Proceedings of the IEEE International Conferenc&ystems, Man and Cybernetics, Oct. 7-10, 2007,tMah

Decision-Making Under Severe Uncertainty
for Autonomous Mobile Robots

Daniel Berleant and Gary T. Anders@&enior Member, IEEE

Abstract— The field of robotics is on a growth curve, with
most of the growth expected in the areas of persohand service
robots. As robots become more prevalent in chaotibome and
industrial settings, they will be required to makeincreasingly
independent decisions about how to accomplish thetasks. A
key to accomplishing this is the development of thaoiques to
allow robots to handle severe uncertainty. This pagr introduces
the use of Information Gap Theory as a way to enablrobots to
make robust decisions in the face of uncertainty,ra illustrates
this with an example problem.

. INTRODUCTION

Decision-making

uncertainties is an important challenge for mofmleots. This
paper introduces a new approach for robots to makast
decisions in the face of severe uncertainty. Byvése” we
refer to uncertainty that contains model (often lezhl
epistemic) uncertainty in addition to the ordinatgchastic
variety. The goal is to expand the range of pcatti
applications for robot systems. To date, most ssfoe
applications of robotics either use human teledfmrae.g.
most surgical robots) or highly structured enviremts (e.g.
industrial robots). However, many of the tasks tbabts will
be required to perform in the near future will requhem to
make decisions in relatively unstructured, changeigings.
Robots have two types of difficulties in making doo
decisions: dealing with lack of sensor informatiand
choosing appropriate actions based on the infoomdtiey do
have. Even if the sensors available to a robopartect (i.e.,
error free), they do not always provide all of thi@rmation a
robot needs to make a decision. For example, areaoan
provide visual information about the type of temrai sloped
path has, but cannot directly measure how slippésyFaced
with sparse and only partially relevant data, rebmtist still
decide on what, if any, action to take. Considierabsearch
on this problem seeks to enable robots to choasedtion
most likely to be correct based on the data aviglaOur
work takes a complementary approach. We propdseiab
a robot to decide if the information available soip a
decision problem it needs to solve. If it does, tio¢ robot
attempts to obtain the data it needs to make amopgpte

under severe
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decision. Among the advantages of this methodttzeae it
enables robots to make easy or moderately diffabediisions
quickly, and it lessens the need for complex sesgstems for
robots.

The approach we propose is to integrate new adsdram
the rapidly developing fields of Information-Gap dddon
Theory [1] and imprecise probabilities for repragensevere
uncertainty and supporting the need for robots taken
decisions in highly uncertain circumstances.
Information-Gap Theory is an approach to decision-making
under epistemic uncertainty — uncertainty due ftk laf
omplete knowledge about modeled relationshipsstEpiic
uncertainty involving techniques for manipulatidrflexible
representations of uncertainty. Probabilistic apphes to
epistemic uncertainty have advantages over othénads in
being consistent with widely accepted axiomatizati¢2].
This is useful because it permits evidence forotiffeness
based on theoretical rather than only empiricaligds. The
resultingimprecise probabilities permit successful modeling
of problems that may include probability distrilouts of
uncertain form, intervals, or both [3]. An importareed, and
the goal of this research, is to enable roboticnemeo
determine when they lack sufficient information nmake
decisions and what information they would need.céthis
objective is manageable, mobile robots will be ahe
effectively operate in chaotic or confusing envirants that
they would not normally be able to operate in. A&gample,
relatively simple robots will be able to traversaths over
terrain they could not otherwise handle, becausg Will be
able to determine which portions are traversablichvare
not, which might be and, for those, what informati®needed
to decide whether they are or not.

Many of the environments where robots would beulset

chaotic, changing, and require a high toleranceifolbiguity.
This work proposes a theoretically sound method for
autonomous mobile robots to handle such severe
uncertainties. As such, it holds the promise déeding the
range of robot applications in the home and wortgla
Potential applications for such robots include djiaultural
tasks; 2) cargo transportation in rough terraima)igation in
3-D environments; 4) navigation in dangerous emvirents;
5) autonomous construction of bridges or othercstines; 6)
autonomous operation of robots in chaotic work anthe
environments. We focus here on navigation as goitant
example of the more general technique.
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Il. RELATED WORK

While better characterization of the terrain witien lead to
better decisions about whether a robot can travel a given
path, these measurements will generally involvesttanty.
Our project addresses this problem by determinihgther a
decision problem can be solvediven the available

this area is evident. We have identified an apgrotmat
incorporates two formal inferencing techniques whos
integration promises significant advancement inattea.

1. An algebra of severely uncertain random variables.
This has roots going back decades [4] and hasmu@dito be
pursued over the intervening years (e.g. [3]) véthmore

information. As such, it could be applied in conjunction withrecent surge in interest [5] [6] [7] [23].

many other techniques to make robot decision-makioge
robust.

A. Navigation

There has been a great deal of recent work ingryin
assess the traversability of terrain, especialtysfpace and
military applications. Typically, the approachtésestimate
selected terrain characteristics (e.g. slop, roegénand
hardness) from sensor information. Once this reedpattern
classification techniques such as neural networ&sised to
classify the terrain into one of several predefihgibs, such
as sand, gravel, asphalt, etc. (e.g. [16] [17]jered vision

systems have been proposed as the main sensorfdype

determining many terrain parameters [18]. Howeuhis

requires distinct features to be present in an @nddoreover,
this method suffers from sensitivities to lightiognditions
and distance of the camera to the feature beingsuned.

Additionally, cameras can detect only the topmagel of

terrain, while subsurface features may be importent
determining traversability. An example of this wadbble grass
covering a muddy field.

Because vision systems cannot extract all needcad

environmental information, researchers have looksd
measuring terrain parameters at the immediate dSitthe
robot. These include methods to measure spegcifipgnties
that can be placed into terramechanics equatioris fhd
methods to map sensor readings to soil charadtsribrough
pattern matching routines [16]. To this end, sesibare been
used to measure parameters such as wheel sinkaije,
cohesion, soil friction, vertical load, torque, mioturrent,
motor voltage, angular wheel speed, linear whestdprobot
roll/pitch/tilt, robot vibrations and other featsr¢l9] [17]
[16]. Sensors such as cameras, accelerometers,irgntél
measurement units, ladar, microphones, ultrasoemdoss

and more have been used to determine these paramete

Once the traversability of different regions is ridy a cost
function or rule base is often used to guess tisé feth [18].

B. Decision-Making

Agents that have autonomy in navigation or othskda
must, in general, make decisions. This is why aede on
decision-making is critically important to robotic§his
importance has motivated considerable progresate dYet
despite the headway that has been made, the pralehot
decision-making is far from solved. Thus the sigaifice,
both intellectual and practical, of our objectiweadvancing

2. Information-Gap Decision Theory, a way to use the
results of computations yielding highly uncertaimputs to
make rational decisions. This technique formsa#&@m for a
two-level decision strategy. In level one, severeicertain
inputs are tested to see if they support solvingesired
decision problem. If not, meta-decisions are esdhfabout
what and how much new information to acquire tovedhe
original decision problem.

Uncertainty is inherent in the operation of autonom
robot systems. There is uncertainty in sensingtivironment
and, given the estimated state of the environmeaertainty
as to what the best action might be. One way & \dih this
problem is to improve knowledge of an environmemt b
improving sensing capability. For example, [8] mxzes
careful calibration of sensors to improve the aacyrof
information. Another approach often used is to comb
information from several sensors to reduce erronsdividual
measurements, as was done by [9] for robot lod#diza
While these techniques can be valuable, it is irsipdes to
achieve perfect knowledge of an environment, ndendow
much effort is placed on sensing capabilities.

Another approach to handling uncertainty is to toy
etermine the “best” answer, given the informatweailable.
For example [10] describes using a fuzzy logic-dase
controller to enable a rover to navigate over emging
terrains. The final outcome is a recommendatiotin waio
uncertainty associated with it. Howewvtire conclusion that is
most likely to be correct given the information available
might in fact not be reliable enough. For example, if the best
decision has a probability in the range 40% - 9(%eing
correct, but robot mission specifications requitdeast an
85% chance of success, then the robot should gatbes
information before making a final decision so timathe worst
case the 85% minimum is met.

Other ways to deal with uncertainty in roboticgexsally

Ih planning, use Bayesian inference [11], MarkowiBien
Processes [12], and the related Partially Obsézvdiarkov
Decision Processes or POMDPs [13]. Because pahctic
problems require a large number of possible stagkovian
techniques are mainly viable for small problemsessl
suitably modified [14]. Moreover, the availabilitpf
probability values for transitions between statesgsumed,
although these might actually be unavailable. @ason for
unavailability is that the true probabilities camange with
environmental conditions in realistically complex
environments. This is a problem for Bayesian appines as
well.  Ordinary Bayesian inference relying on Baye’
Theorem relies on inputs that are probabilitieprabability
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distributions. The problem with such representetiomf
uncertainty is that real problems are often charad by
severe uncertainty best expressed as interval safge
probabilities or probability distributions with err bounds.
Similarly, in Bayesian networks, the inputs shoplermit
error bounds, rather than being single numbersirgles
distributions. Credal networks [15] do permit sdlgxible,
realistic representations, but have not yet beeaioisdy
investigated for robotics. Our approach sharef wiedal
networks the ability to relax the often-unrealisiEsumption
of single, known probability distributions, whilé #the same
time allowing computation of functions of these nexgise
probabilities.

In our approach, uncertainty is represented as dexlin
families of probability distributions (Figs. 2 thrgh 7 and 9
through 11).

long path, or it could choose a shorter, but less path that
involves pulling the cart up a hill. Depending ohet
environmental conditions, this could be a diffiaigicision for

a human to make. The example shows how to apply

Information-Gap Theory to the process of deciditgthier or
not to attempt to take the shorter path up the hill

A.  AnExample

Consider a robot whose task is to move a cart gunta
cargo from point A to point B. The robot has insim
knowledge of its task, but not of the specifics itd
environment. In other words, the robot knows hovirid the
cart, how to connect with it, where points A andB, how to
travel with the cart and how to disconnect from tzet.

Such severe, epistemic (ignoranced)as However, it lacks specific knowledge of the natofethe

uncertainties can arise, for example, from measeinésn cargo or the details of its environment. Suppose rtiost
containing a known noise distribution which, howevis direct path from point A to B contains an inclirfe trobot
parameterized by a mean whose deviation from tresared must pull the cart up. The question the robot namstver is
value depends on bounded environmental variatidnsther
example would be when two random variables withvikmo
distributions both contribute to a third, “derive@0] random
variable, but the dependency relationship betwéentivo
input r.v.’s is unknown. Then every conceivableeledency
relationship predicts its own distribution for tderived r.v.
and, properly, one must represent the derivedas\a family

of distributions rather than as a single one.

Our approach includes an algorithm for numerically
deriving families of distributions (e.g. [20]), qoled with a o ) ) )
method for using such families to make decisionBhis Whether or not it is capable of doing this. If thebot is
method, Info-Gap Theory [1], seeks decisions thet aCTYing a cart up an incline, the force of friction the robot

satisficing that is, that meet minimal acceptablé“USt be grez?\ter than t_he gravitational force pguline cart
requirements — rather than optimal as in many othdewn the incline (see Fig. 1). The force of gravitythe cartis
decision-making techniques. Models are paramenizith Meart*g*Sin@. The force of friction on the wheels of the rofsot
an externally provided value, called for the degree of Hiricion" Mrbat*g*COSA. In this simplified example, the weight

ignorance (i.e. the epistemic uncertainty). Integhnique,a of the cargo-carrying cart is assumed much higheen that of

represents the amount of space between the enseIOHée robot. So, for the robot to successfully pldl tart up the

bounding a family of distributions. If an acceptatecision ncline, assuming an all-wheel drive robot with haai.rlve
can be made despite the existing ignorance, wellgand. If matched to the weight on the wheel (so that aéeldslip or
not, our techniqgue mandates acquiring additiorfakimation hone do) we neeij. * gt o> * o Sing

in an effort to reduce ignorance, and hengeo the point Hriction” Myobot” G COST> Meart g*sm \

where a satisficing decision can either be madeyled out as In other wo'rds,.|t must be thattoo: > (Meart* tané)/ ticiion. The
unachievable unknowns in this ar@igion, Meart aNdE. These can be roughly
estimated visually by the roboi,; from the size of the
cargo; Licion Py the color and glossiness of the incline’s
surface; andd from stereo vision estimates of its depth at the
top and bottom.

The estimates will have large uncertainties assetiwith
em. Sometimes this will not matter. For examipkbe slope

of the incline is shallow and the cargo small, ribieot can be
confident that it will be able to traverse the inel If the
uncertainties are such that the robot cannot dewdigher or
not it can pull the cargo up the incline, then weech to
determine what information will reduce this uncetya

0

Fig. 1. A robot pulling a cargo-laden cart up adliime.

Ill.  APPLYING INFORMATION-GAP THEORY

We have previously developed a technique to imptéme
Information Gap Theory for problems of severe utaisty,
and publicly available software [21] for doing thecessary h
calculations on imprecise probabilities. We repnése
uncertain quantities as probability boxes, and querf
arithmetic on the probability boxes [22]. Here, aply this
technigue to a illustrative problem in robot naviga.

Consider an outdoor setting in which a robot ne¢easove
a cart filled with cargo to a new location. It dake a safe but
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sufficiently. If the robot knows the cost of obtaig that
information, it can calculate the net gain of obitayg it.

The above example can be applied to specific situsit
such as a robot moving cargo from several airpthiops to a
central location. In that case, once the robotfbasd the
cargo, it must decide how to navigate to the desdigph
location. The most direct route may contain dangesiopes
and gulches, while safer routes may take the ratvaty from
the most direct path. Each route will have diffied

within ia, i, Oric (a fact modeled as an information source
specifying a uniform distribution over a range ohceivable
coefficients of friction), and (iii) source A is tas reliable as

B or C and should have correspondingly less weights
situation for the ground condition factor is modkekey the
probability box of Fig. 4. (While this may sounitd an
intractable set of data at first glance, one migatdily model

it as a Dempster-Shafer structure, which in essenabat is
occurring in this case).

associated with it, and our proposed method widds the
robot to make good decisions about what to do. I&mi
considerations apply to robots undertaking navigatin 3
dangerous environments; cargo transportation ighr@amnd/or || ¥
dangerous terrain; navigation in 3-D environments
reconnaissance in dangerous situations; autonomc Myahicls —
construction of bridges or other structures; nadgaacross
rivers, streams, swamps, hills and trenches; armhso
The Robot Problem: Is it Possible to Climb a Giverslope? dg,jggfy Il.
. - Meargo —=
We model whether a robot can climb a slope as venéte I— —
following equation holds.
Hiriction Myobot > Meart tand (l) 1\
P

Let Mot be @ known constanty,g,iqe be known within a
range, such as +10% (Operand X in Fig. 2), apgy be
represented by a probability distribution with givenean
(Operand Y, Fig. 2). ThemMeg: = Menge + Meargo 100kS like
Result Z in Fig. 2. Result Z is represented by twmulative
probability functions (CDFs): an upper CDF (upp&irsase
curve in Result Z graph in Fig. 2) and a lower C{lower
staircase curve in Result Z graph in Fig. 2). Te¢tea value of
Result Z will be in the area between these two COFe
algorithm for this is described in [3] and severare recent
papers. Other algorithms also produce equivaleslte on
benchmark problems [23].

Next, importme (from Result Z in Fig. 2) as Operand X
(Fig. 3). Let taf be a distribution (Operand Y, Fig. 3). Then

the RHS of inequality (1)me tard, is Result Z in Fig. 3,
assuming stochastic independencengf; and ta@.

Now let us work out the LHS of inequality (1). $use
Uicion 1S @ function of both the mileage on the tires and
“ground condition factor.” Model the mileage asistribution
that is uniform over a range, meaning the tires eayeally
likely to have any of the mileage within that rang&low
assume we have three different sources of infoonati
regarding the ground condition factor. Let infotiba source
A bound the ground condition factor within an inegria,
information source B bound it within an intervial and
information source C bound it within an intervial For
example, interval A might represent the ground @oom
factor of a paved road, interval B of a gravel raad interval
C of a dirt road. To further explore the flexibjiliof the
mathematics, suppose further that: (i) intenialsg, andic
are disjoint (no overlaps), (ii) the actual valugim not be

M oars —=

Fig. 2. An interval looks like two cumulative digmtion functions (CDFs)

forming a probability box as shown for Operand XeTvertical axis is a
probability that varies from 0 to 1, while the tmmital axis is the value of the
input (Operand X or Y) and the output (Result Z).

P

Mg —=

Operand: Y

_Operand: Y|
+
density
i o~ ]

P pare 11 B —=

Fig. 3. Operand X is from Z in Fig. 2. Operandstistogram discretization
of the PDF for tard, and Result Z isna tand, the RHS of inequality (1).

Now that we have modeled mileageand ground condition
factorc, we need to model the binary functigm, c) to get the
coefficient of frictionugigion= f(M, €). While the software we
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have been using in this example can compute a rainige of compare them, hoping that LHS > RHS. This is the
functions of two parameters, for expository simipfieve will  requirement given by (1) if the robot is to be atoldraverse
just divide them. Then, ifm and ¢ have an unknown the slope. If the probability density functions () of the
dependency relationshigyiqion l00Ks like Fig. 5. If instead we LHS and RHS are such that the right tail of the Ri¢Scends
model mileage and ground condition as indepengemhéps to zero before the left tail of the LHS rises fra®ro, as
a more realistic assumption), th@Ruion l00ks like Fig. 6. illustrated in Fig. 8, all is well. In CDF form,hich is more
—_l_ suitable for expressing epistemic uncertainty, wshvior the
configuration of Fig. 9. Often, however, we wilbtain a

4 3 situation like Fig. 10 in which the left envelop&the right
¢ ' ! i probability box rises from the horizontal axis brefohe right
E ! | envelope of the left p-box reaches its maximum atlien (1)
L\,—f : : _V_, is not assured and it would be risky for the rabatttempt to

A B c climb the slope.

ground condition factor —-

Fig. 4. A probability box for the combination agpint intervals comprising
evidence sources A, B, and C. (See, e.g., [23]).
density
A
P
| RHS af eq. (1) —= LHS af eq. (1)
¥ friction, unknovwn dependency —= Fig 8. Two non-overlapping PDFs. It is guaranttet the corresponding

Fig. 5. uxricion = f(mileage, ground condition), if no assumptions are made random variables satisfy an inequality.

about the dependency relationship betwedpeage andground condition. r,—" _l_,_u—'— | Fa ___,-—"_
b v f
I f | rﬁ i
p r]r | _."
} | Ll
P g | [
#fricﬁon, independence —=
—= RHS afeq. (1) —= LHSof eq. (1) =
Fig. 6.usriction = f(mileage, ground condition), assumingnileage andground Fig. 9. The random variable whose Probability bexon the right is
condition are independent random variables. unambiguously greater than the one whose probgbilix is on the left.
s
— | 4
4 -

— -
" -

Poa -

_s, RS afeq. (1) 2 LHS of eq. (1) —

Fig. 10. Samples of the random variable whose fhitihabox is on the right
are probably above samples of the one whose pridlyddnx is on the left.
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We can check the probability of inequality (1). sBed on
the probability boxes for the RHS and LHS of ()pbrted
into Operand X and Y of Fig. 11 from Figs. 3 & Adamaking
no assumption about the dependency relationshipeest
RHS & LHS, the Statool software produced the prdligb
range [0.19, 1] portrayed in Result Z of Fig. 11 &m more
detail in Fig. 12. We conclude tha_HS > RHS)Y 1[0.19, 1]
if the dependency is unknown. Such a wide range of
probability for success may be insufficient to smppa
decision either to climb the hill or not climb #owever if we
assumed that the LHS and RHS of eq. (1) are indkpenwe
could get a higher quality estimate @t.HS > RHS). This

Fig. 7. Probability box bounding the CDF for the &idf inequality (1).

To get the LHS of inequality (1) we next need tdtiply
Utriction (Fi1g. 6) byMyane. ASsuming this to be a known constant
this simply stretches Fig. 6 horizontally. Theuless shown
in Fig. 7, which shows theaxis quantitatively. The numbers
are mathematically consistent across the variogards,
though they are not intended to be physically séali That is
why most of the figures are shown without numesaieellings.
Now that we have computed the RHS and LHS of inktgua
(1) and graphed them (Figs. 3 & 7, respectivelgtsl
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can readily be done by performing the same sequefce
arithmetic operations on probability boxes as wasedearlier
in the example of this paper, except under theragsan of
independence. Whether or not the result of sucaratysis
sufficed to support the climb/no climb decision \wbsupport
an important decision. This decision is not aheléther to
climb or not, but rather, whether or not to invgate if
independence holds so that the climb/no climb dacisan,
finally, be made.

(1]
(2]

(3]

[4]
(5]
(6]
(71
(8]

i
P

(from Fig. 7} —=

rufnc:ian, indepandence * I bt

(9]

(10]

M oogre * tan & (from Fig. 3) —

[11]
ot 2|

[12]
;

3

If(#fnczion, independence *Mpohoy = M care ¥ tan ) then 1 else 0—=

[14]
Fig. 11. Result Z shows the range of the probahtfiat inequality (1) hold,
based on the probability boxes for its RHS and LHS.

[15]
10 [16]
0.3 --
0.5
o1 (17]
'1" 0.6 -
p 05 -
0.4 -- [18]
0.3 $ -
=3 ; -
D S R s s SO O USRS
o0 . 0 0 v 0 T T O
v [riciian, independence I pobot
2 M e * tan @) then 1 else 0 —= E(l)}
Figure 12. Numerical plot detailing Result Z of &iig 12. It shows that the
probability of eq. (1) is in the range [0.19, 1].
IV. SUMMARY [22]
This paper deals with the problem of handling “seve
(epistemic, model) uncertainty for autonomous rebotWe [23]

show how Information Gap Theory can be combinedi tie
algebra of severely uncertain random variablesoteesthis
problem. An example was given to illustrate hove th
approach can be applied to autonomous robot namgat
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