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Abstract

This paper addresses the problem of market risk man-
agement for a company in the electricity industry.
When dealing with corporate volumetric exposure,
there is a need for a methodology that helps to man-
age the aggregate risks in energy markets. The origi-
nality of the approach presented lies in the use of in-
tervals to formulate a specific portfolio optimization
problem under stochastic dominance constraints.
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1 Introduction

All firms face a variety of risks. Each type of risk
can affect the firm’s financial performance and indeed
its valuation. For some purposes, it may be useful
to identify and treat these risk units individually. A
narrow focus on individual units provides a starting
point for estimating an aggregate loss distribution or
at least summary risk measures. However, it is the
aggregate impact of these risks units on the earnings
and value of the firm that is of importance. Because
the properties of a portfolio are somewhat different
from the sum of its parts, risk management strategies
should be derived with reference to those aggregate
effects.

This paper looks at relevant corporate risk manage-
ment strategies with robust methodologies. By ro-
bust is meant that any uncertainty consistent with
the data or the inputs should be part of the problem
statement. One methodology that has been already
investigated and implemented by the authors in this
framework is interval computing [2], [5]. In this paper,
the intent is to move on to the portfolio selection prob-
lem, by raising it. In [9], the typical mean-variance
portfolio problem is addressed with the interval ap-
proach. Another theoretical approach to the portfolio
selection problem is stochastic dominance [6]. The

major advantage of stochastic dominance over mean
variance comes from the ability of the former to take
into account irregular or asymetric risky prospects.
Therefore, we have focused on the portfolio selection
problem under stochastic dominance constraints with
intervals.

Raising the problem and describing the framework,
the paper is organized as follows. In section 2, the
portfolio selection problem and the stochastic domi-
nance concept are introduced. Then, some specifics
about electric company portfolios are described. In
section 3, interval analysis and probabilistic uncer-
tainty are introduced in order to formulate the math-
ematical problems (see section 4 to be solved. Fi-
nally, two problems are distinguished in terms of in-
terval methodology: the optimization problem under
a first order stochastic dominance (FSD) constraint,
and under a second order stochastic dominance (SSD)
constraint.

2 Problem Statement

2.1 The Performance Indicator

Since the work of Markowitz [13], it is generally agreed
that portfolio performance should be measured in two
dimensions: profit and risk. In the mean-variance
approach, the portfolio selection consists in extracting
from all feasible portfolios the efficient ones, namely
the portfolios that minimize the risk for each given
profit or, equivalently, those that maximize the profit
for each risk level. The term “efficiency” refers to
Pareto optimality.

Value-at-Risk (VaR) has become a popular measure
of market risk, so many discussions of optimization
problems involving VaR (instead of variance) appear
in the literature. Recall that by definition, with re-
spect to a specified probability level β, the β-VaR of a
portfolio is the lowest amount α such that, with prob-
ability β, the loss will not exceed α. As a consequence,



a β-VaR constraint injected in the portfolio selection
problem transforms the initial mean-variance convex
problem into a non-convex one. Unfortunately, this
means the problem is no longer as tractable. As an
alternative measure of risk, conditional Value-at-Risk
(CVaR) has been introduced [15]: the β-CVaR is the
conditional expectation of losses above the amount α.
Now, a β-CVaR constraint injected in the portfolio
selection problem remains convex, since the risk is an
expectation constraint. Although CVaR has not yet
become a standard in the finance industry, it is gain-
ing in the energy industry.

Two other variations on VaR have been developed in
recent years: cash flow at risk (CFaR) [8], and earn-
ings at risk (EaR) [7]. EaR, like CFaR, focuses on a
specific time period and measures changes in earnings.
In the financial industry, EaR is often viewed for a full
fiscal year to obtain a comprehensive view including
cash flow relating to changes in foreign exchange rates,
commodity prices, debts, and investments. CFaR and
EaR provide an approach to handling assets which
cannot easily be marked-to-market due to account-
ing rules and which cannot easily be sold, therefore
requiring a long time period for risk analysis. Ex-
treme EaR (EEaR) and extreme CFaR (ECFaR) are
analogous to CVaR applied, respectively, to EaR and
CFaR. For the sake of generality and simplicity, no
further distinction is made among all these variations
on VaR until section 4.

2.2 Stochastic Dominance Constraints

As a profit/risk performance indicator, stochastic
dominance describes a decision procedure that is ap-
plicable to risk averters and does not require speci-
fication of the individual utility function. The inter-
ested reader might consult the literature review pro-
vided by Bawa [1] and more recently by Dentcheva
and Ruszczynski [6]. Using the robustness made pos-
sible by the stochastic dominance methodology, it is
expected that pragmatic descriptions of the problem
can lead to practical portfolio management conclu-
sions.

By definition, a return of a portfolio X stochastically
dominates another one Y to the first order, denoted
X �1 Y if:

P (X ≤ β) ≤ P (Y ≤ β) ∀β ∈ IR (1)

where P (X ≤ β) is the cumulative distribution func-
tion of X . Thus, if the cumulative distribution of X is
equal to or below that for Y for every level of wealth,
then prospect X is preferred to (dominates) prospect
Y .

The second-order stochastic dominance, denoted

X �2 Y , defines a weaker relationship dealing with
the areas below the cumulative distributions:

∫ β

−∞

P (X ≤ η)dη ≤

∫ β

−∞

P (Y ≤ η)dη ∀β ∈ IR (2)

First and second order stochastic dominance have sig-
nificant similarities in terms of risk management. The
first order constraint is equivalent to a continuum
of VaR constraints. The second order constraint is
equivalent to a continuum of CVaR constraints. Fig-
ure 1 illustrates one aspect of the relationship between
different orders of stochastic dominance. FSD and
SSD are the most commonly used varieties of stochas-
tic dominance. The third most commonly used is
infinite-order stochastic dominance. In the context
of the present portfolio problem, however, it may be
too weak a constraint to recommend portfolios that
are guaranteed to be desirable.

Figure 1: Solution space according the order of
stochastic dominance constraint.

2.3 Electric Companies

The problem we address is optimizing the portfolio of
an electric company that is exposed to several sources
of risks. In a financial context, the two major sources
of risk are the market and the volumetric risks. The
market risk is related to the impact of price fluctua-
tions on a given portfolio of assets. Volumetric uncer-
tainty mainly comes from hydraulic inflows and from
retail demand (in relation to the temperature). In
addition, there exists a volumetric risk linked to price
fluctuations: with derivatives products, quantities are
exercised depending on the price of the initial prod-
uct, the underlying.

The properties of many electricity markets include
poor liquidity and the practical difficulty of storage
of electricity. Those two points motivate electric com-
panies to physically balance their portfolio: the dif-
ference between demand from the retail market and



generation must be accounted for by buying or sell-
ing electricity on the pool market for each maturity.
Therefore, a volumetric equilibrium constraint will be
considered in the portfolio optimization problem:

∑

s

x(s)D̃(s, T, Θ) + ∆(T, Θ)−
∑

g

Vg(T, Θ) = 0 (3)

where D̃(s, T, Θ) is the random demand of the seg-
ment s over the aggregated time period (T, Θ) =
[T, T + Θ]. A typical example of the length of time
period Θ would be a month. An example of segment s

would be the demand due to small industries in some
country, where x(s) is the proportion of this demand
in the company portfolio. Then Vg(T, Θ) represents
the generation planning for the aggregated generation
units over the aggregated time period (T, Θ). Finally,
∆ is a ∆-hedging forward position with delivery at
maturity T and covering a period of length Θ. ∆-
hedging aims at reducing the sensitivity of the port-
folio return to the forward price fluctuation.

The typical integrated portfolio to optimize is com-
posed of three types of business activity: trading,
supply and generating. Each of these three portfo-
lio components is itself to be modeled in terms of its
own components in order to increase the leverage of
the risk managers, as follows.

• Supply optimization uses a maximization func-
tion which determines the right proportions of
different retail market segments with respect to
the retail market itself, given the proportion of
the overall portfolio that is allocated to the sup-
ply business activity.

• Generation is optimized with a profit maximiza-
tion function which minimizes the generation
costs with respect to a volumetric equilibrium
constraint.

• The trading component uses a profit maximiza-
tion function which helps to hedge when nec-
essary to ensure that the risk limits will be re-
spected, as well as to optimize profit.

The motivation for such an integrated formulation of
the problem is that it will increase the feasible set
within which the portfolio can be optimized. This in
turn allows better solutions to be identified from the
resulting larger set of candidate solutions.

3 The Interval Approach

Let us consider a stochastic dominance portfolio opti-
mization model with both an objective function and

constraints given by intervals. As a second compo-
nent of the model, the probabilities of different val-
ues x from the interval set [x] of possible values will
be used to compute the interval distribution of X .
Hence, the problem is to combine global optimization
techniques ([11], [10]) with interval probabilities ([3]).

To concentrate our attention to the methodology,
rather than the specifics of an electricity company
portfolio, it is suggested to start with the following
financial portfolio problem:

maxx

∑

s x(s)IE(R̃(s))

s.t.
∑

s x(s)R̃(s) �1,2 Ỹ
∑

s x(s) = 1

(4)

where s is a segment of the portfolio, R̃(s) the given
return random vector for s, and x(s) the weight of
the segment in the portfolio. Ỹ is a given random
variable that represents the risk limit. The stochastic
dominance constraint may be of the first or second
order.

3.1 Duality

For a given weight x(s) for portfolio segment s, the
return is a distribution. For interval-valued inputs,
(1) an interval distribution for the return may be ob-
tained, denoted [R̃(s)], or (2) given a specific distribu-
tion d, a range of values for x(s) exist, denoted [x(s)],
each with its own interval distribution that encloses
d. This range of values for x(s) may be an interval,
or may be more complex. A third possibility is that
the range might be null.

The duality between interval distributions and inter-
val portfolio weights may allow the overall solution
that we seek for the portfolio problem to specify par-
ticular portfolio segment weights instead of only inter-
vals for them, at least in many cases. The fact that
the weights of the different portfolio segments must
sum to one helps to define an optimization problem,
the solution to which is convex and thus yields to lo-
cal optimization in the case of SSD, and non-convex
thus requiring global optimization in the case of FSD.

Consider a vector x of three weights, one weight for
each portfolio segment. Each weight xi implies an in-
terval distribution for return, so finding the interval
distribution for the entire portfolio requires an alge-
braic combination of the three interval distributions
of the three components. Such algebraic combinations
of interval distributions can be done as described in
[4]. Let this interval distribution for the portfolio,
given segment weight vector x, be dx. If dx has the
relationship to a reference distribution Y shown in
Figure 2, then x is a set of admissible solutions. Our



task is to find an optimal weight vector xmax from the
admissible set.

Figure 2: An interval distribution (shaded) that dom-
inates the reference distribution under FSD.

3.2 Weight preferences

As a step toward solving the required optimization
problems, it is useful to be able to compare two in-
terval distributions describing the return for a weight
vector x. Figure 3 shows a simple case. The interval
distribution to the right has a higher return for any
given probability level, regardless of what the two true
distributions are (since each falls within the bounds
of its respective interval distribution). Therefore the
weight vector from which it results is a better portfo-
lio choice.

Figure 3: Two interval distributions for return. The
one on the right is preferable, so the weight vector
corresponding to it is better than the weight vector
corresponding to the other.

The situation is not so simple in the case of Figure
4. Here the interval distributions overlap slightly.
Thus the two actual unknown distributions, which
are constrained to fall within their respective inter-
val distributions, may or may not cross. If they do
not cross, FSD holds. If they do cross, the sever-
ity of the crossing will be low (in the case shown) so
that SSD will hold, but FSD will not. Thus one on
the right is preferable under SSD, but might not be
under FSD depending on whether or not the actual
unknown distributions cross. Therefore the weight
vector that resulted in the rightmost interval distri-
bution is better than the weight vector that produced

the leftmost interval distribution under an SSD con-
straint, but might not be under an FSD constraint.

Figure 4: Two interval distribution for return. These
overlap slightly, leading to preferability for distribu-
tions in the right shaded set under SSD, but not nec-
essarily under SSD.

Another possibility is shown in Figure 5. Here one in-
terval distribution falls completely within the bounds
of the other, so it is not possible to determine which
dominates the other without more detailed inputs
that shrink the interval distributions enough that they
do not overlap, if that is possible. Consequently the
weight vectors corresponding to the two interval dis-
tributions cannot be ranked in terms of their desir-
ability under either FSD or SSD.

Figure 5: Two interval distribution for return. These
are nested, and therefore determining desirability re-
quires further, disambiguating information.

Finally, Figure 6 shows a case where neither return is
definitely higher than the other. No amount of further
information that might narrow the envelopes of the
interval distributions would change that fact. Thus
in this case it is not possible to use FSD or SSD to
determine a preference for one of them, and conse-
quently it is not possible (under FSD or SSD) to rank
the quality of the weight vectors they correspond to.

3.3 Global Optimization

Given an understanding of how two different interval
distributions (and hence their corresponding weight
vectors) may be compared, it is now possible to con-
sider how to find the best one(s). This is a global
optimization problem with a number of interesting



Figure 6: Two interval distribution for return. These
cross, so it is not possible to determine which is better
(under FSD or SSD constraints) even if perfect input
information became available.

aspects that arise from the fact that the distributions
are not fully specified, which in turn arises from the
lack of complete information about problem inputs.
A number of considerations are expected to assist in
solving the required optimization problems. These are
listed next.

• For convex problems, any weight vector rx1+(1−
r)x2, 0 ≤ r ≤ 1, computed from two given weight
vectors x1 and x2 (that is, any weight which is
in the convex set defined by x1 and x2), will not
be as good as the better of x1 and x2. For non-
convex problems this may not be true.

• Because the SSD constraint yields a convex op-
timization problem, one way to easily obtain an
optimal solution in some (though not all) FSD
problems is to obtain the SSD solution, and sim-
ply check if this solution meets the stronger FSD
constraint as well. In cases where it does, the
SSD solution is the same as the FSD solution.
In cases where it does not, global optimization
becomes necessary.

• The problem structure requires optimization
within an n-dimensional space. Implementations
are expected to help shed light on the practical
limits to the dimensionality of the problem.

4 Full Formulation

4.1 General formulation

In a strategic framework, but within a market hori-
zon, it is desired to optimize the revenue of a com-
pany based on a portfolio of the three business activ-
ities of production, supply to the retail market, and
trade. The portfolio optimization takes place under
a stochastic dominance constraint and a volumetric
equilibrium constraint (see Eq. 5). Control variables
are the generation planning, the proportion of each
retail market within the portfolio (as a result of the

optimal bid prices), and the hedging positions. The
strategic aspect of the problem comes from the in-
tent to determine the proportion of each retail mar-
ket. The philosophy is not to reach a very detailed
schedule of power plants, but to solve a global opti-
mization problem with several random variables and
aggregated portfolio.

max(x,∆,V ) IE
(

C̃F (x, ∆, V )
)

s.t.







C̃F (x, ∆, V ) �1,2 Ỹ
∑

s x(s)D̃(s, T, Θ) + ∆(T, Θ) −
∑

g Vg(T, Θ)

= 0
(5)

and:

C̃F (x, ∆, V )

=
∑

(T,Θ)

∑

s x(s)R̃(s, T, Θ)

+∆(T, Θ)S̃(T, Θ) −
∑

g Vg(T, Θ)Cg(T, Θ)

(6)

R̃(s, T, Θ) equals the random demand times the aver-
age price for this particular retail market. S̃(T, Θ) is
the random average spot price over the time period,
and Cg(T, Θ) the generation cost for the unit g. The
above equilibrium constraint is an equality constraint
that could be replaced by a bound constraint [−ε, ε]
if it facilitates the solution search.

4.2 FSD

In the case where the first order stochastic dominance
constraint is to be studied, the mathematical problem
to be solved is non-convex. Hence, its resolution re-
quires global optimization techniques: state variables
(the weights of each segment) are represented by inter-
vals, and the optimization process consists in narrow-
ing as much as possible the prior intervals. However, a
first order stochastic dominance constraint seems eas-
ier to use than a second order one since it is possible
to bound all probability distribution functions consis-
tent with the input data by two cumulative distribu-
tion functions. Such bounds will enable the portfolio
return to satisfy a first order stochastic dominance
constraint with respect to a given reference cumula-
tive distribution function. In other words, both the
state variables and the probabilities can be intervals
in this formulation of the problem.

4.3 SSD

In the case where the second order stochastic domi-
nance constraint is to be used, the mathematical prob-
lem turns out to be convex. As a consequence, the op-
timization problem to be solved is not as complex as
in the case of first order stochastic dominance. This
should strongly decrease the computation time rela-
tive to the case of first order stochastic dominance.



Because the SSD constraint yields a convex optimiza-
tion problem, one way to easily obtain an optimal
solution in some (though not all) FSD problems is to
obtain the SSD solution, and simply check if this so-
lution meets the stronger FSD constraint as well. In
cases where it does, the SSD solution is the same as
the FSD solution. In cases where it does not, global
optimization becomes necessary.

4.4 Dimensionality

For the simplest abstraction of the problem, the de-
composition of the full portfolio is into 3 major seg-
ments: generation, supply and trading. For the full
portfolio selection problem, involving retail market
proportions, delta hedging and aggregated generation
scheduling, n is about 100. A modified version of the
full problem would reduce the dimensionality of the
problem by aggregating for example the generation
scheduling into one distribution instead of 6 (aggre-
gated) units, in which case n is now about 50.

• For the simplest abstraction (3 dimensions), the
optimization space is likely to have a manage-
able number of local maxima (and minima) com-
pared to the general problem in which optimiza-
tion spaces may be of arbitrarily high dimension-
ality.

• For full-scale problems, global optimization is ex-
pected to be a more significant issue. For these
problems, several software packages are available
for global optimization.

5 Conclusion

The problem of reducing aggregated market risk has
been formulated in terms of optimal portfolio selec-
tion under stochastic dominance constraints with in-
tervals. This formulation is expected to yield useful
results itself, and also lead to additional interesting
questions of potentially great practical applicability.
One possible direction is infinite order stochastic dom-
inance [12]. This is the weakest stochastic dominance
constraint. Hence it admits the largest feasible set
of solutions, which for this application is the set of
potentially desirable portfolios. It may be valuable
to investigate how infinite order stochastic dominance
compares with first and second order stochastic dom-
inance for the electric company portfolio problem.

Regardless of the type of stochastic dominance con-
sidered, there is the possibility that no one vector of
weights will dominate all others. In such cases a de-
cision must nevertheless be made. Decision-making
in the context of electric company financial problems

may be of interest in these cases. Work on this is of
current interest [2] and may become relevant to this
project at a later stage.
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