = 1.50 filters out portfolios 
whose return distributions are too steep or too stretched out relative to a reference curve.  Of the 
eligible portfolios tested (z = 2, 3 & 4), the highest mean return was 1.074.  
 
 
2.3.7 Finding the expected value of information about α to help choose what α to use (Table 
2, item 4c).  Recall the strategy in the lower half of Table 2 of maximizing mean return µ 
involves, first, identifying portfolios that meet an SSD requirement, and second, searching those 
portfolios for one with the highest possible µ.  In that light, let us consider next how obtaining 
more information about the shape of a portfolio return distribution r (i.e. decreasing epistemic 
uncertainty about it) will tend to increase the chance that it will have SSD over a reference curve 

( i.e. that ).
~

2 Rr f   Such information will tend to move left envelopes rightward, consequently 
making more portfolios eligible. That in turn will tend to raise the maximum µ available due to 
the enlarged set of eligible portfolios. 
 
Figure 8 illustrates a “Left envelope, dependencies unknown” curve without FSD over reference 

curve .
~
R   However, its “Left envelope, α = 0.5” curve does have FSD over .

~
R   Thus, reducing 

epistemic uncertainty about the “Best-guess” curve from α = 1 to α = 0.5 moved the portfolio 
represented by the “Best-guess” curve into the set of qualified portfolios. If this portfolio 
happened to have the highest available µ, the value v of the information that reduced α to 0.5 
would be v = µnewmax − µoldmax, where µnewmax is the expected return of this newly qualified portfolio 
and µoldmax is the expected return of the best of the qualified portfolios prior to reducing α to 0.5.  
The generalization to SSD is straightforward; the situation for FSD is shown because it visualizes 
well.    
 
We can determine the “demand value” of information about α (Ben-Haim 2006 [2]) from a plot 
of α vs. µ.  Figure 9 shows a schematic example. Ly, the left envelope for portfolio y assuming α = 
1, has parameterized form Ly, α=k.  The more uncertainty in the shape of portfolio return 
distributions (expressed as larger values of α), the more leftward are their left envelopes, hence 

the fewer portfolios have left envelopes with SSD over .
~
R   This tends to lower the maximum 

expected return available from among them.  
 
Function f(.) in the figure can be used to determine the incremental value of obtaining information 
that reduces α from α2 to α1.  That value is ∆v = f(α1) – f(α2) where α2 is the current value of α and 
α1 is a smaller (i.e. more informative and thus useful) value.  If this information costs below ∆v, 
the expenditure is worth making. An important special case is reducing α from 1 to 0, that is, 
going from no information about the dependencies among portfolio segments to fully defining the 
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dependencies among the portfolio segments.  The cost of this information is worth paying if it is 
below f(0) – f(1).  
 
 

 
Figure 8. The best-guess distribution has FSD over .

~
R   If α = 1 then the “Left envelope, 

dependencies unknown” curve applies and FSD might not hold, depending on what the true but 
unknown distribution actually is. On the other hand, if α = 0.5, FSD does hold. 
 
 

 

 
Figure 9.  Maximum expected return µ over all portfolios y whose left envelopes Ly stochastically 

dominate reference curve .
~
R   

 
 

3  Conclusion 

This paper introduces an approach, and specific variations (Table 2), to determining the best 
possible investment plan given the two standard conflicting portfolio investment goals of mean 
return and risk.  On the one hand we seek a high expected (mean) return. On the other we seek to 
control risk.  To manage risk we seek to guarantee that the portfolio model has second-order 
stochastic dominance (SSD) over a minimum tolerable reference curve, because it has been 
shown that (1) if an SSD relationship exists between two return distributions, any risk-averse 
investor will prefer the dominant one, and (2) this constraint is weaker than the FSD relationship, 
which is unnecessarily strong.  Strong constraints are undesirable because they reduce the space 
of allowable portfolios, tending to limit investment choices.   
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We find the best portfolio by first generating a set of optimal portfolios.  Then we search the set 
using stochastic dominance and Information-Gap Theory to identify the best one.  The traditional 
approach to portfolio optimization using Markowitz theory is challenged when correlations or 
other dependencies among portfolio segments are hard to provide, return distribution shapes are 
uncertain, there is a lack of price data, or various other fundamental data are unavailable.  The 
analyses shown in this paper address the first two of these challenges, thereby showing how 
rational portfolio choice is possible even under severe (epistemic) uncertainty.   
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