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Abstract 
 

Uncertainty is a key issue in decision analysis and other 
kinds of applications. Researchers have developed a 
number of approaches to address computations on 
uncertain quantities. When doing arithmetic operations 
on random variables, an important question has to be 
considered: the dependency relationships among the 
variables. In practice, we often have partial information 
about the dependency relationship between two random 
variables. This information may result from experience 
or system requirements. We can use this information to 
improve bounds on the cumulative distributions of 
random variables derived from the marginals whose 
dependency is partially known.  
 
Keywords. Uncertainty, arithmetic on random variables, 
distribution envelope determination (DEnv), joint 
distribution, dependency relationship, copulas, 
probability boxes, linear programming, partial 
information.  
  
1   Introduction 
 
Uncertainty is a key issue in decision analysis and other 
kinds of reasoning. Researchers have developed a 
number of approaches to address computations on 
uncertain distributions. Some of these approaches are 
confidence limits (Kolmogoroff 1941), discrete 
convolutions (i.e. Cartesian products, Ingram 1968), 
probabilistic arithmetic (Williamson and Downs 1990), 
Monte Carlo simulation (Ferson 1996), copulas (Nelsen 
1999), stochastic dominance (Levy 1999), clouds 
(Neumaier 2004), and Distribution Envelope 
Determination (Berleant and Zhang 2004a). 
 
Belief and plausibility curves, upper and lower 
previsions, left and right envelopes, and probability 
boxes designate an important type of representation for 

bounded uncertainty about distributions. When doing 
arithmetic operations on random variables that can result 
in such CDF bounds, an important question has to be 
considered: the dependency relationships among the 
variables. Couso et al. (1999) and Fetz and 
Oberguggenberger (2004) addressed different concepts 
of independence and their effects on CDF bounds. The 
copula-based approach can represent many interesting 
constraints on joint distributions that affect CDF bounds 
(e.g. Clemen 1999, Embrechts et al. 2003, Ferson and 
Burgman 1995). The copula-based approach is 
implemented as the part of RAMAS system (Ferson 
2002). The Distribution Envelope Determination (DEnv) 
method can use Pearson correlation between marginals X 
and Y to squeeze CDF bounds of random variables 
derived from these marginals (Berleant and Zhang 
2004b).  This paper explores some additional constraints 
on dependency. 
 
In practice, we may have partial information about the 
dependency relationship between two random variables. 
This information may result from empirical experience or 
system requirements. We can use this information to 
affect bounds on the cumulative distributions of new 
random variables derived from those whose dependency 
is partially known.  
 
We focus on the following kinds of partial information.  

1. Knowledge about probabilities of specified 
areas of the joint distribution of the marginals. 

2. Knowledge about probabilities of specified 
ranges of values of the derived random variable. 

3. Known relationships (>, <, =) among the 
probabilities of different areas of the joint 
distribution of the marginals. 

4. Known relationships (>, <, =) among the 
probabilities of different ranges of the derived 
random variable. 

 



Our method uses the DEnv algorithm (Berleant and 
Zhang 2004c). 
2 Review of the Distribution Envelope 
Determination (DEnv) Algorithm 
 
In this section, DEnv is reviewed briefly and abstractly, 
following Berleant and Zhang (2004a).  
 
Suppose we have two samples x and y of random 
variables X and Y with probability density functions fx(.) 
and fy(.). Given a function g, a sample z=g(x,y) of random 
variable Z is derived from x and y. DEnv is used to get 
the distribution of the derived variable Z. First, the input 
PDFs fx(.) and fy(.) are discretized by partitioning the 
support (i.e. the domain over which a PDF is non-zero) 
of each, yielding intervals xi, i=1…m, and yj, j=1…n. 
Each xi is assigned a probability 
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Table 1: General form of a joint distribution tableau for 

random variables X and Y. 
 
To better characterize the CDF Fz(.), we next convert the 
set of interior cells of the joint distribution tableau into 
cumulative form. Because the distribution of each 

probability mass pij over its interval zij is not defined by 
the tableau, values of Fz(.) cannot be computed precisely. 
However they can be bounded. DEnv does this by 
computing the analogous interval-valued function Fz(.) as  
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resulting in right and left envelopes respectively 
bounding Fz(.).  
 
An additional complication occurs if the dependency 
relationship between x and y is unknown. Then the 
values of the pij’s are underdetermined, so equations (1) 
cannot be evaluated. However, the pij’s in column i of a 
joint distribution tableau must sum to

i
px  and the pij’s in 

row j must sum to 
j

py giving three sets of constraints: 
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j=1…n.  These constraints are all linear, and so may be 
optimized by linear programming. Linear programming 
takes as input linear constraints on variables, which in 
this case are the pij’s, and an expression in those 
variables to minimize, for example, ∑
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(1) is maximized similarly. These envelopes are less 
restrictive (i.e. are farther apart) than when the pij’s are 
fully determined by an assumption of independence or 
some other given dependency relationship (in which case 
linear programming would not be needed). 
 
These ideas could be generalized to n marginals, which 
would require an n-dimensional joint distribution tableau.  
 
Next, we examine additional constraints that can be used 
to try to squeeze the envelopes closer together.  
 
3 Knowledge about probabilities over 
specified areas of the joint distribution 
 
Suppose we have information about the probabilities 
over given portions of the joint distribution. It could be 
that we know the probabilities exactly or perhaps we 
only know bounds on these values.  
 
This problem breaks down into two major situations: 

• Single-cell constraints, where the probability of 
one pij is known in a joint distribution tableau, 
section 3.1. 



• Multiple-cell constraints, where our knowledge 
about probability spans more than one pij, 
section 3.2. 

 
For multiple-cell constraints, there are two 
subcategories:  

• Area specified, where we have knowledge about 
a sum pij +…+ pmn, section 3.2.1. 

• Probability of a function of the marginals 
specified over part of its domain, where we 
have knowledge abut the probability of g(x,y) 
over some interval k1≤g(x,y)≤k2, section 3.2.2.   

 
We explore these situations in the following examples. 
Assume that the marginal distributions of X and Y are 
known, and define Z=X+Y as in Table 2. 
 
 

             x→ 
y ↓     z=x+y 

x1=[x1l, x1h] 

i
px  … 

xm=[xml, xmh] 

n
px  

y1=[y1l, y1h] 

i
py  

z11=[x1l+y1l, 
x1h+y1h] 

p11 
… 

z1m=[xml+y1l, 
xmh+y1h] 

p1m 
… … … … 

yn=[ynl, ynh] 

m
py  

z1n=[x1l+ynl, 
x1h+ynh] 

pnl 
… 

zmn=[xml+ynl, 
xmh+ynh] 

pmn 
 
Table 2: Joint distribution tableau for the marginals X 
and Y, where Z=X+Y. Interval x1 has low bound x1l and 
high bound x1h, and similarly for other intervals. 
 
 
Note the following row constraints: 
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and the following column constraints: 
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These are due to the properties of joint distributions. 
 
The pij’s, i=1 to m, j=1 to n, are unknown. However, the 
row and column constraints limit the freedom of the pij’s 
significantly. This fact limits the space of feasible 
solutions for the linear programming problems in the 
DEnv algorithm. If we can get additional constraints, this 
space may be limited even more. That means that we 
could get bigger values for the minimization questions 
and/or smaller values for the maximization questions 
than we otherwise would obtain. Recall that in DEnv, the 
minimization values provide the right envelope and the 
maximization values provide the left envelope. If 
minimization outcomes become bigger or maximization 
outcomes become smaller, the left and right envelopes 
will become closer to each other. Thus we will get a 
more tightly specified space of possible CDFs for 

random variable Z, where Z is a function of the 
marginals. 
 
Based on the example of Table 2, we demonstrate the use 
of constraints resulting from (1) single-cell constraints, 
(2) multiple-cell constraints with area specified, and (3) 
probability of a function of the marginals specified over 
part of its domain, in the following subsections. 
 
3.1  Single-cell constraints 
 
Consider internal cells zij (Table 3). If only the row and 
column constraints hold, the probability pij of a given cell 
zij is not fully specified, but only constrained to some 
degree. Let us specify an additional stronger constraint 
on some pij, that it has some value pij=cij. This new 
constraint can be combined with the row and column 
constraints. This will tend to squeeze envelopes of Z 
closer together due to the general observation that more 
constraints tend to produce stronger conclusions.  
 
This situation is relatively strict. To weaken it, the user 
may specify an inequality for pij such as pij < cij or 

ijijij p cc ≤≤ . 

 
Here is an example. Consider two random variables X 
and Y having the discretized distribution shown in the 
joint distribution tableau of Table 3. Z=X+Y is the 
derived random variable.  
 

            x→ 
y ↓    z=x+y 

]1,0[1 =x  
2.0

1
=xp  

]4,3[2 =x  
4.0

2
=xp  

]6,5[3 =x
4.03 =xp  

]1,0[1 =y  
4.0

1
=yp  

]2,0[11 =z  
p11 

]5,3[12 =z  
p12 

]7,5[13 =z  
p13 

]4,3[2 =y
6.0

2
=yp  

]5,3[21 =z  
p21 

]8,6[22 =z  
p22 

]10,8[23 =z  
p23 

 
Table 3: A joint distribution tableau for Z=X+Y. 

 
Figures 1 & 2 show the CDFs of marginals X and Y 
implied by Table 3. 
 
Suppose p11= 0.16 is given (a single-cell constraint). If it 
is included with the original set of row and column 
constraints, the envelopes will tend to be squeezed 
together.  
 
The sum of X and Y without the single-cell constraint 
p11=0.16 is shown in Figure 3, while the sum with the 
constraint p11=0.16 is shown in Figure 4. It is clear that 
the envelopes for Z=X+Y are significantly narrowed as a 
result of this new constraint. If a weaker single-cell 
constraint is substituted for p11=0.16, the envelopes are 
likely to be narrower than those of Figure 3, but wider 



than those of Figure 4. For example, Figure 5 shows the 
envelopes resulting from the constraint 0.15 ≤p11≤0.17. 
 

 
Figure 1: CDF envelopes for X. 

 
 
 
 

 
 

Figure 2: CDF envelopes for Y. 
 
 

 
 

 
Figure 3: Fz(.) for Z=X+Y without any extra constraints. 

 
 

The envelopes shown in Figure 5 are closer together than 
those in Figure 3, but further apart than those in Figure 4. 
 

 
 
Figure 4: Fz(.) for Z=X+Y with the single-cell constraint 
p11=0.16. 
 

 
 
Figure 5: Fz(.) for Z=X+Y with the single-cell constraint 
0.15≤p11≤0.17. 
 
 
3.2  Multiple-cell constraints 
 
In section 3.1 we examined the situation where extra 
probabilistic information is available for one cell. This 
section explains the situation when extra probabilistic 
information is connected with a set of cells. This 
generalizes the case of the single-cell constraint. This 
situation includes two kinds of constraints: we will call 
these the area specified constraint and the probability of 
a function of the marginals specified over part of its 
domain constraint.  
 
3.2.1  Area specified constraint 
 
Here, a known probability describes the sum of the 
probabilities of multiple pij’s in the joint distribution 
tableau, instead of just one pij. This could occur if the 
probability of a certain region of the joint distribution is 
given, and that region spans multiple cells of the joint 
distribution tableau. However, the idea of constraining 



the probability of a summed probability of a number of 
cells generalizes to any set of cells, not just ones 
representing a contiguous region of the joint distribution.  
 
For example, suppose p11+p12+p21=0.5 in Table 3. Figure 
6 shows the result of including this constraint with the 
row and column constraints of that table.  
 
Compared with Figure 3, which has no extra constraints, 
this result has narrower envelopes. 
 
3.2.2  Probability of a function of the marginals 
specified over part of its domain 
 
Instead of focusing on the probability of areas of the joint 
distribution, as with the area specified constraint, this 
constraint focuses on probabilities of ranges of Z, where 
z=g(x,y). To illustrate this situation, suppose that 

( ) 5.0]5,0[ =∈= zpp z , where z is a sample of Z and 
Z=X+Y. The joint distribution tableau is as in Table 3. 
Then pz must include p11, p12, and p21 
because ]5,0[]2,0[11 ⊂=z , ]5,0[]5,3[12 ⊂=z , 
and ]5,0[]5,3[21 ⊂=z . For all other zij, ]5,0[⊄ijz , so 
the probability of each such zij possibly could be 
distributed outside of [0,5], hence those zij might not 
contribute to pz. Thus we have that pz = 0.5 and pz ≥ 
p11+p12+p21. This gives the constraint 0.5≥ p11+p12+p21. 

 

 
 

 
 

Figure 6: Results for Fz(.) using the area  
specified constraint of p11+p12+p21=0.5. 

 
Similarly, pz might also include p13. This would occur if 
z13 has its probability distributed as an impulse at its low 
bound of 5. This gives 0.5≤p11+p12+p21+p13. These two 
constraints, p11+p12+p21≤0.5 and p11+p12+p21+p13≥0.5, 
result from the given fact that ( ) .5.0]5,0[ =∈= zppz  
Figure 7 shows the results using these constraints. 
 
The envelopes in Figure 7 are narrower than in Figure 3, 
due to the effects of the constraints used in the linear 
programming portion of the DEnv algorithm, 
p11+p12+p21≤0.5 and p11+p12+p21+p13≥0.5, which are 

implied by the given fact. It is perhaps an interesting 
limitation of this approach that these constraints are 
weaker than the actual given, ( ) .5.0]5,0[ =∈= zppz  
Hence Figure 7, while an improvement over Figure 3, 
does not fully reflect the theoretical potential of the given 
to constrain the envelopes.   
 

  
 
Figure 7: If ( ) ,5.0]5,0[ =∈= zppz  these envelopes 
result for Fz(.). 
 
4.  Known relationship among different 
areas of the joint distribution constraints 
 
In the previous section we showed how probabilities of 
certain areas of a joint distribution can be used to narrow 
envelopes. In this section, we show how relationships 
among probabilities of different areas of the joint 
distribution can also be used to improve the CDF 
envelopes. 
 
4.1  Unimodality constraint 
 
If we know that the joint distribution is unimodal, this 
implies a set of relationships among different areas. For 
example, the fact that the probability density at the mode 
point is higher than it is in other areas implies constraints 
on the pij’s of Table 3. Define random variable Z as the 
sum of X and Y as in Table 2. The row and column 
constraints are in equations (2) & (3). 
 
If we also know that X and Y have a unimodal joint 
distribution and that the mode point is in cell kl, the 
probability pkl will be the result of a higher probability 
density than the other pij’s. Mathematically, pkl≥pij, i≠k 
and/or j≠l, assuming the intervals zij have equal widths 
and do not overlap. If they do not have equal widths 
and/or they overlap, similar statements can be made that 
correct for the differences in widths and that take 
overlaps into account. 
 



Now we have a set of new constraints. These constraints 
tend to decrease the area of the feasible solutions, 
narrowing the CDF envelopes.   
 
Consider Table 3 again. If there is information about 
which cell zij contains the mode point, extra constraints 
may be derived. Suppose the mode point is in z23. Then 
the probability of p23 is greater than that of any other pij. 
Thus, p23≥pij, i≠2 or j≠3. 
 
These constraints decrease the feasible solution range of 
original problem, enabling better envelopes to be 
obtained. Here are all the constraints including the new 
ones: 

jy
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 for j=1 to 3, 

ix
j

ij pp =∑
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 for i=1 to 2, 

p23≥ pij,  i≠2 or j≠3. 
 
The results using these constraints are depicted in Figure 
8. 

 
 

Figure 8: Fz(.), where the mode point is in z23. 
 
Notice that the envelopes in Figure 8 are closer together 
than if the extra constraints are not present (as in Figure 
3). 
 
4.2  Conditional unimodality constraint 
 
Here we examine another related, but somewhat different 
situation: conditional unimodality. In this situation, the 
joint distribution is known to be unimodal for x given a 
value for y, or unimodal for y given a value for x.  
 
For example, suppose that given some value y of Y in 
y2=[3, 4] in Table 3, the maximum density of the PDF 
fx(x|y) is at some value of .3x∈x  Then, the average 
probability density in the cell with probability p23 is 
greater than the average probability density in any cell 
with probability p2k, k≠3. If the widths of intervals z2k are 

the same, then p23≥p2k, k≠3. In the more general case, the 
widths of the z2k might not be the same. If width w(z23) = 
c*w(z2k), then p23≥c*p2k. For the joint distribution tableau 
of Table 3, w(z21)=w(z22)=w(z23), so p23≥p21 and p23≥p22. 
These inequalities are constraints that, when included in 
the linear programming calls, will tend to squeeze the 
envelopes closer together than if these constraints were 
not included. Thus conditional unimodality can 
contribute constraints that tend to squeeze the envelopes 
bounding the CDF of Z. 
Figure 9 shows the envelopes resulting from these new 
constraints. Notice that the envelopes are narrower than 
those of Figure 3, showing the narrowing influence of 
being able to assume conditional unimodality.  
 
5.  Results and Conclusion 
 
In this paper, we present methods for using incomplete 
information about joint distributions to improve the 
envelopes around the CDF of a function of two 
marginals. More assumptions tend to give narrower 
result envelopes. More assumptions are good for 
improving results, but it is important that such 
assumptions are justified. We have shown that certain 
assumptions about the joint distribution of two 
marginals, that analysts will sometimes find useful and 
acceptable, can result in narrower CDF envelopes for 
functions of marginal random variables. 
 
 

 
 

Figure 9: Conditional mode point in z23. 
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