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Abstract— The field of robotics is on a growth curve, with 
most of the growth expected in the areas of personal and service 
robots.  As robots become more prevalent in chaotic home and 
industrial settings, they will be required to make increasingly 
independent decisions about how to accomplish their tasks. A 
key to accomplishing this is the development of techniques to 
allow robots to handle severe uncertainty. This paper introduces 
the use of Information Gap Theory as a way to enable robots to 
make robust decisions in the face of uncertainty, and illustrates 
this with an example problem. 

I. INTRODUCTION 

Decision-making under severe environmental 

uncertainties is an important challenge for mobile robots. This 
paper introduces a new approach for robots to make robust 
decisions in the face of severe uncertainty.  By “severe” we 
refer to uncertainty that contains model (often called 
epistemic) uncertainty in addition to the ordinary stochastic 
variety.  The goal is to expand the range of practical 
applications for robot systems. To date, most successful 
applications of robotics either use human teleoperation (e.g. 
most surgical robots) or highly structured environments (e.g. 
industrial robots). However, many of the tasks that robots will 
be required to perform in the near future will require them to 
make decisions in relatively unstructured, changing settings. 

Robots have two types of difficulties in making good 
decisions: dealing with lack of sensor information and 
choosing appropriate actions based on the information they do 
have. Even if the sensors available to a robot are perfect (i.e., 
error free), they do not always provide all of the information a 
robot needs to make a decision. For example, a camera can 
provide visual information about the type of terrain a sloped 
path has, but cannot directly measure how slippery it is. Faced 
with sparse and only partially relevant data, robots must still 
decide on what, if any, action to take.  Considerable research 
on this problem seeks to enable robots to choose the action 
most likely to be correct based on the data available.  Our 
work takes a complementary approach.  We propose allowing 
a robot to decide if the information available supports a 
decision problem it needs to solve.  If it does not, the robot 
attempts to obtain the data it needs to make an appropriate 

 
G. T. Anderson is with the Department of Applied Science, University of 

Arkansas at Little Rock, Little Rock, AR 72204 USA (e-mail: 
gtanderson@ualr.edu).  

D. Berleant is with the Department of Information Science, University of 
Arkansas at Little Rock, Little Rock, AR 72204 USA (e-mail: 
jdberleant@ualr.edu). 

decision.  Among the advantages of this method are that it 
enables robots to make easy or moderately difficult decisions 
quickly, and it lessens the need for complex sensor systems for 
robots. 

 
The approach we propose is to integrate new advances from 

the rapidly developing fields of Information-Gap Decision 
Theory [1] and imprecise probabilities for representing severe 
uncertainty and supporting the need for robots to make 
decisions in highly uncertain circumstances.  
Information-Gap Theory is an approach to decision-making 
under epistemic uncertainty – uncertainty due to lack of 
complete knowledge about modeled relationships. Epistemic 
uncertainty involving techniques for manipulation of flexible 
representations of uncertainty.  Probabilistic approaches to 
epistemic uncertainty have advantages over other methods in 
being consistent with widely accepted axiomatizations [2].   
This is useful because it permits evidence for effectiveness 
based on theoretical rather than only empirical grounds.  The 
resulting imprecise probabilities permit successful modeling 
of problems that may include probability distributions of 
uncertain form, intervals, or both [3]. An important need, and 
the goal of this research, is to enable robotic agents to 
determine when they lack sufficient information to make 
decisions and what information they would need.  Once this 
objective is manageable, mobile robots will be able to 
effectively operate in chaotic or confusing environments that 
they would not normally be able to operate in. As an example, 
relatively simple robots will be able to traverse paths over 
terrain they could not otherwise handle, because they will be 
able to determine which portions are traversable, which are 
not, which might be and, for those, what information is needed 
to decide whether they are or not. 

 
Many of the environments where robots would be useful are 

chaotic, changing, and require a high tolerance for ambiguity.  
This work proposes a theoretically sound method for 
autonomous mobile robots to handle such severe 
uncertainties.  As such, it holds the promise of extending the 
range of robot applications in the home and workplace. 
Potential applications for such robots include 1) agricultural 
tasks; 2) cargo transportation in rough terrain; 3) navigation in 
3-D environments; 4) navigation in dangerous environments; 
5) autonomous construction of bridges or other structures; 6) 
autonomous operation of robots in chaotic work and home 
environments.  We focus here on navigation as an important 
example of the more general technique. 
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II.  RELATED WORK 

 While better characterization of the terrain will often lead to 
better decisions about whether a robot can travel over a given 
path, these measurements will generally involve uncertainty.  
Our project addresses this problem by determining whether a 
decision problem can be solved given the available 
information.  As such, it could be applied in conjunction with 
many other techniques to make robot decision-making more 
robust. 

A. Navigation 

 
There has been a great deal of recent work in trying to 

assess the traversability of terrain, especially for space and 
military applications.  Typically, the approach is to estimate 
selected terrain characteristics (e.g. slop, roughness, and 
hardness) from sensor information.  Once this is done, pattern 
classification techniques such as neural networks are used to 
classify the terrain into one of several predefined types, such 
as sand, gravel, asphalt, etc. (e.g. [16] [17]).  Stereo vision 
systems have been proposed as the main sensor type for 
determining many terrain parameters [18]. However, this 
requires distinct features to be present in an image.  Moreover, 
this method suffers from sensitivities to lighting conditions 
and distance of the camera to the feature being measured.  
Additionally, cameras can detect only the topmost layer of 
terrain, while subsurface features may be important in 
determining traversability. An example of this would be grass 
covering a muddy field.  

Because vision systems cannot extract all needed 
environmental information, researchers have looked at 
measuring terrain parameters at the immediate site of the 
robot.  These include methods to measure specific properties 
that can be placed into terramechanics equations [17], and 
methods to map sensor readings to soil characteristics through 
pattern matching routines [16]. To this end, sensors have been 
used to measure parameters such as wheel sinkage, soil 
cohesion, soil friction, vertical load, torque, motor current, 
motor voltage, angular wheel speed, linear wheel speed, robot 
roll/pitch/tilt, robot vibrations and other features [19] [17] 
[16]. Sensors such as cameras, accelerometers, gyro inertial 
measurement units, ladar, microphones, ultrasound sensors 
and more have been used to determine these parameters.  
Once the traversability of different regions is found, a cost 
function or rule base is often used to guess the best path [18]. 

 

B. Decision-Making 

 
Agents that have autonomy in navigation or other tasks 

must, in general, make decisions.  This is why research on 
decision-making is critically important to robotics. This 
importance has motivated considerable progress to date.  Yet 
despite the headway that has been made, the problem of robot 
decision-making is far from solved. Thus the significance, 
both intellectual and practical, of our objective in advancing 

this area is evident. We have identified an approach that 
incorporates two formal inferencing techniques whose 
integration promises significant advancement in the area.  

1. An algebra of severely uncertain random variables.  
This has roots going back decades [4] and has continued to be 
pursued over the intervening years (e.g. [3]) with a more 
recent surge in interest [5] [6] [7] [23].  

2. Information-Gap Decision Theory, a way to use the 
results of computations yielding highly uncertain outputs to 
make rational decisions.  This technique forms a platform for a 
two-level decision strategy.  In level one, severely uncertain 
inputs are tested to see if they support solving a desired 
decision problem.  If not, meta-decisions are enabled about 
what and how much new information to acquire to solve the 
original decision problem.  

Uncertainty is inherent in the operation of autonomous 
robot systems. There is uncertainty in sensing the environment 
and, given the estimated state of the environment, uncertainty 
as to what the best action might be.  One way to deal with this 
problem is to improve knowledge of an environment by 
improving sensing capability.  For example, [8] examines 
careful calibration of sensors to improve the accuracy of 
information. Another approach often used is to combine 
information from several sensors to reduce errors in individual 
measurements, as was done by [9] for robot localization.  
While these techniques can be valuable, it is impossible to 
achieve perfect knowledge of an environment, no matter how 
much effort is placed on sensing capabilities.   

Another approach to handling uncertainty is to try to 
determine the “best” answer, given the information available.  
For example [10] describes using a fuzzy logic-based 
controller to enable a rover to navigate over challenging 
terrains.  The final outcome is a recommendation with no 
uncertainty associated with it. However, the conclusion that is 
most likely to be correct given the information available 
might in fact not be reliable enough.  For example, if the best 
decision has a probability in the range 40% - 90% of being 
correct, but robot mission specifications require at least an 
85% chance of success, then the robot should gather more 
information before making a final decision so that in the worst 
case the 85% minimum is met. 

Other ways to deal with uncertainty in robotics, especially 
in planning, use Bayesian inference [11], Markov Decision 
Processes  [12], and the related Partially Observable Markov 
Decision Processes or POMDPs [13].  Because practical 
problems require a large number of possible states, Markovian 
techniques are mainly viable for small problems unless 
suitably modified [14].  Moreover, the availability of 
probability values for transitions between states is assumed, 
although these might actually be unavailable.  One reason for 
unavailability is that the true probabilities can change with 
environmental conditions in realistically complex 
environments.  This is a problem for Bayesian approaches as 
well.  Ordinary Bayesian inference relying on Baye’s 
Theorem relies on inputs that are probabilities or probability 



Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Oct. 7-10, 2007, Montréal. 
 

 

distributions.  The problem with such representations of 
uncertainty is that real problems are often characterized by 
severe uncertainty best expressed as interval ranges for 
probabilities or probability distributions with error bounds.  
Similarly, in Bayesian networks, the inputs should permit 
error bounds, rather than being single numbers or single 
distributions.  Credal networks [15] do permit such flexible, 
realistic representations, but have not yet been seriously 
investigated for robotics.  Our approach shares with credal 
networks the ability to relax the often-unrealistic assumption 
of single, known probability distributions, while at the same 
time allowing computation of functions of these imprecise 
probabilities. 

In our approach, uncertainty is represented as bounded 
families of probability distributions (Figs. 2 through 7 and  9 
through 11).  Such severe, epistemic (ignorance-based) 
uncertainties can arise, for example, from measurements 
containing a known noise distribution which, however, is 
parameterized by a mean whose deviation from the measured 
value depends on bounded environmental variations.  Another 
example would be when two random variables with known 
distributions both contribute to a third, “derived” [20] random 
variable, but the dependency relationship between the two 
input r.v.’s is unknown.  Then every conceivable dependency 
relationship predicts its own distribution for the derived r.v. 
and, properly, one must represent the derived r.v. as a family 
of distributions rather than as a single one.  

Our approach includes an algorithm for numerically 
deriving families of distributions (e.g. [20]), coupled with a 
method for using such families to make decisions.  This 
method, Info-Gap Theory [1], seeks decisions that are 
satisficing – that is, that meet minimal acceptable 
requirements – rather than optimal as in many other 
decision-making techniques.  Models are parameterized with 
an externally provided value, called α, for the degree of 
ignorance (i.e. the epistemic uncertainty).  In our technique,  α 
represents the amount of space between the envelopes 
bounding a family of distributions.  If an acceptable decision 
can be made despite the existing ignorance, well and good.  If 
not, our technique mandates acquiring additional information 
in an effort to reduce ignorance, and hence α, to the point 
where a satisficing decision can either be made, or ruled out as 
unachievable. 

III.  APPLYING INFORMATION-GAP THEORY  

We have previously developed a technique to implement 
Information Gap Theory for problems of severe uncertainty, 
and publicly available software [21] for doing the necessary 
calculations on imprecise probabilities. We represent 
uncertain quantities as probability boxes, and perform 
arithmetic on the probability boxes [22]. Here, we apply this 
technique to a illustrative problem in robot navigation. 

Consider an outdoor setting in which a robot needs to move 
a cart filled with cargo to a new location. It can take a safe but 

long path, or it could choose a shorter, but less safe path that 
involves pulling the cart up a hill. Depending on the 
environmental conditions, this could be a difficult decision for 
a human to make. The example shows how to apply 
Information-Gap Theory to the process of deciding whether or 
not to attempt to take the shorter path up the hill. 

 
A. An Example 

 
Consider a robot whose task is to move a cart containing 

cargo from point A to point B. The robot has intrinsic 
knowledge of its task, but not of the specifics of its 
environment. In other words, the robot knows how to find the 
cart, how to connect with it, where points A and B are, how to 
travel with the cart and how to disconnect from the cart. 
However, it lacks specific knowledge of the nature of the 
cargo or the details of its environment. Suppose the most 
direct path from point A to B contains an incline the robot 
must pull the cart up. The question the robot must answer is 

 
Fig. 1. A robot pulling a cargo-laden cart up an incline. 

 
whether or not it is capable of doing this. If the robot is 
carrying a cart up an incline, the force of friction on the robot 
must be greater than the gravitational force pulling the cart 
down the incline (see Fig. 1). The force of gravity on the cart is 
mcart*g*sinθ. The force of friction on the wheels of the robot is 
µfriction*mrobot*g*cosθ. In this simplified example, the weight 
of the cargo-carrying cart is assumed much higher than that of 
the robot. So, for the robot to successfully pull the cart up the 
incline, assuming an all-wheel drive robot with each drive 
matched to the weight  on the wheel (so that all wheels slip or 
none do) we need: 

µfriction*mrobot*g*cosθ > mcart*g*sinθ. 
In other words, it must be that mrobot > (mcart*tanθ)/µfriction. The 
unknowns in this are µfriction, mcart and θ. These can be roughly 
estimated visually by the robot: mcart from the size of the 
cargo; µfriction by the color and glossiness of the incline’s 
surface; and θ from stereo vision estimates of its depth at the 
top and bottom.  

The estimates will have large uncertainties associated with 
them. Sometimes this will not matter. For example, if the slope 
of the incline is shallow and the cargo small, the robot can be 
confident that it will be able to traverse the incline. If the 
uncertainties are such that the robot cannot decide whether or 
not it can pull the cargo up the incline, then we need to 
determine what information will reduce this uncertainty 

θ 
 θ 
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sufficiently. If the robot knows the cost of obtaining that 
information, it can calculate the net gain of obtaining it. 

The above example can be applied to specific situations 
such as a robot moving cargo from several airplane drops to a 
central location. In that case, once the robot has found the 
cargo, it must decide how to navigate to the designated 
location. The most direct route may contain dangerous slopes 
and gulches, while safer routes may take the robot away from 
the most direct path. Each route will have difficulties 
associated with it, and our proposed method will enable the 
robot to make good decisions about what to do. Similar 
considerations apply to robots undertaking navigation in 
dangerous environments; cargo transportation in rough and/or 
dangerous terrain; navigation in 3-D environments; 
reconnaissance in dangerous situations; autonomous 
construction of bridges or other structures; navigation across 
rivers, streams, swamps, hills and trenches; and so on. 
 
The Robot Problem: Is it Possible to Climb a Given Slope?  

 
We model whether a robot can climb a slope as whether the 

following equation holds. 
µfriction mrobot > mcart tanθ                    (1) 

 
Let mrobot be a known constant, mvehicle be known within a 

range, such as ±10% (Operand X in Fig. 2), and mcargo be 
represented by a probability distribution with given mean 
(Operand Y, Fig. 2). Then mcart = mvehicle + mcargo looks like 
Result Z in Fig. 2. Result Z is represented by two cumulative 
probability functions (CDFs): an upper CDF (upper staircase 
curve in Result Z graph in Fig. 2) and a lower CDF (lower 
staircase curve in Result Z graph in Fig. 2). The actual value of 
Result Z will be in the area between these two CDFs. The 
algorithm for this is described in [3] and several more recent 
papers. Other algorithms also produce equivalent results on 
benchmark problems [23].  

Next, import mcart (from Result Z in Fig. 2) as Operand X 
(Fig. 3). Let tanθ be a distribution (Operand Y, Fig. 3). Then 
the RHS of inequality (1), mcart tanθ, is Result Z in Fig. 3, 
assuming stochastic independence of mcart and tanθ.    
 Now let us work out the LHS of inequality (1). Suppose 
µfriction is a function of both the mileage on the tires and a 
“ground condition factor.” Model the mileage as a distribution 
that is uniform over a range, meaning the tires are equally 
likely to have any of the mileage within that range.  Now 
assume we have three different sources of information 
regarding the ground condition factor.  Let information source 
A bound the ground condition factor within an interval iA, 
information source B bound it within an interval iB, and 
information source C bound it within an interval iC. For 
example, interval A might represent the ground condition 
factor of a paved road, interval B of a gravel road and interval 
C of a dirt road.  To further explore the flexibility of the 
mathematics, suppose further that: (i) intervals iA, iB, and iC  
are disjoint (no overlaps), (ii) the actual value might not be 

within iA, iB, or iC (a fact modeled as an information source 
specifying a uniform distribution over a range of conceivable 
coefficients of friction), and (iii) source A is not as reliable as 
B or C and should have correspondingly less weight. This 
situation for the ground condition factor is modeled by the 
probability box of Fig. 4.  (While this may sound like an 
intractable set of data at first glance, one might readily model 
it as a Dempster-Shafer structure, which in essence is what is 
occurring in this case). 

 
Fig. 2. An interval looks like two cumulative distribution functions (CDFs) 
forming a probability box as shown for Operand X. The vertical axis is a 
probability that varies from 0 to 1, while the horizontal axis is the value of the 
input (Operand X or Y) and the output (Result Z). 
 

  
Fig. 3. Operand X is from Z in Fig. 2.  Operand Y is histogram discretization 
of the PDF for tan θ, and Result Z is mcart  tan θ, the RHS of inequality (1). 

 
Now that we have modeled mileage m and ground condition 
factor c, we need to model the binary function f(m, c) to get the 
coefficient of friction, µfriction= f(m, c). While the software we 
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have been using in this example can compute a wide range of 
functions of two parameters, for expository simplicity we will 
just divide them. Then, if m and c have an unknown 
dependency relationship, µfriction looks like Fig. 5. If instead we 
model mileage and ground condition as independent (perhaps 
a more realistic assumption), then µfriction looks like Fig. 6.  

 
Fig. 4.  A probability box for the combination of disjoint intervals comprising 
evidence sources  A, B, and C. (See, e.g., [23]). 

 
Fig. 5. µfriction = f(mileage, ground condition), if no assumptions are made 
about the dependency relationship between mileage and ground condition. 

 
Fig. 6. µfriction = f(mileage, ground condition), assuming mileage and ground 
condition are independent random variables. 

 
Fig. 7. Probability box bounding the CDF for the LHS of inequality (1). 

 
To get the LHS of inequality (1) we next need to multiply 

µfriction (Fig. 6) by mrobot. Assuming this to be a known constant, 
this simply stretches Fig. 6 horizontally.  The result is shown 
in Fig. 7, which shows the x-axis quantitatively.  The numbers 
are mathematically consistent across the various figures, 
though they are not intended to be physically realistic.  That is 
why most of the figures are shown without numeric labelings.  
Now that we have computed the RHS and LHS of inequality 
(1) and graphed them (Figs. 3 & 7, respectively), let’s 

compare them, hoping that LHS > RHS. This is the 
requirement given by (1) if the robot is to be able to traverse 
the slope. If the probability density functions (PDFs) of the 
LHS and RHS are such that the right tail of the RHS descends 
to zero before the left tail of the LHS rises from zero, as 
illustrated in Fig. 8, all is well.  In CDF form, which is more 
suitable for expressing epistemic uncertainty, we wish for the 
configuration of Fig. 9.  Often, however, we will obtain a 
situation like Fig. 10 in which the left envelope of the right 
probability box rises from the horizontal axis before the right 
envelope of the left p-box reaches its maximum at 1.  Then (1) 
is not assured and it would be risky for the robot to attempt to 
climb the slope.   

Fig 8.  Two non-overlapping PDFs. It is guaranteed that the corresponding 
random variables satisfy an inequality. 

 
Fig. 9. The random variable whose Probability box is on the right is 
unambiguously greater than the one whose probability box is on the left. 

 
Fig. 10. Samples of the random variable whose probability box is on the right 
are probably above samples of the one whose probability box is on the left. 

 
We can check the probability of inequality (1).  Based on 

the probability boxes for the RHS and LHS of (1), imported 
into Operand X and Y of Fig. 11 from Figs. 3 & 7, and making 
no assumption about the dependency relationship between 
RHS & LHS, the Statool software produced the probability 
range [0.19, 1] portrayed in Result Z of Fig. 11 and in more 
detail in Fig. 12. We conclude that p(LHS > RHS)∈ [0.19, 1] 
if the dependency is unknown.  Such a wide range of 
probability for success may be insufficient to support a 
decision either to climb the hill or not climb it.  However if we 
assumed that the LHS and RHS of eq. (1) are independent, we 
could get a higher quality estimate of p(LHS > RHS).  This 
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can readily be done by performing the same sequence of 
arithmetic operations on probability boxes as was done earlier 
in the example of this paper, except under the assumption of 
independence.  Whether or not the result of such an analysis 
sufficed to support the climb/no climb decision would support 
an important decision.  This decision is not about whether to 
climb or not, but rather, whether or not to investigate if 
independence holds so that the climb/no climb decision can, 
finally, be made. 
 

 
Fig. 11. Result Z shows the range of the probability that inequality (1) hold, 
based on the probability boxes for its RHS and LHS. 

 

 
Figure 12. Numerical plot detailing Result Z of Figure 12. It shows that the 
probability of eq. (1) is in the range [0.19, 1]. 

IV.  SUMMARY  

This paper deals with the problem of handling “severe” 
(epistemic, model) uncertainty for autonomous robots.  We 
show how Information Gap Theory can be combined with the 
algebra of severely uncertain random variables to solve this 
problem.  An example was given to illustrate how the 
approach can be applied to autonomous robot navigation. 
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