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Abstract

Uncertainty exists frequently in our knowledge of the real world. Probability is a
common way to measure uncertainty. People sometimes define random variables whose
values are derived from arithmetic operations on other random variables. Generally there are
two classes of methods to handle this topic: analytical and numerical. Analytical methods are
restricted to specific classes of input distributions. Numerical methods only give numerical
results and are widely used in real applications if approximate results can be accepted.

Monte Carlo simulation is one of the best-known numerical methods. However the
traditional approach of Monte Carlo has some limitations. Interval-based dependency
analysis (DEnv) was developed by Berleant and Goodman-Strauss. Another approach is the
copula-based approach. These two methods have been implemented in software. The copula-
based approach is implemented in the commercial software RiskCalc. DEnv is implemented
in Statool.

The current Statool supports a variety of dependence relationships: independence,
unknown dependence, and specific correlation values. The algorithm extension to support
correlation is a significant improvement. The current version of Statool uses the
transportation simplex method to speed up computing. Cascaded operations, relational
operations and monotonic binary functions are newly supported by the current Statool. These
new functions, and using correlation as constraints, are the main advances in Statool.

This software is based on a layer design including the user interface, the logical layer,
and the computing layer. This is suitable for implementation and maintenance of distributed
and other computing software. OO methods are adapted. Unified Modeling Language (UML)
gives visualization and documentation support for the computing layer. The main algorithms
are implemented in many objects. Currently it is developed for a Microsoft Windows
platform. Visual C++ and Visual Basic were used for development. Dynamically linked

libraries are used to contain the components of the computing layer.



1 Introduction

Uncertainty exists frequently in our knowledge of the real world. Handling
uncertainty is therefore a common problem. Probability is a common way to measure the
level of uncertainty. Probability density functions (PDF) or their integrals, cumulative
distribution functions (CDF), are often used to model the uncertainty in the value of a
quantity. Often, uncertainty can be stated by using a random variable. But this is not enough.
People some times define random variables, whose sample values are derived from
arithmetic operations on the values of other random variables.

Binary operations are very basic and common operations. When two random
variables are operated on to derive a new random variable, the distribution to describe this
random variable is termed a derived distribution (Springer, 1979). Such operations are well
recognized in many fields, such as decision analysis and risk analysis, and many other fields
as well.

A variety of methods have been developed to address this topic. Generally there are
two classes of methods to handle it: analytical and numerical. Analytical methods are
restricted to specific classes of input distribution, under assumptions, such as independence.
For example, normal distributions are often used. If two random variables are normal and
independent, the sum of these two random variables still is normal. It is also possible to
obtain derived distributions for specified dependency relationships other than independence,
such as perfect positive rank correlation. However, it is often not easy to find analytical
results for random variable operations and it is not always reasonable to make convenient
assumptions about dependency. Sometimes, we don’t have any information about
dependency. But an advantage of analytical methods is accurate result. Unlike analytical
methods, numerical methods only give numerical results. But this is suitable for a wide class
of distributions. Numerical methods are widely used in real applications if approximate
results can be accepted within specific tolerances.

Monte Carlo simulation is one of the best-known numerical methods. However, the
traditional approach of Monte Carlo has some limitations. It assumes the distribution of the
random variables is known, and their relationship is independent or known (Ferson 1996). If

either the probability distributions or the dependency relationship of the random variables are



not available, some assumptions are usually made to process it. If the assumptions don’t
hold, results can be seriously affected.

A discretized convolution approach can be used to calculate the result for the
independent situation (Ingram et al. 1968; Colombo and Jaarsma 1980; Kaplan 1981).
Interval analysis can be used to solve this problem. (It is obvious that interval numbers will
be really close to point values if the interval is narrow enough.) Interval mathematics can
then be applied (Moore, 1966).

Intervals have the potential for bounding the result of an operation. Discretization
error coming from discretizing distributions may be bounded by interval based discretization
(Berleant 1993). If the dependency is not specified, result bounds will include the entire
range of possible dependencies. These bounds should be wider than if a particular
dependency is specified. Interval-based dependency analysis is developed by Berleant and
Goodman-Strauss (1998). This approach has fundamental similarities with the copula-based
approach (Frank et al. 1987), which was significantly extended by Williamson and Downs
(1990). These two methods have been implemented in software. The copula-based approach,
termed probabilistic arithmetic, is implemented in the commercial software RiskCalc (Ferson
et al. 1998). DEnv is implemented as Statool (Berleant and Goodman-Strauss 1998), which
extends the previous tool (Berleant and Cheng 1998) through eliminating the independence
assumption. Statool can handle the case where a dependency relationship is unknown or
unspecified, by not making any assumption about the dependency relationship between
operands. But partial dependence information might be available in some cases. If we can use
this information in the calculation, we will get more accurate results than can be obtained
without using this information.

The current Statool supports a variety of dependence relationships, such as
independence, unknown dependence, and correlation values. The algorithm extension to
support correlation is a significant improvement. The current version of Statool uses the
transportation simplex method to speed up computing. Cascaded operations and monotonic
binary functions are supported by the current Statool. These new functions, and using
correlation as a constraint, are the main advances in Statool. Among the other contributions

reported here are addressing example application problems.



1.1 Interval mathematics
Interval mathematics was developed by Moore (1966). Compared with the real

domain, let us see what interval arithmetic and analysis are.

An interval value is composed of 2 real numbers, which are called the low bound and
high bound. For example, given interval value X=[a,b], a and b are real numbers, and a is the
low bound and b is the high bound. Thus, we can see that an interval value in the interval
system corresponds to an interval in the real system. If a is equal to b, this interval value is
the real number a. Or you can use set theory to describe the interval X=[a,b]. We can define
it as a set X={x: a<=x<=b}. Next, we will define how to describe the relationship between
two interval values. If we say [a,b]=[c,d], it means a=c and b=d. if [a,b]<[c,d], it means b<c.

Interval arithmetic includes addition, subtraction, multiplication and division. Here
X=[a,b] and Y=[c,d] are two intervals. The following gives the definition for arithmetic
based on the set definition for intervals.

X®Y={x®y:xeX,yeY}
where ® is in +,-,%,/.
Clearly, X+Y = [atc,b+d] and X-Y = [a-d,b-c]. Multiplication is a little more complex.
X*Y=[min(ac,ad,bc,bd), max(ac,ad,bc,bd)]. And division is even more complex. First, note
that Y doesn’t include zero.
1Y =[1/d,1/¢c] if 0g Y
X/Y=X*1/Y)if0g¢ Y
If Y is an interval including zero, X/Y should be [-o0, o] if the interval system includes
infinites as allowable endpoints.
Interval arithmetic also includes the following characteristics:

* Set Rule

— (VUW) £Z = (V£Z) U(W £Z)
* Rule for the addition and subtraction of infinite or semi-infinite intervals

[a,b]+[-00,d] = [-o0,b+d]

[a,b]+[c, o] = [atc, 0]
— [a,b] #[-00,00] = [-00,00]

[a,b]- [-o0,d] = [a-d,0]



— [a,b]-[c,00] = [-00,b=c]
* Associativity and Commutativity
XH(Y+Z) = (X+Y)+Z
— X¥Y*Z)=(X*Y)*Z
- X+Y=Y+X
- X*Y=Y*X

Unlike in real arithmetic, operations are not invertible, which means there is no inverse
operation existing for a given operation. For the real domain, we know + and — are inverse
operations, but in interval mathematics, this is not true.

In interval analysis, interval functions form a major topic. An interval function F is an
interval-valued function of one or more interval arguments. For a real-valued function f of
real variables x1,...,xn, if we have an interval function F of interval variables X1,...Xn, and
if F(x1,...,xn) = f(x1,...,xn) for all xi(i=1,...,n) then F is an interval extension of f. Interval
functions have the following characteristics:

Inclusion monotonicity

+ IfXic Yi(i=1,...,n) then F(XI,...,.Xn) c F(Y1,...,Yn).

Arithmetic inclusion monotonicity
» Ifop denotes +,-,*, or /, then Xic Yi (i=1,2) implies (X1 op X2) (Y1
op Y2)

Excess width is a big problem in interval mathematics. Let us use a simple example to
explain this problem. For interval value X=[a,c], what is the result for X-X? In naive interval
arithmetic, the result is not zero, but [a-c,c-a]. Zero is just one real number included in this
result. Obviously it is really not our expected result since it is too wide. For functions, an
interval function extension need not be unique, but can depend on the form of the real
function. For example, there may be three expressions corresponding to the same real
function:

o fl(x)=x*x —x +1, £2(x) = (x-1/2)2 + %, and f3(x) = x*(x-1) + 1.
* The corresponding interval extensions are:

e fI(X) = X*X - X +1, £2(X) = (X-1/2)2 + %, and £3(X) = X*(X-1) + 1.



» These don’t represent the same interval function, as:
«  f1([0,2]) = [-1,5], £2([0,2]) = [3/4,3], and f3([0,2]) = [-1,3].
» The true range of f ([0,2]) is [3/4,3] computed by the interval function
2, because x appears only once.
* This is referred to as the dependency problem or excess width.
» It enlarges intervals in the result collection.
The reason why excess width occurs is that a variable occurs more than one time in
expression. So far, many methods have been developed to address this issue. Some methods
are as follows.
* Various centered forms:
— Computing the range of values (Asaithambi, Zuhe, and Moore,1982)
— Enclosure methods (Alefeld, 1990)
— Artificial intelligence work (Hyvonen, 1992)
Computation time tends to be a problem with these excess width removal techniques. To
apply interval analysis, the following guiding principles should be considered. (Walster
1998):
— “Interval algorithms should bound error”
— “Interval input/output conventions should be consistent with people’s normal
interpretation of numerical accuracy”
— “The application of interval algorithms should be universal”
—  “Where interval algorithms currently do not exist, we should get to work
developing them rather than abandoning the principle of universal

applicability”

1.2 Interval-based analysis
An interval can be used to bound the range for a value. If this interval is associated

with a specified probability, as when the domain of a random variable is partitioned, we have
lost information about probability distribution in this interval. The partitioning of the domain
of a random variable into intervals and probabilities is the basis for extending binary

operations from intervals to distributions.



At this point, we only consider the binary operations. We can extend binary
operations and later we will talk about how to do this. Assuming there are 2 random variables
X and Y, to get the exact distribution for the result of operation, we must know the joint
distribution for random variables X and Y. The joint distribution is related to the correlation
for these two random variables. Let us see an example.

Consider two random variables X and Y. This table shows their distributions.

Table 1.1. Distributions for X and Y.

X Y

Range [1,2] |1[2,3] [ [3.4] | [2,3] | [3,4] |[4.5]

Probability | 0.25 |05 025 |05 |03 0.2

We don’t have any information about distribution within these ranges. And we also don’t
have any information about the dependency relationship between X and Y. Obviously, we
don’t know the joint distribution for X and Y.

Consider addition: Z=X+Y. Because we don’t have the joint distribution for X and Y,
it is impossible to find the exact result for Z. Now we put these two random variables into a

matrix shown in the following table.

Table 1.2. Marginal distribution for X and Y.

z€[3,5] ze[4,6] |ze[57] | yel23]

Py =" P =" Pz =" Py =0.5

z €[4,6] z€[5,7] z €[6,8] ye[3,4]

Py ="? Py =" Py =" Py, =0.3

z€[5,7] z €[6,8] ze[7,9] y e[4,5]

Py =7 Py ="? Py =7 Py; =02

xe[1,2] xe[23] | xe[3,4] o 7
Px1 =025 | py; =05 | py; =025 X d

The last row in the table is the distribution for X and last column is the distribution

for Y. We don’t know the value for cells p11 through p33 because we don’t know the joint



distribution. For the simple case, if X and Y are independent, we can fill in the missing

values as in the following table.

Table 1.3. Joint distribution for independency.

ze[3,5] ze[46] | ze[5,7] ye[2,3]
p,=0.125 | p, =025 | p,=0.125 | p,, =0.5

zel46] |ze[57] |ze[68] | yel34]
P2 =0.075 | py, =0.15 | pyy =0.075 | py, =03

ze[5,7] z €[6,8] ze[7,9] vy €[4,5]
Py =005 | p,,=0.1 | p;;=005 | p,; =0.2

x €[1,2] x €[2,3] x €[3.,4] VAN 0
=025 | p,=05|p,=025 | X ¥

Thus, we can see that the joint distribution is affected by the dependency relationship
between X and Y. If we don’t know the relationship between X and Y, we can’t determine
the joint distribution in this matrix. But we can infer some things about the result variable

from this matrix. For example, consider z=5. It only occurs in the following grey cells.

Table 1.4. Joint distribution for specified value.

z €[3,5] ze[46] |ze[57] | vel23]

Py =? D =? Dz =17 Py =05

z €[4,6] z€[5,7] z €[6,8] v €[3,4]

P =17 Py ="? Py =" Py, =03

ze[5,7] ze[68] |ze[79] | yel45]

Dy =7 Dy =7 Dy =" Dy =02

x €[1,2] x €[2,3] x €[3.,4] PN 0

=025 | p,=05|p,=025%X ¥




As previous stated, we don’t know the exact probability for z<=5. But we can think
about what are the possible probabilities for z<=5. As this matrix shows, only grey cells
contribute to the probability of z<=5. We would like to determine the maximum probability
and the minimum probability. To get the maximum value, all cells in which Z can be <=5
will have their probabilities summed. To obtain the minimum value, only cells, in which Z
must be <=5, will have their probabilities summed. For example, considering cell p,,
for p{Z <5}, when we calculate the maximum value, this cell must be counted because Z

can be <=5 in this cell. But for the minimum value, we don’t count this cell because Z might
not <=5 in this cell. This way, we can find the possible range of cumulative probabilities for
various values of Z. We can find the maximum possibility and minimum possibility for every
value of Z and connect all these points to get 2 curves: a top curve and a bottom curve. All
the CDFs that are possible for Z, must belong between these two curves.

In this example, Z’s range is from 3 to 9. It is clear that the probability for Z<3 is zero
and for Z>9 is 1. The following part discusses the probability of Z < 4 .

Maximum: We try to find all the cells in which this situation may occur. From the

previous table, these cells are p,,, p,,,and p,,. So the maximum value should be the

maximum value for the sum of p,,, p,,,and p,,.
Minimum: To obtain the minimum, we will find all the cells in which Z must be <= 4.
In this table, there are none. Although p,,, p,,, and p,, may satisfy Z <4, they also might

not. For example, the whole probability for the cell might be concentrated at the high bound
of its range. So there is no cell in which Z must be <= 4.

Summarizing the above analysis, we can define a way to tell which cells contribute to
the maximum and minimum probability values.

Maximum: all the cells in which the low bound is not greater than the value of Z
contribute to the max value.

Minimum: all the cells in which the high bound is not greater than the value of Z
must contribute to the min value.

After finding all the cells satisfying the max (or min) condition, we will calculate the
sum of the probabilities of these cells. Based on the previous table, there exist constraints for

the probabilities Pij. It is clear that the sum of the Pij’s in a row or column can’t go over the



marginal probability of that row or column. These constraints can be described as follows:

3
Row Constraints: Z p; =Py fori=lto3

J=1

3
Column Constraints: z p; =Py forj=1to3
i=1
Therefore, the question becomes: find the maximum and minimum value for the sum of cells

under these constraints. For the case Z < 4, we can describe these questions using

mathematically:

Maximum - make the sum of the specified cells’ value big enough, that is, find

max (p,,+ p,+p,)

such that:

3
Zpg,- = p,, fori=1to3
j=1

3
and Zply. = py forj=l1to 3.

i=1

Minimum - make the sum of specified cells’ value small enough, that is, find

min(zzo*pij)

i=l j=1

such that:

3
Zpl.j =p,, fori=1to3
j=1

3
and Zpy = py forj=1to3
i=1

For these two optimization questions, linear programming is the best tool to find the
solution. This way, we can find the probability range for the specified value of Z. The

following table shows the probabilities for various values of Z.
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Table 1.5. Probabilities for result variable.

Z range Maximum probability Minimum probability

73 0 0

7<=3 0.25 0

7<=4 0.75 0

7<=5 1 0

7<=6 1 0.25

<=7 1 0.55

7<=8 1 0.8

7<=9 1 1

7<=10 1 1

From this table, we can draw two curves, a top curve and a bottom curve, using the
maximum and minimum probabilities shown Z value. These two curves also can be called
envelopes for the CDF of derived variable Z because the CDF for derived variable Z must be
between these 2 curves whatever the relationship between X and Y is. This figure shows the

final result.

T T

- h : i ; \ | i ;
os L Ry o o L | L T L Rl L ey
e A RS R o R NN ISR | LS R SRS | S L [ RN LSLEI |
be Lt cee s e len s e s e St 1 el e e s e Bidene e B e s e e o)
pE s e e e s s e s e e s S s S s
04 f-mmmmmpm e e e e )
L e e e e S e - r
o . :

2250 000 750 4.500 5.250 000 E.7T50 T.500 5.250 2000 a.750

Figure 1.1. Probability bounds
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2 Narrowing the envelopes around results using
correlation

In the previous chapter we noted an important factor: correlation. If one knows

something about correlation, it would be good to be able to use it. We describe how next.

2.1 Facts about correlation
Correlation is used to measure the degree of correspondence between random

variables. To describe this kind of relationship, there are a number of methods. For example,
we can consider the linear relationship between two random variables, or the square
relationship. Currently, the most popular correlation coefficient is called Pearson correlation
or product-moment correlation. It is used to measure the strength of the linear relationship
between two random variables. It is defined as

E[(X -EX)Y -EY)

JD(X)D(Y)

Here D(X) is X’s variance and D(Y) is Y’s variance. E means expectation.

Itis clear that =1 = 2 =1 Correlations can be classified into 3 types:
positive correlation ( #~ 0 , meaning there is a direct linear correlation between the R.V.’s),
negative correlation ( £ < 0, meaning there is an inverse linear correlation between the
R.V.’s), and no correlation (# = O, meaning there is no apparent linear correlation between
the R.V.’s). There also are 2 special cases: perfect positive correlation (© = 1) and perfect

negative correlation (X = -1 ). For perfect positive correlation, we can get:
e P[Y=aX+b]=1, for some b and some a > 0.
e When X takes on its largest value, Y also does.

For perfect negative correlation, we can get:
e P[Y=aX+b]=1, for some b and some a < 0.

e When X takes on its largest value, Y has its smallest value.
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2.2 Joint distributions

A joint distribution is used to describe the detailed dependency between two R.V.’s.
From the joint distribution, we can get the correlation. But correlation doesn’t imply a

specific joint distribution, so we can’t get the joint distribution from a value of correlation, in

general.

2.3 Interval-valued correlations

When the correlation is unknown we use linear programming to find CDF envelopes.
If we know the correlation for two operands, we would like to use it to determine additional
constraints for the linear programming problem. In another words, we wish to decrease the
feasible solution space and get a better solution.

According to the definition of correlation, for two random variables x and y, the

correlation is

_ El(x-Ex)(y - Ey)] _ El(x - Ex)(y — Ey)]
D(x)D(») JE[(x—Ex)*|WELy —E(»)*]
Where Ex and Ey are the means for variable x and y.

Using the following formulas, we can reduce (1):

E[(x—Ex)(y—Ey)]=E[xy— yEx—xEy + Ex* Ey]
=FExy—Ey*Ex—Ex*Ey+Ex*Ey=FExy—Ex*Ey

Also,
E[(x— Ex)*]= E[x* —2xEx + Ex* Ex] = Ex* —2Ex* Ex + Ex * Ex
= Ex’—(Ex)’
So previous formula becomes
_ El(x - Ex)(y — Ey)] _ Exy —Ex*Ey
VEL(x— Ex) WELy = E()*] (Ex" —(Ex)')Ey* ~(Ey)")

Using the definition of mean, when variable x is discrete,

Ex = in *pi where pi(‘x = xi) =D

When variable x is continuous, and has density function f, then

Ex= jxf(x)dx.
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In the DEnv algorithm, we don’t care if a random variable is discrete or continuous.

We use bars to discretize the distribution. This method has the following characteristics:

1.

2
3.
4

Bars may overlap.
Histograms are a special case of collections of bars.

A bar describes the probability of an interval containing the value of a variable.

. No assumption is made about the distribution over the interval of bar.

We now extend the definition of mean to intervals. We can handle it like the discrete

case. So

EX =) X,*P, where P(xe X,)=PF,.

It’s clear that the mean of variable x must be in EX.

When x is continuous, we also can get the mean based on the following argument.

v

a h

Consider some bar in the discretization of variable x whose distribution function is

f(x). The probability that it is in [a,b] is the area of f(x) between a and b.

P(a<x<b)= [ f(x)dx

We can partition the domain of variable x into many intervals such as this one,

denoting them Xi. These intervals do not overlap. They together will cover the range for

variable Xx. So the mean of variable x becomes

Ex = [ xf (x)dx = Z L,- xf (x)dx

Consider one item in the previous formula, assuming Xi is [a,b] as in the previous figure.

J.Xi xf (x)dx = J.[a’b]xf(x)dx > J-[a’b]af(x)dx =a* J.[a’b]f(x)dx =a*p,.

Similarly, we also get
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— — H* — hH*
jX[ xf (x)dx = J‘[a,b]xf(x)dx < j[ (e =b j[ @ =b%p,.
So, IX xf (x)dx must belong to Xi*p;. So, Ex contains the mean of interval variable X.

If the intervals overlap, the width of the mean is wider than in the non-overlapped
case. So the mean of the non-overlapped intervals is a subset of that of the overlapped
intervals. Thus the Ex belongs to mean of interval variable X in this case too.

Here is how we use this result. If any intervals overlap, it means at least two intervals
overlap. We know the left endpoint for one interval is not bigger than that of the non-
overlapped condition and the right endpoint for one interval is not less than that of the non-

overlapped condition.

2.4 Legal and illegal correlation values
In the current software, the user can input any value of correlation from —1 to 1. But

in fact, for some marginal distributions, there are correlation values which will not be
exhibited by any joint distribution. In fact, the constraints coming from setting correlation to
an impossible value should be conflict with the constraints coming from the marginals of the
joint distribution matrix.

From the definition of correlation, we can get this formula for Exy:

Exy = Ex*Ey + p\/ (Ex® —(Ex)*)(Ey* —(Ey)*) Let f(x,y)=Exy, so f(x,y) is a real function

of x and y. We can rewrite Exy with intervals X and Y.

f(X,Y)=EX*EY + p\/(EXZ —(EX)*)(EY? =(EY)?)
R REONLAY, \/(ZX Py~ (X P YR, (XY P,
The corresponding real function is

SCay) =25 2.,Py +p\/(zxfpx,» — QLX) Qyip, = yipy)

where x; € X, and y, €Y,.If p is an interval, it becomes another variable for function f.

2.4.1 Solution

The software should provide a way to help the user to set a reasonable correlation. To

do this, first, the software must figure out the range of possible correlations for the current
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random variables. Then the software can display this information. It then only accepts values
intersecting with this range.

As mentioned before, there are 2 kinds of constraints, one coming from the marginals
of the joint distributions matrix and another coming from the correlation setting. The joint
distribution matrix marginals are assumed correct. So, the constraints coming from it are a
given. If constraints coming from a correlation setting conflict with them, they must be in
error. Constraints coming from the matrix are primary and constraints coming from
correlation should be considered secondary.

Consider a joint distribution matrix for an operation® .

Table 2.1. Joint distribution matrix.

Y1 Ym
Xl pll plm pxl
Xn pnl pnm pxn
pyl pym

We can get Exy as follows:

Exy = Zz XYp, where Xi and Y] are interval values. p, is the probability assigned to
i=l j=1 ‘

cell ij. We use underlining to indicate the low bound of an interval and overlining to indicate

the high bound of an interval. We can get the bounds of Exy as follows:

Exy=xy,p;, + X, V2P1, X, V3013 e F X0V Doy X3V, Py + X, Y3 P03 + oo H X, Y, Do

Exy=x 0Dy + X, V2P0 + X V3013 + oo H XV Doy + X3V, P + X, V3 P03 + oo T X,V D
From this, we get two linear programming problems:

Min Exy=xy,p;1 + X, V2P, + X, V3 D13 oo F X0V Doy X3V, Py + X, V3 Doy + e X, 0, Do
subject to:

row Constraints: Z p; = p,,; fori=l ton;
Jj=1

column Constraints: Z p; =p, forj=1tom.

i=1
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Max Exy = X Pn XV P T X V3P T T X0V Doy T X0 Vo Doy T XV P0s H e B X,V D
subject to:

row Constraints: z p; = p,,; fori=l ton;
j=1

column Constraints: z p; =p,; forj=1tom.

i=l1

Solving these two linear programming problems, we can get the bounds of Exy, call these

numbers k and X . We also know

Exy=) X;p, D y;P,+ p\/(zxisz,- ~Qxp ) Qyip, —Qy;p,)
i J i J

eX €Y,

where ¥i i and Vi
In this formula, only p is an unknown range. Now the problem becomes solving for
Exy. The minimum should be the minimum value of p . The maximum should be the

maximum value of p. So the problem is transformed into finding the root range of a

nonlinear function.

2.4.2 Approximate solution

From f(x,y):; . ; + p\/(x_2 X )(? - ;2) , in most cases, x- ; is greater than

— 2., 5 —2 . ST T . . . . .
\/ (x> =x" )(»*—»"). So we just consider x- y. It is obvious that it is an increasing function

of x and y. Assigning the minimum values to x and y, and the maximum value possible for

f(x,y), we can obtain the maximum value of p. Assigning the maximum values to x and y,

and the minimum value to f(x,y), we can get minimum value of p.

2.5 Additional constraints gotten from correlation
When the user sets the correlation range, we know the range of every variable in

formula f(x,y). Under this situation, we can get the range of f(x,y). This range of f(X,y) is
thus controlled by the user. At the same time, we know another range for f(x,y) which is
derived from the joint distribution matrix. As previous noted, the range derived from the joint

distribution matrix is considered given. So it is always correct. The range coming from the
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user must be intersected with this range. From this restriction, we can get additional
constraints for linear programming.

Obviously, formula f(x,y) is non-linear, so we use non-linear optimization to do
minimization and maximization on it. Using a penalty function transforms a constrained
optimization problem to a non-constrained problem. We also can get the first and second
derivative for this function. Call the values obtained fmin and fmax. So we get
f(x,y)=[fmin,fmax].

From the previous section, we know another range for f(x,y), [lg,k_] , from the joint

distribution matrix. It is obvious that these two ranges must intersect; otherwise, the user
input is not possible. These two ranges both are intervals. If the following conditions are

satisfied, these two intervals must be intersected:

fmax >k and f min <k . Since

k=xy,p) + XY, P5, + X, V313 F et X0V Do) XV, D0y + X,V P03 F oot X, Y, Do

k=X D1+ XV, P + X, V3015 T oo ¥ X0V Py X050, Py + X,V D03 + oo H X, Y, P
we know fmin and fmax. So we get an additional two linear constraints for the linear

programming problems based on correlation:

XV D0+ X YaPry X V3D + et X0V Doy X3V, Doy + X0 Y3 Doy + ot X, 0, P, < f MAX

XV Py F X YaPry X Y3 D3t X0V Doy X0V, Doy + X3 V3 Py + ot X, Y, P, 2 f Min

2.6 Nonlinear optimization to remove excess width
From the previous section, we saw that f(X,Y) is an interval, not a real number. In

interval mathematics, it is called an interval function (Ramon E.Moore, 1966). In evaluating
an interval function, excess width may happen. Different function formats will result the

different values for function although they are the same function in the real domain.

From the term p *\/D(X)* D(Y) + E(X)E(Y), we defined the corresponding

function f(x,y): f(x,y)=Ex*Ey+ p\/ (Ex* —(Ex)*)(Ey* —(Ey)?) . First, we can consider

f(x,y) as a real function of variables x and y. If we replace x and y with intervals X and Y, it

becomes an interval function.
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Based on the rule “cancellation or reduction of the number of occurrences of a
variable before interval evaluation”, if the number of occurrences of each variable is only
one, evaluating an interval function cannot result in excess width. However it is impossible to
use this rule for this function. Instead, we can avoid this problem by evaluating this function
in the real domain using real numbers x belonging to interval X. So we can use the minimum

value and the maximum value of this real function as the way to get bounds on the interval.
Now we rewrite the formula with intervals X and Y.
f(X,Y)=EX*EY + p\/(EXZ —(EX)*)EY? —(EY)?)
=X XTI P+ (KR (X P VP, =X P
i J i J
The corresponding real function is

S =2 %02 ypy+ p\/(zxfpx,» ~Qxp) Qyip, - (Qypy,)

Here x; € X, and y, €Y,.If p is an interval number, it becomes another variable for

function f.
Obviously, f(x,y) is a non-linear function. We use non-linear optimization to figure

out the minimum and maximum. But this optimization question is restricted to a special

region, the intervals for the x’s and y’s.

2.7 Improving results by adding constraints to LP

Based on the above discussion, we get another two constraints for LP after calculating

the interval k. From the joint distribution matrix,

Table 2.2. Joint distribution for X and Y.

[...] |... [...] X
[...] | Py, P )20
[] pml pmn pxm
Y || Py, 1
we get the LP model:

Minimize Z = Z Dy

i,jeQ)
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Zpij =px,,i=1l.m

J
subject to: Zpl.j =py;,j=1l.n
p; 20,px, 20,py, 20,

Ypx, =1 py, =1

To these we add the two constraints implied by the correlation. When the two

constraints, Za_ypy. =k and z a;py; = k , are added to the LP, the transportation simplex

method can’t handle this augmented model because we can’t put these two constraints into
the balanced transportation tableau.
So we use the simplex method to solve the problem. The speed of calculation is very

important. This is discussed later.

2.8 Improved simplex method
Consider the standard LP question:

Min Z = CX
Subject to: AX =b, x, 20 and b, >0 for i=1 to n.

X
1
Here C =(c,,...,c,) 1s arow vector, X =| ... | is a column vector. 4=(A,...,P))
xl’l
ali bl
and P =| ... |.So, Aisan m*nmatrix and b =| ... | is a column vector.
a

mi m

We can transform the maximization problem to a minimization problem through the
following approach.
Max Z=CX & Min Y =-Z =-CX

The constraints are unchanged.
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Based on the simplex method, A is splitinto (4, 4, ). 4, has the coefficients for

the basic variables (assuming there are m basic variable from x,to x, ), and A4, has the

coefficients for the non-basic variables (from x

m+l1

. . Xy
tox, ). X is also separated into .
XN

XB
So AX=b becomes (4, 4, % =b.

N
2 A *X,+A,*X, =b
2 X,=A4," *(b-4,*X,)

Here A, ' means the inverse matrix of 4, . In other word, 4, * 4,” =1 where I is the unit

1 00
matrix. For example, [0 1 0] is a 3*3 unit matrix.
0 0 1

So, the objective function becomes

Z=C*X=(C, CN)*[XBJ
XN

=Cy* X, +C,*X,

=C,*d, '(b—A, *X ) +C, * X,

= CBAB_1b+(CN - CBAB_IAN)XN

Let us see an example.
Minimize z =3x, —x, — 7x; + 3x, + X,
5x, —4x, +13x; —2x, + x; =20
Subject to: §x, —x, +5x; —x, + x5 =8
x;,20,i=1..5
X

5 -4 13 -2 1
Here C=(3 -1 -7 3 1), X =| .. ,A=‘

I -1 5 -1 1

20
and bz( ]
8
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x
3
x
. . 1
If we assume x,; and x, are the basic variables, we get X, = ( } Xy=lx,|

X, X
5 —4 13 -2 1
C,=(3 -1).C,=(-7 3 1,4, = A, = . We also get
1 -1 5 -1 1
S U3 o-23 (s -4 X)
Poolire =560 T\, ) P NN

The following discussion will be based on the previous definition and equations, and also in

part on Qian and Murty (1985).

2.8.1 How to find the initial feasible solution
For the standard LP question, if you can find a unit m x m matrix in A, you let this

matrix be 4, by multiplying one row by a constant and adding it to another row, repeating as

needed. Set X, (non-basic variables) to zero (thatis x, ,,,x .,x, all equal 0). Then

m+12"m+29°

X, =4, (b—A4,X,)=A, " *b=1%b=h because since A is a unit matrix, so is 4.
Then, x, =b, 2 0,(i =1...m) is a feasible solution although it is probably not the optimal

solution.
If you can’t find a unit matrix, you can choose a sub-matrix (m x m) of A which is

nonsingular (meaning that the determinant of the matrix doesn’t equal zero and the rank of
the matrix is m), and every x, of X, = 4,” *b is not less than 0. Under this condition, it is a

feasible solution.

But frequently, it is not so easy. Therefore artificial variables are introduced.

B4
To AX = b, we add the artificial variables Y =| ... | >0, and revise the equation to

ym
AX + 1Y = b. In the objective function, the coefficients of Y should be very large positive
real numbers. Through this way, the minimizing objective function will be unaffected by
artificial variables Y. Still we can use Y as the initial feasible solution. Importing the

artificial variables just provides an easy way to get an initial feasible solution.
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2.8.2 How to decide the termination condition and entering variable

Now consider optimization of Z. LetW = C, —C, 4, 4, = (w,,...,w,_, ). Here w, is
the coefficient of x, .. and describes the coefficient of a non-basic variable in the objective
function. If we want to make
Z=C*X=Cud, 'b+(C, - CBAB_IAN )X, =C,4, b+ WX, smaller, we must hope to
find the negative elements of W because all elements of X, are positive. From this

discussion, we can derive the termination rule for an iterative optimization process.

1. Ifevery element w, of W is not less than 0, then the current solution is optimal.
2. If at least one element of W is negative, we continue to search for the optimal
solution. Letw, = min(w, | w, < 0). This means if every non-basic variable changes

by the same factor, value w, *x ., will have the maximum effect in minimizing the

m+k

value of Z. So let non-basic variable x,,, be the entering variable (entering the basic

m+k
variable set from non-basic variable set).
3. If 4,7'P,,,, <0, there is no solution (k is the entering variable index, and P, ,, ,
belonging to 4, =(P,,,,...,P,), is the coefficient for non-basic variable x, ,, ).

Proof:

From X, = A,” *(b— A, * X ), assuming the entering variable x, ,, does not equal

m+k

0 and other non-basic variables still equal 0, let x, ,, equal o and be greater than 0. Then

X, =4, *b—A4,"4,* X,
=4y *b—A, (P P)

= AB_I *b— AB_IPm+kx
=4, *b—ad,”'P

m+k

m+k

Because 4, 'P,,, <0, X, still are greater than 0, and X, =0 except for x,., = .
So it is a feasible solution. Consider the objective function:
Z=C,A, 'b+(C,—C, A4, A)X,

X
=C, A, b+ (W,ow,_,)

m+1

=C, A, b+w, *a
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Because w, i1s less than 0, if @ — 400, Z — —00.
So, there is no minimum value for the objective function.

Let us see an example:

Minimize z = —x, — X,
=2x,+x,+x; =4

Subject to: x, —x, +x, =2
x;20,i=1.4

5 CB :(_1 0)

-1 1

We choose X, and x, as basic variables. Then 4, =‘ Lo

4 L0 4
and CN=(—1 0). A, =L 1,so W=C,—-CyA4, AN:(—3 1).Wecanchoose X, as

1 I\ 1 -1

[ e e I U e AN ~2) (4+2x,
= —_ = — = — X =
g g x ) \6) -1 6+ x,

6) 1 11 0
x
Z=(-1 —l)( 1j:—x1—(4+2x1):—4—3x1.1fx,=,6’—>oo,thenZ—>—oo.Sothereis

X,

1 0f-2 -2
the entering variable. We get 4, P, =‘ ‘( J = [ j <0.Now let x, equal £>0.So

Here X, is a feasible solution if x; > 0. But

no minimum value for Z.

Based on the previous discussion, there are three conditions that can occur during the
iterative procedure.

1. Finding the solution

2. Continuing to try minimizing Z

3. No minimization solution

2.8.3 How to determine the leaving variable
Let X, be a feasible solution. So 4, * X, =b.Here 4, = (P1 .. P ) We know

m

A, is nonsingular, so P, to P, are the independent vectors. The other vectors P, to P, are

n

linearly dependent on P, to P, . Therefore we can get

m
— k
Pm+j - Zai,m+j ])z
i=1
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al,m+j

=P —(P,..P)*| .. |=0

et j
Qs

From A, * X, =b, we get

(P .. P)*X,=bh.

Let g apositive real number. Then

(Boves BY* X+ BBy = (Pt B * (@ yovees ) ) = 0

=> (Pt B) * (X = B(@peys X ) ) + PPy =0

Let x,, replace a variable in X, . We can get a new feasible solution if we set

m+j

suitable values for X and make sure x, > 0. We can get a suitable solution from the previous

formulation through setting the new X, to equal X, — (e, . - ). We will let one

mm+]

element that equals 0 to be replaced by x,,, ;. To assure the other variables in X, stay

positive, we can choose a suitable S . Let

p= mln( >0) =

| 1m+j
zm+j alm+]

X

This implies that x, is the leaving variable and entering variablex, , , =
al,m+j

Now we can apply this result. Based on
Xy = AB_I o-Ay*tXy)

=Ad, 'b—A, "4, *X,

=A, b-x,,, %4, P,

we know x, . - is the enterlng variable. We can determine the leaving variable by choosing

the minimum £ using the equation

(4 B_lb)

(4,"'b),
f=ming =

-1
|(AB Pm+j)[ >0): ,IP

B m+j ) m+j )l
This implies that the leaving variable is x, .

2.8.4 Decreasing computing
The simplex method is a good way to solve linear programming. But it can have

computational complexity problems.
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From the previous discussion, we can see the main complexity problem focuses on

the inverse matrix A, . If we can find a better way to compute it, we can get better efficiency.
A simple approach is to find the relationship between the two A4, in the closing steps. If we
can use the previous A4, to speed computing the next 4, , it will help. If the

originalAB=(P1 Pm),thenew A, 1s AB=(P1 .. P, P

m+k

P., .. P,).There

is only one different column. So the coefficient of the leaving variable is replaced with that

of the entering variable. We can guess there is a relationship between these two 4, . From

old _ 4old ] new _ qold ™! * old 1 _ gnew] . : :
X, =43 b, X;" =4 b—x,.,, *A4;" P, =A4;" b,and basic variable x, is

m m

replaced with x

m+k >
Agew — A;ldc )
Then
Agew’1 — (:1—1141(:@”1 — DAZMA
So if we can find D, the inverse of C, we will speed computing the inverse of 4, .

new old new

From the relationship of the original and new X, x" =x" —x " a,,i=1..m,i #[ and

new

x' =x"/a,.Here a, =(B™'P,.,),,i=1...m (i refers to the ith element of the vector

B7'P,..). We can see

D =(e,,....,e, |, Ek,e,,,,...,e, ) and e, =| 1 |, and only element of i row is 1, while the others

0

are 0. Ek =(—ay, /ay,...—a, a1 ay,—a; ./ ay,..—a,, /a,) .

This way, we can use the previous inverse matrix to calculate the new inverse matrix. Sposito
(1989) gives a similar description of this method.

2.8.5 Applying method
For our case:

Min Z=CX

subject to: AX =5 and X>=0.
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Using artificial variables X, =| ... |, the equation becomes AX + IX  =b. Let

X

n+m
Con be a very big positive real number based on Big-M method. Then the objective function

becomes Z = CX + Con*(1 ... 1)X

Based on the previous discussion, X are non-basic variables. 4, equals L. It is easy to

compute. It’s not needed to calculate the inverse matrix. But artificial variables are in the
objective function. We must remove them from the objective function. If an artificial variable
is removed from the basic variables, it will be removed from the objective function. This
means the coefficient of the artificial variable becomes 0, not 1. After changing the
coefficient of an artificial variable to 0, the artificial variable is in effect not present. When
the optimum is reached, the coefficients of the artificial variables must be zero. Otherwise,

there is no optimum.

2.8.6 An example

Minimize Z = x, —3x, + 2x,
3%, —x, +2x;, =7

subject to: ¢ —2x, +4x, =12

x;20,i=123

Solution:

using artificial variables x, and x,, we can get an initial feasible solution. The question

changes to:

minimize Z = x, —3x, +2x; + M *(x, + x,)
3%, —x, +2x;+x, =7

subject to: ¢ —2x, +4x, + x5 =12

x;20,i=1,.,5

To remove the effects of the artificial variables, we set the coefficient M of the
artificial variables in the objection function to a big real number, for example 100000.

Iteration 1:
3 -1 2

7
C=(0 -3 2 100000 10000), b=| |. A=
12 -2 40

‘=(P1 P, P). Ay=1.

x,and x; are the basic variables. 4, = 4.
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-2 4 0

=(1 -3 2)-(100000 300000 200000)=(-99999 —300003 —199998)
So x, is the entering variable. In the next step we will decide on the leaving variable.

¥ 3 -1 2
W=C,—-Cyd," 4, =01 -3 2)-(100000 100000)1‘ ‘

7 -1
A,7'b = (12} AP, = { 1 J So the leaving variable isx,. a, =4.

- o1 |1 174
So E, =(1/41/4). Weget A4, =EA;, = .

0 1/4

Iteration 2:
Now x, and x, are basic variables, and x; is discarded. C=(1 -3 2 100000).

3 2

A =
Mole2 0

y 1 1/4)3 2
W=C,—Cyd," 4, =(1 2)-(100000 —3){ H ‘

0 1/4)-2 0

=(1 2)-(250001.5 200000)=(-250000.5 —199998)
So x, is the entering variable.

" 10 4 2.5 : . :
A, b= . A, P = 05 . So the leaving variable isx, . a, =2.5.

So E, =(2/5]1/5). We get A2 = EAL" 2/5 1/10
0 = , . e ge _ _ .
k = * s 310

Iteration 3:

2
Now x,and x, are basic variables, and x, is discarded. C=(1 -3 2). 4, :( J

0
W=Cy—Cyd, 4, =(2)-( 3> o
IR 1/5 3/10[0

=2-(-2/5=24.
So the optimal solution becomes:

X, 4 4 4
X, = =4, 'b=| |, Z=CX, =01 -3 _|=-11.
X, 5 5

2.9 Nonlinear optimization
For most cases, there is a function f(x), called the objective function, which belongs

to C?, meaning that the function f(x) has a second derivative. We want to find the minimum

or maximum value of f(x). We can describe this question as follows:

min f(x)
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Subject to:
xeR"

where R"is the n-dimension real domain.
For the maximization question, we convert it to the minimization problem according to the

following formulation:
max f(x) = —min(-f(x))

So we only need to solve the minimization question.
In this case, the variable x belongs to the n-dimension real domain. The number of
dimensions may vary from 1 to n. This kind of minimization problem is called

unconstrained optimization.

If any constraints are applied to the variable x, we have the following situation:
min f(x)

subject to:

The p equality constraints are: e,(x) =0 fori=1,2...p

and the q inequality constraints are: w;(x) =0 forj=1,2,...q.

This kind of problem is called constrained optimization.

All points x satisfying all the constraints are feasible and all others are non-feasible.
All feasible x form the feasible region. All non-feasible x form the non-feasible region. For

unconstrained optimization, the feasible region is the real domain.

2.9.1 Local and global optimums
A local maximum is a point in the feasible region which is higher than all other points

within its immediate vicinity, but not necessarily the whole feasible region. The global
maximum is the maximum for the whole feasible region. The following figure illustrates

local optimums:

A Local maximum

Local minimum

v
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From this figure, we can see the following points about the global and local
optimums.

e There may be more than one local optimum for the function and their values perhaps
are not the same.
e The global optimum must be a local optimum.
e A local optimum may be the global optimum.
e [t is possible that there is more than one global minimum or maximum, if the function
values are be same.
The global optimum is the best of all the local optimums and is the solution for our problem.

2.9.2 Classical theory of unconstrained optimization

o

Given a function f(x), for vector x, assume all the first derivatives . exist at all
X .

points in the domain of f.

A necessary statement for a minimum of f(x) is:

F_¥_ ¥,

ox, ox, | Ox

The condition “necessary”” means that where the function is at a minimum, the equation
holds. But this equation is not a sufficient condition.
A sufficient condition for a point to be a minimum of {(x) is that the second

derivatives of function f(x) exist at the optimum point and Di > 0.

o s
ol ox,ox,

D= .. . .
o’ f o f

Ox,0x, ox]

Note: when the derivatives of the function f(x) are discontinuous, the classical theory is not

fully applicable.

2.9.3 Finding a solution iteratively
Almost all numerical optimizations methods use iterative techniques. They start at an

initial point x0 and proceed by generating a sequence of points x1,...xm (each xi is an n-
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dimension vector). Let f(x,,,) < f(x,). Then, the minimum of f(x) will be approached more

closely with each iteration. Clearly, the choice of xi is very important.

Defined by x,,, = x; +d ;s,, di is an direction vector for finding the next x and si is the step

i+1
size or distance to move. Here, a suitable choice of direction di is very important. How to
search for the next x is an important issue. Typically, methods are classified into two classes:

direct search and gradient methods.

2.9.4 Search methods: direct and gradient

Direct search methods don’t require the explicit evaluation of any derivatives of the
function, but rely solely on values of the objective function f(x) and information gained from
earlier iterations. Some use function values to obtain numerical approximations of the
derivatives.

Gradient methods select the direction using the values of the derivatives of the

function f(x). Usually, the first order derivatives are used by these methods.

2.9.5 Converting constrained to unconstrained optimization
For constrained optimization problems, it can be useful to make use of unconstrained

optimization methods. So converting to an unconstrained optimization problem is the first
task. Many methods have been developed for transforming the optimization problem. The
following methods are widely used:

1. Transfer functions
2. Lagrangian multipliers
3. Penalty functions

2.9.5.1 Transfer functions

Its basic idea is to extend the restricted feasible region to the whole real domain. For
example, to minimize f(x), subject to x >a, we can define a new variable y. Let

x=a+y’
Using this equation, we can convert f(x) to f(y), and then minimize f(y). Here variable y

doesn’t have any restriction. So this is now an unconstrained optimization problem.
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2.9.5.2 Lagrangian multipliers

This is a very common method for transforming optimization problems. If a
minimization problem has many equality constraints

e, (x)=0 fori=1,2...p

define a new objective function to minimize with a new variable A4
P
h(x,A)= f(x)+ D Ae;(x).
J=l

For the first derivatives of this function,

Oh(x,2) _9f(x) , Oe; (x)
121:/1 Oox,

Ox; Oox,
Oh(x, )
YR e (x)=0

1

The solution will satisfy the constraints e, (x) =0.

For the inequality constraints

w,(x) 20 forj=1,2,...q

we can introduce new variables called slack variables, x,,,...x,, . Let

n+q

w;(x) = xfﬂ. >0.
Now we can transform the inequality into equality:
w(x)— x> . =0

n+j

So using this method, we can handle the constrained optimization problem.

2.9.5.3 Penalty functions

The basis for the penalty function method is to define a new objective function like
the following:
h(x) = f(x)+ p(e(x))
where f(x) is the original objective function, and p(c(x)) is the penalty function based on the
equality and inequality constraints.
For a minimization problem, the main point is to choose the penalty function to make
sure that it is zero for all feasible points and is very high for all non-feasible points. Then, the

minimum of h(x) is equivalent to the minimum of f(x).
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2.9.6 Our case

For our problems, the optimization question is defined as follows:

Find the minimum and maximum of function
f(x:J/) = inpxizyjpy/' +p\/(zx12pw _(Z‘xipxi)z(zy?py/’ _(Zyjpyj)z
i Jj i Jj

subject to:
[<x<u
S<y<p
where [ =(/,...1,), u=(u,..u,), s =(s,..s,) and p=(p,...p,). L., u;,s, and p,are real

numbers, not infinity. This kind of question is called box-constrained optimization or bound-
constrained optimization.
We only discuss the minimization problem. For maximum problems, we can use the

previous formulation to convert them to minimization problems.
Next, we need to convert the problem to an unconstrained optimization. Let use the

three methods introduced previously.

2.9.6.1 Transfer function
The constraints for variable x and y are / < x <u, and s < y < p. This means that x

lies between | and u and y lies between s and p. so we need to introduce a new variable to

replace x and make sure x satisfies the constraint. Defining
x=Il+w—-10sin*u,and y=s+(p—s)sin’v
we will get the new objective function f(u,v).

For this function, y belongs to the whole real domain, so it is unconstrained. But this
function is very complicated. If you want to use the first derivative to get the solution, it is

tricky because y has many solutions.

2.9.6.2 Lagrangian multipliers
For /I <x<u, s<y<p, we can convert to:

x—[20,u-x>20, y—s>0,and p—y>0. Using the previous methods, we can get a
new objective function. But this method introduces many slack variables and equalities. To

solve these equalities is not easy work. It needs much CPU time to compute and it is also

very complicated.
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2.9.6.3 Penalty function

We will design a suitable penalty function. Based on the constraints, we introduce
this penalty function:
p(x)=A*max(0,], — X, X, = Ly seerrees L, =X, X, = 1, 3S] = V15V = PioeeoreesSpy = Vors Vo = Pm)
Here, A will be chosen as a very large positive real number. So the new objective function is
h(x,y) = f(x,y)+ p(x,y).
From this function, we can see thatif / < x <u,and s < y < p, then x and y belong

to the feasible region and h(x,y) equals f(x,y), but if constraints are violated, h(x,y) will

become very large, clearly far from the minimum value.

2.9.6.4 Search method

Our objective function has a good attribute; both the first derivatives and second
derivates exist. So gradient search (Luenberger, 1984, pp. 384) can be freely applied to our
case. And generally speaking, gradient searching methods provide efficient direction
information in searching for the next x. In view of the previous discussion, gradient search is

used to our case.

2.9.6.5 Solution

Find the minimum value of function f(x), stated by

Min f(x,) = X x,p, 2 v,p, + P \/(Zx?pxi - Qyipy - Qe

subject to:

[<x<u

s<y<p
where [ =(/,..1) , u=(u,..u,), s=(s,..s,) and p=(p,...p,)- L, u,,s, and p,are real
numbers, not infinity.

We use a penalty function to convert this problem to an unconstrained problem. The
new objective function h(x,y) is constructed
as:
h(x, )= f(x, )+ A*max(0,], —x;,X; = lyyeeereees L, =X, 3 X, = L3 S1 = V13 V1 = ProeeoreesSpy = Vs Vn = Pm) S

o the problem is to find the minimum value for function h(x,y). For this unconstrained
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optimization problem, the iterative technique is adopted. First, we define some terms:

;: Zyjpyf
J
Dx = (inszi _(Z.:xilyxi)2

D, = yipy = (y;py)
J

D,=D.*D,.
Now we get the first derivative of h(x,y) through f(x,y) and penalty function p(x,y).

L/—, p*D."” *%*Dy *(2x,p,, —2xp,,)

ox,
of - 12 v
a:pijer*ny *E*Dx*(zyjpw.—Zpr-)

Qﬁ:[ﬂz
op 7
0 others

% =3 A x,—u, =max0,], —x,,X —fhsecreid, =X, X, — L1 ,S, = VsV, = DioeeeseeSn = Vs Voo = Pr)

YA L =x =max0] =X, X, = yeeesend, =X, X, = LS, = VsV = Proeeere S = VsV = Do)

0 others
aa)i = /1/1 Yi—P; =_max(0,ll =Xy Xy =y eeegeees by =X, X = Sy = Vs V) = Proeeereees Sy = Vs Vou = P)
—A s, =y, =max(0,], =X, X = [y s L =X, X, = S = VY T Prseerees S = Vs Vir = D)

Along the direction determined by the derivatives, the next x and y are defined.
Through iteration, the numerical solution can be found.

Next, finding the maximum value of function f(x),

Max f(x,y)

subject to:
[<x<u,

sS<ys<p.
Based on the formulation max f'(x, y) = —min(—f(x, y)), we can transform this problem to:
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Min _f(xay)
subject to:
[<x<u,

SSYy<p.
Using the previous method, we can get the minimum value fmin, and negate to get the

maximum value of f(x), —fmin.
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3 Enhancement of functions

This version of Statool removes certain important limitations existing in the previous
version. The following extensions had to be developed in order to apply Statool to the
problems we wanted to solve.

e Use of the transportation method to speed linear programming
e (Cascading operations to support more than two variables
e Relational operations

e Evaluation of f(x,y) for monotonic functions f

3.1 Transportation method
In the previous version, only the standard simplex method is provided to solve linear

programming. The speed of this method is slower than that of the transportation simplex

method.

3.1.1 Background on the transportation simplex method
Many companies need to determine how to optimally transport goods from different

warehouses to different destinations. Isomorphic problems are found in other situations
unrelated to transportation, such as the assignment problem and production scheduling.

Hillier (2001) gave detailed information about such applications.

3.1.1.1 Model

In general, this kind of problem involves 2 different types of location: sources and
destinations. Sources supply something and destinations accept resource. Costs for
transferring resources between each source and destination may be different. The aim is to
minimize the total cost to transfer resource from these sources to those destinations. In most
cases, the total supply for all sources is equal to the total demand for all destinations. If we

have M sources, N destinations, the supply at source i is Si, and the demand at destination j is

M N
Dj, we get the equation ZSI. = ZD‘/ . Let Cij be the unit cost of moving resources from
i=1 Jj=1
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source 1 to destination j. This table displays the relationship between sources and

destinations.

Table 3.1. Parameter table for transporation model.

Cost per unit distributed
Destination
1 2 3 .. N
Source Supply
1 Cll | Cl12 |C13 C,y S1
2 C21 | C22 |C23 C,y S2
M CMI CMZ CM3 MN SM
Demand | D1 D2 D3 D,

We can describe this mode as a standard linear programming problem.

M N
Z = chyx[j

=1

min =1
Subject to:
N
in/ =S5,
J=l fori=1...M

M=
RS

[

>

i=1 ' forj=1...N

and *i =0 foralliand j
If total supply is not equal to total demand, it is called an unbalanced model. For these cases,
we can use dummy sources or destinations to make the model balance. If total supply is
greater than total demand, we can make up dummy destinations to demand extra resources
and set the unit cost from each source to any dummy destinations to be very small. This way,

extra resources will be transferred to dummy destinations. If total supply is less than total
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demand, we make up some dummy sources and set unit cost from each dummy source to any
destinations very large. If these unit costs are really large, no destination will want to get
resources from these dummy sources. So the solution will be for resources from actual

sources rather than dummy sources.

3.1.1.2 Solution

The Transportation problem is a special type of linear programming. We can use
general methods for linear programming such as the simplex method. If the simplex method
is used, the simplex tableau will be complex and consists of M+N+1 rows and (M+1)(N+1)
columns. To handle this big table, you will need a lot of computation.

As a special type of linear programming problem, there is an efficient method called
the transportation simplex method to handle it. This method uses a tableau, but it only has M
rows and N columns. You don’t need to use artificial variables to get an initial solution. It
has just M+N-1 basic variables (not M+N), so a degree of freedom will be removed.

To solve transportation problems, generally two steps are necessary.

Step One: Initialization to get an initial basic feasible (BF) solution. There are 3 common
methods for this step.
e Northwest corner rule
e Russell’s approximation method
e Vogel’s approximation method
Russell and Vogel’s methods consider costs in generating an initial solution. The solutions
are better than for the Northwest corner method. Hillier and Lieberman (2001) clearly
compares these three methods.
Step two: Optimality testing. In this step, every solution is a feasible solution. Our aim is to
find the best solution. It has a loop to do the following work.
e Get the two variables ui and vj from each basic variable’s equation (Cij=ui+vj).
e (alculate the related cost CCij of each non-basic variable according to CCij=Cij-
ui-vj.
e (et the entering non-basic variable, the one with the minimum CCjj of all non-

basic variables with negative CCij.
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e Determine whether the solution is optimal. If all CCij are not less than 0, the
solution is optimal.

e Get the leaving basic variable. This is done in a loop whose calculations use the
entering non-basic variable and other basic variables. This loop identifies the cell
whose assigned flow is the minimum and whose order to the entering cell is odd.
This cell will be the leaving variable.

e Adjust the flow of the loop. For all the cells adjacent to the entering cell or another
odd distance from it in the loop, subtract the minimum flow and for all cells an
even distance, add the minimum.

e Get the new basic variable set. Marking the entering cell basic variable and the

leaving cell non-basic variable. Begin the loop again from step 1.

3.1.2 Exceptions in finding the initial solution
Handling the exception of degeneracy can be very important in finding the initial

solution in a transportation simplex problem. Degeneracy means there are not enough basic
variables in the initial feasible solution. For example, there are 5 basic variables for 2*3
tables. In fact, maybe only 4 variables are found for some initialization methods for some
problems. This situation occurs where there are too many choices for which ones are basic.
In the previous initialization methods, the northwest corner method doesn’t have this kind of
problem. This method always can find enough basic variables although values of some of
them may be zero. But Russell’s method will have this kind of problem for some cases.
Usually, the initial solution found by Russell’s method is closer to the optimal solution than
that found by the northwest corner method. So computing time is less for Russell’s method.

Therefore, there is a tradeoft.

3.1.3 Adaptation to the unknown dependency case
For the unknown dependency case, the marginal distribution table for variables X and

Y is really a transportation tableau. Here you can consider X as the sources and Y as the
destinations. The total supply is 1 and total demand is also 1. Next we use an example to
illustrate this situation.

Example:
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X distribution: P([0,1]) = 0.2, P([1,2]) = 0.2, P([2,3]) = 0.2, P([3,4]) = 0.4.

Y distribution: P([1,2]= 0.25, P([2,3]) = 0.25, P([3.,4]) = 0.2, P([4,5]) = 0.3.

Consider X+Y for the case of unknown dependency. We get the marginal distribution table
next:

Table 3.2. Marginal distribution
X 110,17 [11,2] [ [2,3] | [3,4] | Prob.

[1.2] | [1,3] | [2.4] | [3,5] | [4,6] | 0.25
pll |pl2 |pl3 [pl4
[2,3] | [2.4] | [3,5] | [4,6] | [5,7] | 0.25
p21 | p22 |p23 |p24

[3,4] | [3,5] | [4,6] | [5,7] | [6,8] | 0.2
p31 | p32 |p33 |p34
[4,5] | [4,6] | [5,7] | [6,8] |[7,9] | 0.3
p4l | p42 | p43 |p44
Prob. | 0.2 0.2 0.2 0.4 1

Our question is how to assign the distribution to p11 ... to p44 to give some subset a
maximized probability. E.g. to find the upper bound for X+Y at 1 (the previous chapter
discussed finding the subset), we get the linear programming problem
Max f=pl1
subject to:
pll+pl12+p13+P14 =0.25
P11+p21+p31+p41 =0.2

To find the upper bound for the CDF at 2, we get the problem
Max f=p11+pl12+p21

subject to:

pll+p12+p13+P14 =0.25

P11+p21+p31+p41 =0.2

For every point in the support of the result distribution, we will get a linear programming

problem. Through solving these problems, the upper bound of the CDF will be gotten.
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The low bound of the CDF is found similarly to the upper bound. To speed the
solutions, we use the transportation method to solve these linear programming problems.
From the previous example, we can see these linear programming problems use
transportation tables. The main difference is to maximize the value of the objective function
rather than the minimize as in real transportation problems. To solve these problems, we can
use negation to transform Max to Min. The Cij are very important in transforming the
problems. For the objective function, we have to let Cij be 1,0, or -1. We need to transform
Max to Min, so we must use Cij=-1 for all items that will contribute to the objective function,
with others zero. For the previous 2 cases we will get:
Min -f=-pl1
subject to:
pll+pl12+p13+P14 =0.25
pll+p21+p31+p41 =0.2
C11 =-1, other Cij=0

Min -f=-p11-p12-p21
subject to:
pll+pl12+p13+P14 =0.25
pl1+p21+p31+p41 =0.2
C11=C12=C21=-1, other Cij=0
Thus we have a way to transform an unknown dependency case to a transportation
problem. It includes two steps:

e Get the transportation table from the marginal distribution table
e Set the cost attribute for cells contributing to the objective function to —1, and other
cells’ cost to zero.
Because the balance of supply and demand is a basic requirement for the transportation

problem, we must keep marginal sum of X and Y equal to 1 and the same for Y.

3.1.4 Test result:

Consider an example:
X, p([0,0.333])=0.2, p([0.333,0.667])=0.4, p([0.667,0.999])=0.4
Y, p([0,0.51)=0.5565437, p([0.5,1])=0.4434564.



Consider X+Y under the unknown dependency condition.

Table 3.3. Lower bound.
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Result interval | Simplex Transportation
[-0.25,0.833] | -1.490116E-08 |0
[0.833,1.167] | -1.490116E-08 |0
[1.167,1.333] | 0.1565436 0.1565437
[1.333,1.5] 0.2 0.1999999
[1.5,1.667] 0.5565436 0.5565436
[1.667,2] 0.6 0.6
[2,2.25] 1 1

Table 3.4. Upper bound.
Result interval | Simplex Transportation
[-0.25,0] 0 0
[0,0.333] 0.2 0.2
[0.333,0.5] 0.5565437 0.5565437
[0.5,0.667] 0.6 0.6
[0.667,0.833] | 07565437 07565438
[0.833,1.167] |1 1
[1.167,2.25] 1 1

For this example, we got almost the same answer for both methods.

3.2 Cascading operations
Previous Statool software only supported binary operations (two operands). But in

real applications, there are often over 2 operands to be calculated, for example, x+y+z,
Max(x,y,z), etc.

Association is how to solve this question. E.g. for x+y+z, we can first calculate x+y,
and save the result to temporary variable w=x+y, then calculate w+z. This way, we can get
x+y+z. But there is a constraint that this kind of operation must support association and

commutation. For example, you can first calculate x+y or y+z, for x+y+z.
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In Statool, we would get the CDF envelopes for the result of two variables’ operation
under unknown dependence. So we can solve this problem if we can convert CDF envelops

to a set of intervals and associated probabilities.

3.2.1 Solution

We can transform upper and lower envelops into a set of intervals and associated
probabilities. The probability of each envelope is its top-to-bottom height. For example, four

intervals will be gotten from the following CDF envelopes.

Figure 3.1. Convert CDF to IDF.
This method is implemented in Statool using VB. Now both CDF and IDF data
format can be saved or displayed. From the following figures, we can now use the results of

one operation as input to the next.

Op erand b

Figure 3.2. Result for operation.

The above figure shows the CDF envelopes resulting from an operation on two variables.
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The following figures show the procedure to calculate using multiple operands (e.g. x+y+z).

—

Figure 3.3. Result for x+y.

First, we get the result of x+y. Result is shown in the 3™ panel.

—

Figure 3.4. Result for x+y+z.

Then we load the result of x+y as a new operand (top panel above) and operate on it and z,

which is shown in the middle panel. The bottom panel shows x+y+z.
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3.3 Relational operations
Relational operations are used to describe the relationship between two operands.

This version of Statool supports 4 relational operations: >, >=, <, and <=.

3.3.1 Relational operations on intervals
Consider two real numbers x and y. We define the interval value to describe the

relationship between x and y. The value [0,0] indicates the relationship is false. The value
[1,1] indicates the relational operation is true. The value [0,1] means the value of the
relational operation is not determined or it’s uncertain.

For interval number A, A-left means the left (or low) bound of interval value A, and
A-right means the right (or high) bound of it. Now consider two interval numbers A and B.
[L1] A-—left > B—right
A>B=1[0,0] A-right <B-left

[0,1] otherwise

[L1] A-left > B—right
A>B=1[0,0] A-right < B-—left
[0,1] otherwise

[LI] A-right < B - left
A< B=1[0,0] A-lefi > B - right

[0,1] otherwise

[L1] A-right < B-left
A< B=<[0,0] A-left >B-right

[0,1] otherwise

3.3.2 Relational operations on random variables
Consider 2 random variables X and Y. We consider the probability of X>Y, P{X>Y}.

According to the DEnv algorithm, random variables X and Y are split into intervals which
are assigned probabilities. Therefore, operation X>Y is transformed into a series of interval

operations. Here is an example to show how to handle this.
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Table 3.5. Distribution for X and Y.
X [ 10,17 T11,2] [ [2,3] | Prob.

Y
[1,2] | pl1l |pl2 |p13 |025
23] [p21 |p22 |p23 |05

[3.4] | p31 | P32 |p33 |025
Prob. | 0.5 |025 025 |1

Consider the relational operation X>Y. It is transformed into an interval relational
operation between intervals of X and intervals of Y. for example, the result of [0,1] > [1,2] is
[0,0], so [0,0] will be put into cell p11. similarly, [0,1] will be put into cell p12. Finally, we

get the following result:

Table 3.6. Interval value for relational operation.

X [[0,17] [[1,2] | [2,3] | Prob.

Y

[1,2] | [0,0] |[O,1] | [O,1] | 0.25
pll |pl2 |pl3
[2,3] | [0,0] |[0,0] | [O,1] | 0.5
p2l | p22 |p23

[3,4] | [0,0] | [0,0] | [0,0] | 0.25
p31 | P32 |p33
Prob. | 0.5 025 [ 025 |1

Based on the DEnv algorithm, we can now get the probability for X>Y. It is clear that
all cells whose interval bounds include 1 are consistent with X>Y. To get the maximum
value of P{ x>y}, the sum of all cells including 1 will be maximized. For this case, maximize
(p12+p13+p23). To get the minimum value of P{x>y}, the sum of all cells with the value
[1,1] will be minimized. All cells whose value is [0,1] will be discarded since for them,
maybe x<=y.

In summary, the value of each cell should be one of [0,0], [0,1], and [1,1]. Here [0,0]
means this relationship doesn’t hold. The value [0,1] means this relationship is not certain.

The value [1,1] indicates this relationship must hold. To get the maximum value, maximize
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the sum of all cells whose bound include 1. To get the minimum value, minimize the sum of

all cells whose values are [1,1].

3.4 Complex expressions
The previous Statool only supported the basic arithmetic operations +,-,*, and /. It is

more useful to be able to calculate any arithmetic expression. User should be able to input the
expression desired. To solve this problem, Statool needed an arithmetic expression editor to
provide the functionality to input an arithmetic formula. We decided to support expressions

using arithmetic operators +,-,*, and / and also to support association through using ().

3.4.1 Expression editor
To implement this expression editor, first, a grammar definition of allowed

expressions was written. This grammar is context-free. The following grammar describes
arithmetic expressions that Statool supports:

<expression>::=<term> | <term> + <expression> [<term> - <expression>
<term>::=<factor> | <factor> * <term>| <factor>/ <term>
<factor>::=(<expression>) | <number> | <variable>

<number>::= <integer> | <integer>.<integer>

<integer>::=<integer>|v

<variable>::=x|y

Here v indicates the numbers from 0 to 9.

Based on this grammar, arithmetic expressions such as (a*X+b*Y)/(c*X+d*Y) are
allowed. Parsing is a good method to generate a parse tree: a diagram of the complete
grammatical structure of the string being parsed. For this case, it is not very complex. Every
operator needs two operands. ‘( )’ will increase the priority of operation. So, expression
tables could be used. In such a table, the operands and operators will be recorded. Every row
describes an operator. Software will analyze the input string, and generate the expression
table according to the order of calculations. Then using this table, the result can be
calculated.

Statool software now only supports 2 random variables, X and Y. When an
expression is input, variable names must use the symbols X and Y. The expression editor will

check the input expression after the user confirms the input. If this expression is not allowed,
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error information will be displayed and reason also will be listed. Here is a figure showing

the expression editor.

. Expression Editor

Mote: Naw arly suppart 2 rrdom varables K and Y, Sa please
Uzs -« and y fa indicale these vansbles in anthmehic sxpression,
suich &g ey lfer2]

E spmessior: ||

Ok

Figure 3.5. Expression editor.

From the following figure, we can see the error information and reason for a bad

input expression.

Mote: Now only suppoit 2 random variables % and'. Soplease
use ¥ q'ﬂ_ifi yloindicate these variables n arithmehc expression,

%

i Q x5y Wariable name error ] Lnknown variable Sy

i

Figure 3.6. Error information for experssion editor.

3.4.2 Limitations on evaluating expressions

This expression editor can’t handle division by 0 since the expression evaluator

doesn’t know how to evaluate the value of such expressions.

can’t include zero in their support if the user want to use the

Therefore, operands X and Y

expression editor.
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3.4.3 Excess width in expressions
A typical expression is P(x,y) = f(x,y)/g(x,y) = (aX+bY)/(cX+dY). For this kind

expression, there is excess width in interval calculations. The reasons include that a random
variable is cited more than one time in the expression. To solve the problem, it is necessary

to remove excess width in calculating this type of expression.

3.4.3.1 Removing excess width
The easiest way to handle it is to simplify the expression such that each random

variable is cited only one time. It is a quick way to handle this question. But it is a very
restrictive constraint. Many expressions can’t be simplified to meet this kind of condition.
For some expressions, we can use another way to remove excess width. It is to use the
low and high bounds of the interval operands to calculate the expression. Then from these
calculated values, the result bound is determined. For two variables, there are four
combinations of bounds. So 4 candidate result values are obtained. We select the minimum
of the 4 as the low bound of the result interval, and the maximum of the 4 as the high bound
of the result interval. Let us see an example:
Suppose: x =[1,2], y =[2,3] F(x,y)= (8.4x + 7.2y)/(0.04 x + 0.02y).
First: let x=1, y=2, calculate F(x,y), and we get the value 285.
Second: let x=1, y=3, calculate F(x,y), and we get the value 300.
Third let x=2, y=2, calculate F(x,y), and we get the value 260.
Finally, let x=2, y=3, calculate F(x,y), and we get the value 274.3.
So, the interval for F(x,y) is [260,300].
If we calculate the expression based on the intervals for x and y, we will get the
interval [162.9, 480]. It is obvious that result interval has excess width. So we can use this

method to remove excess width for this expression.

3.4.3.2 Limitation of the method for removing excess width
Although the method of selecting the min and max value to get the result bound

works for our case, there are limitations to this method. When the expression is monotonic,

the method can handle excess width. In addition, the denominator of the expression can not
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include the zero, that is, zero is not in the support of g(x,y), otherwise this expression can’t

be calculated.
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4 Software architecture

This chapter describes the architecture of “Statool”. First an overview of this software

is given. Then the components of “Statool” are described.

4.1 Overview
Layer design is widely used for software development. It provides a clear description

of software architecture and makes it easily understood. It is also suitable for implementation
and maintenance of distributed computing software. Figure 4.1 shows the general layer
architecture of “Statool.” This version was developed for a Microsoft Windows platform.

Layer design is helpful for porting to other platforms.

Figure 4.1. Architecture.

Statool consists of 3 levels layers as shown in the previous figure. The first level, the
application layer, is the user interface layer, which is in charge of interaction with the user
such as receiving the user settings and displaying the results of operations. The middle level
transforms user inputs to fit the underlying algorithms. This layer can be called the logical
layer. The low level, the computing layer, implements the specified algorithms. It can run in
the background and be provided as dynamically linked library.

Since Microsoft operating systems are widely used in the world, the platform for this

software is the Microsoft windows series, such as Windows 98 and Windows 2000. But the
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primary platform is the Windows 2000 family. The software will be fully tested on this
platform. For other windows platforms, it won’t be fully tested.

For the current software, the user interface and the logical layer were developed using
Visual Basic. Visual Basic is a very good rapid development tool. Since the user interface is
not designed to run in a Web browser currently, it was developed together with the logical
layer component using Visual Basic. It may be useful to move the user interface to a Web
browser platform in the future because the browser / server architecture is so popular. The
computing layer involves a lot of computing, so speed is a key issue. Therefore, this layer
was developed using Visual C++.

This software can be run on any machine in which windows 2000 is installed. There
is no other requirement for hardware. But as previous noted, this software will consume a lot
of computing and memory resource. If you solve bigger problems, a configuration should

have at least 256M memory and a Pentium III at 1000 Mhz.

4.2 Input/output

The file is the primary way to exchange and save the data for this software. Graphs
are used to show probability distribution functions (PDFs) and cumulative distribution
functions (CDFs) of the data. Data lists can show the exact information representing a
random variable.

In this software, 4 kinds of files are used to describe random variables. One is called a
probability distribution file (PDF), which is a list of intervals and probabilities and, and
discretizes a probability density function. The second is called a cumulative distribution file
(CDF), which is used to describe the envelopes of the cumulative distribution. The third kind
is called an intermediate distribution file (IDF), which is like a .PDF file but the intervals can
overlap. Although its interval can be overlapped, the sum of their probabilities should be
equal to 1. Otherwise, this file is invalid. The last one is the sample data file (SMP). It is a
special type of file. It is used to show the probability distribution of sample data. Only IDF
and SMP files are used to input or output distributions. PDF and CDF files are mainly used
internally. Output displays are plotted based on these 2 types of files.

Both IDF and SMP are text files. They are composed of 2 parts: a control line and

data lines. The control line is the first line and includes 2 items: the number of intervals and



53

whether it is an application file (this parameter is not used for most cases). The comma is
used as a separator. The number of data lines is specified by the “number of intervals” part of
the control line. Every data line includes 3 items: low bound of an interval, high bound, and
probability for this interval. The following file gives an example IDF file:

4,0

0,0.25,0.2

0.25,0.50,0.3

0.5,0.75,0.25

0.75,1.0,0.25

This file describes the distribution of a variable consisting of 4 bars from 0 to 1. A
sample file is a special .IDF. In this type of file, the low bound of every interval is set to
equal the high bound. It just is used to say how much the probability at this point is.

Two different ways are used to input data in Statool. One is to directly load the
distribution of a random variable from a file. The other is to edit the distribution of a
variable. To use the editor to input the distribution, Xie (1998) gave a detailed description.

There are two ways to output the result of an operation. One is to draw the graph of
the variable. It is convenient for seeing the result immediately. The other way is to save data
as an IDF or SMP file. These two files are discussed in the previous paragraph. The user can
permanently keep data in and use these files in the future.

There are 2 types of graph to show the data: probability bars for PDF format and
probability bound curves for CDF format. From the probability bars of PDF format, the user
can see the histogram of random variable. Probability bound curves show envelops bounding

the space of possible cumulative probability functions of a random variable.

4.3 The user interface
"A user interface is an interface that enables information to be passed between a

human user and hardware or software components of a computer system." [IEEE, Std
610.12-1990]. Based on the Microsoft platform system, windows are used to implement the
user interface. Generally, the user interface consists of various windows. They can be moved
on the screen, overlap each other and minimized into icons on the task bar of MS operating

system.
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In general, a program running on an MS platform includes the primary windows and
the secondary windows. The primary windows handle major interactions with the user, and
often contain an arbitrary number of objects. Secondary windows are used to support the
interactions with primary windows by providing details about the objects of the primary
window and operations on those objects.

Statool is comprised of these two types of windows. There are three primary windows
and there are secondary windows for each of the primary windows. The three primary
windows are the operation window, the data editor window, and the data view window. The
operation window is the main primary window. The other two primary windows can be
accessed from this main primary window. To decrease interaction overhead, window
navigation paths are restricted to three levels. Otherwise the user will be likely to get lost in
the system. The operation window is opened when the user starts the program and is always

open as long as the program is running.

4.3.1 Main primary window: the operation window
The operation window is the place to perform the binary operations. It also includes

some associated functions such as file operations and setting options. The user can use this
window to perform the following functions:

e Data maintenance ( including load, save, view, and edit data)

e Data operation ( choosing the operation type)

e Options for data operation

e Help and additional information about this software

e Control software (including program termination and options to run this

software)
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Based on these functions requirement, this figure gives a prototype interface for it.
iaix

File Edi Switch View Options Help

The operands are:

= unknown dep.
7 Known dep.
" independent

x
-~

Max(x.y)
Min{x.y}

Result: 7 Parsing

Result
Cleared !

Exit

Figure 4.2. Operation window.

This window consists of five parts: menu bar, data display panels, option area for
correlation, operation area, and exit button. The menu bar is used to contain all
functionalities’ entries. Data display panels include 3 panels. Two panels are used to store
operand X and Y, and a third one to show the operation result Z. The option area is used to
choose the correlation for operands X and Y. Currently, 3 types of correlation are supported
for this software. They are independent, unknown, and known correlation. the operation area
contains all the operations. The user can choose the specific operation to calculate. The exit
button is a convenient way to exit the program although you can also do this by selecting the
exit option on the menu bar.

The operation window includes 5 property windows, which are the secondary
windows. They are the display mode window, display color setting window, about window,
correlation value setting window, and expression editor window. The display mode window
is used to choose the data display mode: PDF or CDF. The display color setting window is

used to choose the colors for the 3 display panels. The about window lists information about
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this software. The correlation value setting window enables the user to input information

about correlation when the user selects the known correlation radio button.

4.3.2 Other primary windows: the data editor and the view windows
The data editor window is used to edit the input data, which is shown in the following

figure:

-l

File Edit ‘iew Help

CDF data: Z

fEnge ar

| Bar

Doy Bar

Erpand

[ ]
)
)

0K | Cancel |

Figure 4.3. Data editor.

This window includes a menu bar, a display panel for data, operations for editing
data, and control buttons for the window.

The data editor window includes 4 property windows: Bar number, Value range,
Value for single bar and About. The bar number window is used to set the total number of
bars. The value range window is used to set the range for the operand. The value for single
bar window controls the probability and the width for this bar. The about window is the same
as the operation window.

The data view window is used to show the exact values for data. It is shown in the

following figure:
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[7= Data Viewer =] _'D ..)Sl

POF COF IDF Cancel

PDF data: X

Entry | Mo af Bars=1 [isapa=False issmp=Fal=
hio. law | high | mass
1 0 1 Y

Please Choose An ltem To View From The Menu

Figure 4.4. Data view.

This window consists of 2 parts: menu bar and display table for data. The user can
choose the expected data format to show in the table. The data view window does not include

any property windows.

4.3.3 Windows management
All windows of Statool are compatible with the standard of MS windows. Every

window includes the standard functions: move, size, min, max, restore and close. The
following visual dimensions will be considered: position, size, shape and color.

Position: every window will be placed in the central of the current screen.

Size: the main primary window will not exceed 640x480 pixels to make sure it can be shown
on any monitors. Other primary windows will not exceed the size of the main primary
window. Property windows can’t exceed the size of their primary windows.

Shape: set different shapes for different objects.

Color: keep the colors consistent for the same parts of different windows, such as

background and foreground color.
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The length of the windows’ navigation path is three. The following figure shows the

windows’ navigation path:

Operation window

Editor Window
Bar number
Value range
Value for single bar
About

Data View

Display mode

Display Color

About

Correlation value

Expression editor

4.4 The logical layer

This layer lies between the user interface and the computing layer. It contains access
points from the user interface, all logical controls and internal data, utility functions and
access points to call the next layer. This layer just provides the subsystems to service the user
interface and doesn’t perform any actions related to the “real” functions: uncertainty
operations, which are the real work of this software. Therefore, it makes sense to call it the

business-specific layer. The figure shows the structure of this layer:
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Entries for user interface

¥ A 4

A

Utilities functions Internal data/control

b

Access points to next layer

Figure 4.5. Logical layer.

The major function of the logical layer is to map user actions to the logical functions’
view of the software. For example, the user might click to load a file from storage into
memory in the logical view. This layer will do the real work in response to an action
happening in the user interface. This part mainly includes the response functions for the
menu bar and response functions for the radio buttons displayed in the user interface.

This layer will also provide the many utility functions and classes and maintenance of
internal data structures to keep the important state information.

Finally, this layer provides a uniform interface to the computing layer. All the
computing sensitive work is put into the computing layer. To use and manage these modules
efficiently, the standard interface is necessary. It also increases the reusability of these
modules.

In summary, this layer is used to formulate the user problem to fit the developed
uncertainty algorithm. Three main functions are provided in this layer: logical functions to
respond to the user actions, maintenance state information to control uncertainty operation,

and efficient access points to call the computing layer.

4.5 The computing layer

This layer is the computing subsystem. It implements almost all the algorithms of the
uncertainty operations. It is obvious that this layer is computing sensitive and will consume a

lot of computing and memory resources.
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This layer was developed separately from the other two layers since it does not really
depend on the other two layers. A benefit is that this layer can be extended to run on other
computing resources to decrease its dependency on computing resources at the client side.
Based on the MS platform, a dynamically linked library (DLL) was used . Calling a DLL is
language independent. Any development languages can call this type of library by following
the calling conventions.

This layer includes mainly 4 packages: converting data, general simplex method,
transportation simplex method, and extended simplex method. These 4 packages are
independent of each other. There is no calling relationship among them. Every package just

finishes the specific function using the corresponding algorithm.

mypdfcdf max t_max cor_min

Figure 4.6. Package view for the computing layer.
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5 Component design and implementation

This chapter lists detailed information about components belonging to different

layers. At the same time, implementation issues also are included with components design.

5.1 Overview
Components design is closely related to the development language. For the user

interface and the logical layer, MS Visual Basic is used since it is a very popular rapid
development tool. Each window maps to a form. Response actions map to a function or
routine of this form. So these two parts are integrated together. This is a convenient way for
implementing although separated from the logical view. Internal data structures and utility
functions and classes will be defined in module files of visual basic. For the computing layer,

Visual C++ is used since DLLs developed in it provide acceptable computing speed.

5.2 Operation and properties windows
The operation window is the primary window for this program. So it is the main form

(also the starter form) for the visual basic implementation. The compiled program, “Statool”
will start from this form. This window also includes 5 properties windows: display mode,

display color, about, correlation value, and expression editor.

5.2.1 Operation window
This form is called frmMain in the project form view. The following figure indicates

this form:
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Figure 5.1. Operation window design.

5.2.1.1 Menu bar

There are six items in the menu bar. They are File, Edit, Switch, View, Options, and

Help.
File: manage files and control program running. This figure shows its submenu:
&= Edit Switch Miew Dptions
"
Dpen ... .2 b
Save Chrl+S

Save fAs... F3

Prink ... FS

Exik Cerl+F4

Figure 5.2. File menu.

It includes 6 submenus: New, Open, Save, Save As, Print and Exit.
New: create a new IDF file for operand X or Y. Response subroutine is mnuNewX Click()

for new X and mnuNewY _Click() for new Y in form: frmMain.
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Open: open the existing file for operand X or Y. Response subroutine is mnuOpenX Click()
for open X and mnuOpenX_Click() for open Y.

Save: save the current result Z. Response subroutine is mnuSave Click().

Save As: save the current result Z as a specific file. Response subroutine is
mnuSaveAs_Click().

Print: print the current operation window. Response subroutine is mnuPrint_Click().

Exit: terminate the current program. Response subroutine is mnuExit Click.

Edit: edit the specific operand. This figure shows its submenu:

ulll Siwvitch Miew  Ophions

Edit PDF L4

S
Clear YWindow i
£

Figure 5.3. Edit menu.

Edit PDF: activate the editor window to edit the PDF file chosen from X, Y and Z. Response
subroutine is mnuEditX Click() for operand X, mnuEditY Click() for operand Y, and
mnuEditZ Click() for operand Z.

Clear Window: clear the specific display panel. Response subroutine is

mnuClearwin_Click().

Switch: switch the files between 2 the 3 main window panels. It provides a convenient way

to exchange displays among the three display panels. This figure shows its submenu:

St Wietw  Cprions  Help

Inkerchange & <=2 Y
Inkerchange ¥ <=* 7
Inkerchange % <=7

Figure 5.4. Switch menu.

Interchange X <>Y: switch operands X and Y. Response subroutine is mnulnterXY Click().
Interchange X <Z: switch operands X and Z. Response subroutine is mnulnterXZ Click().
Interchange Y <>Z: switch operands Y and Z. Response subroutine is mnulnterYZ_Click().
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View: provide the entries to set the display mode for panels and activate the data view

window. This figure shows its submenu:

iopkions  Help

Display Mode
Crata

Figure 5.5. View menu.

Display Mode: activate the property window to set the display mode for operands. Response
subroutine is mnuDisplayMode_Click.

Data: activate data view primary window. Response subroutine is mnuData_Click.

Options: set options controlling the program and its operation. This figure shows its

submenu:

Dptions
ELlGroEE froiiiiiiiiiiid

v Simplex method

v Transporkation

Figure 5.6. Options menu.

ColorSet: activate the property window to set the display color for panels. Response
subroutine is mnuColorSet Click.

Algorithm: set the preferred algorithm to handle the linear programming problems. There are
two choices: Simplex method and Transportation. Response subroutine is mnuSimple Click

for Simplex method, and mnuTransportation Click for Transportation.

Help: display help information and about information for this software. This figure shows its

submenu:

i_onkents

about Statool ..,

Figure 5.7. Help menu.
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Contents: activate the help information. Response subroutine is mnuContent Click.
About Statool: activate the property window to show the about information. Response

subroutine is mnuAbout Click.

5.2.1.2 Display panels

There are three display panels to contain operands X and Y, and result Z. These
display panels use PictureBox (one type of Visual Basic visual component). Their names are
picX, picY, and picZ. They are used to show the graphical representation of PDF bars or
CDF bound curves according to the display mode for X, Y and Z.

Every panel provides a popup menu to support mouse functions. When the right
button of the mouse is clicked, a popup menu will be shown. Response subroutine is
picX Click for operand X, picY_ Click for Y, and picZ Click for Z. The following figures
show 3 popup menus for 3 display panels.

Mlew =
CIpEn *
Save o 4s

Edit =
Clear &

Figure 5.8. Popup menu for operand X.

Mlews %
Dpen Y
Sawve Y as
Edit ¥
Clear v

Figure 5.9. Popup menu for operand Y.

Enlarge graphic
Wity dakta
ilear windaw

Figure 5.10. Popup menu for result Z.

These popup menus provide the same functionalities as the menu bar. But its

implementation is different from that of the menu bar. Operands X and Y use the same popup
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item object, whose name is Popupitem. Response subroutine for choosing popup menu is
Popitem_Click. Result Z uses its own popup item object, called PopZitem. Response

subroutine is PopZitem_Click to handle menu commands.

5.2.1.3 Correlation setting
This part consists of 3 option buttons (a type of visual component in VB). They

correspond to 3 types of relationships between X and Y. They are unknown dependence,
known dependence and independence. These 3 option buttons are exclusive since only one
situation is true for the current operands X and Y. This figure shows this part.

The operands-are;
* unknown dep.
~ Known dep.

" independent

Figure 5.11. Correlation setting.

Response subroutine is optDep Click for unknown dep., optind Click for
independent, and OptCorrelation Click for known dep.

5.2.1.4 Operation type

This part consists of seven command buttons and one listbox (both are the basic
visual components for visual Basic), whose names are cmdOp1 to cmdOp8. By choosing
these buttons and listbox, the user can choose the different operations for operands X and Y.

This figure shows this part.
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Figure 5.12. Operation types.

Button “X+Y” performs the addition operation between X and Y. Response
subroutine is cmdOp1_Click. Button “X-Y” performs the subtraction operation between X
and Y. Response subroutine is cmdOp2_Click. Button “X*Y” performs the multiplication
operation between X and Y. Response subroutine is cmdOp3_Click. Button “X/Y” performs
the division operation between X and Y. Response subroutine is cmdOp4_Click. Button
“max(x,y)” finds maximum value distribution envelopes from X and Y. Response subroutine
is cmdOp5_Click. Button “min(x,y)” finds minimum value distribution from X and Y.
Response subroutine is cmdOp6_Click. Button “Parsing” activates the property window to
input expression consisting of X and Y. Then it evaluates this expression using X and Y.
Response subroutine is cmdOp7_Click. Listbox performs relational operations between X
and Y, which include 4 types of relationship: greater than, not less than, less than, and not

greater than. Response subroutine is cmdOp8_Click.

5.2.1.5 Exit button

This button provides a convenient way to terminate this program. If the user wants to
exit this program, by clicking this button, this program will exit. Response subroutine is

cmdExit_Click.
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5.2.2 Properties windows of the operation window
For the operation window, there are 5 properties windows. Their windows are used to

set the parameters and control information for the operation window. They are Display mode,

Display color, About, Correlation Value, and Expression editor.

5.2.2.1 Display mode
This property window is used to set the display mode for operands X/Y and result Z.

There are 2 types of display modes: PDF bars and CDF envelope curves. Response form is

called frmDisplay. This figure shows it:

[ Display Mode

X Y z
& FOF | @ POF | & PDF
CCOF | CCOF | ¢ COF

Figure 5.13. Display mode window.

Choosing the different display mode for X, Y and Z will change the internal control
variables da_pdfmode, db_pdfmode, and db_pdfmode. When values for these variables are 1,

PDF mode is chosen. Otherwise CDF mode is chosen.

5.2.2.2 Display Color

This window controls the color for three display panels. Response form is

frmColorSet. The following figure shows it.



Color Setting g|
Operand ¥ Main Colar Operand ¥ Second Colar
Slight Blee =] [12LlightFed |
QK | Cancel | Apply |

Figure 5.14. Display color window.
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This window controls the color variables for X, Y and Z. These variables are

XMainColor, XSecondColor, YMainColor, YSecondColor, ZMainColor, and ZSecondColor.

5.2.2.3 About Window

This window displays the copyright information for this software.

5.2.2.4 Correlation Value Window

This window is used to set any known information about correlation. Response form

is DlgCorSet. When user choose the option “Known dep..” from the operation window, this

window will be activated. Through this window, the user can input any known correlation

information that may narrow the CDF envelope curves. This figure shows this window:

B

Pozsible range for corelation: -1.000ta 1.000
{+ Exact Comelation ™ Interval Camelation
Ewact Correlation W High Bound W
Exy Rangelby summation methad): 0.0625 ta 0. 4638 [ Setrange
M m I &

[ Set Expectation and Variance for Variable = and ' I~ SetHaroe
E. for #: 03750 to 06250, %, for ¥ 0.0313 ta 01563
£ High Ev<High

W L I::\’\..-'I_ v . High 3 High

E. forv: 0.3750 to 0.6250. %, for Y 0.0313 to 01563

E. High IE'T'H.-;;».
Wi High frigh

Cancel |

Figure 5.15. Correlation setting window.
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From this window, there are 3 ways to input information about operand X and Y:
known correlation range or exact value, known expectation range for XY, and known

expectation and variance for X and Y. .

5.2.2.5 Expression editor window
User can input expressions consisting of two variables X and Y. Response form is

frmExpression. When user clicks the “Parsing” button on the main window, this window will
be activated so that the user can input and edit the expression desired. This figure shows this

window:

&, Expression Editor P ] 54

Mote: Mow anly support 2 random variables &< and Y. So please
use x and-y to indicate these vanables in anthmetic expression,
such ag [k [xe2]

Expression: |

QK | Cancel I

Figure 5.16. Expression editor window.

The expression input by the user will be evaluated using intervals in the
discretizations of X and Y. This form will call the utility functions in the modules file, named
MathParserRoutines. All the functions related to expression parsing are saved in this modules

file.

5.3 Other primary windows

The Data editor window provides the data editing function for the user. The user can
use this editor to create and modify operands X and Y. Response form is frmHistEdit.
The Data View window is used to display the data of X, Y and Z when user needs

numerical output instead of graphs. Response form is frmViewer.

5.4 Lower 2 levels of logical layer
From the structure of the logical layer, the lower 2 levels consist of utility functions,

internal data structures, and access points to the next layer.
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5.4.1 Utility functions and internal data structure
This level consists of two module files: Modulel and MathParserRoutines. All the

internal data structures are defined in Modulel. This module also includes the basic utility
functions, such as load and save data. MathParserRoutines just provides the support functions
for the expression parser.

All the data structures are defined as public in the module file. This way, all other
forms and subroutines can access them directly. There are 2 main types of internal data
structures: parameters to control uncertainty operation and program, and data buffers to store
data of X, Y, and Z.

Utility functions are related to file management and to drawing graphs in the three
display panels. There also is a very important utility function for synchronizing data among
the different data types for the same random variable.

As the previous described, there are four types of data used by the software.
Generally, only the .IDF or .SMP files are used to input or output data. So there is a need to
keep other type data consistent with it. The different types of data describe the same variable
from different points of view. But they still say the same thing, so they can be transformed
from one to another. To execute a transformation, there are different requirements for the
different types of random variables. The transformation can be computationally expensive. It
is not suitable to do the transformation directly in this function, so it is put into the computing
layer. This utility function is defined as following:

HavePdfCdf (distribution-type as integer)
This subroutine has only one parameter specifying the type of distribution. The parameter
value determines if the data structure under transformation is an operand variable or result

variable.

5.4.2 Access points to the computing layer
There are 4 packages in the computing layer. Every package provides the entry points

for the layer above.
For the standard data package, there are 2 access points as follows:

Public Declare Sub GetPdfCdf Lib "mypdfcdf.dll" Alias " mypdfedf@36" (idfno As Long,
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isapp As Long, idfdata As Single, pdfno As Long, pdfdata As Single, lobound As Single,
upbound As Single, cdfno As Long, cdfdata As Single)

Public Declare Sub GetPdfCdf 1 Lib "mypdfcdf 1.dll" Alias " mypdfcdf@40" (idfno As
Long, isapp As Long, idfdata As Single, pdfno As Long, pdfdata As Single, lobound As
Single, upbound As Single, cdfno As Long, cdfdata0 As Single, cdfdatal As Single)

For the legacy simplex method, there is 1 access point as follows:
Public Declare Function Max Lib "Max.dll" Alias " Max@20" (objective As Double, X As
Double, Y As Double, ByVal m As Long, ByVal n As Long) As Double

For the transportation simplex method, there is 1 access point as follows:
Public Declare Function T Max Lib "T Max.dll" Alias " T Max@20" (objective As
Double, X As Double, Y As Double, ByVal m As Long, ByVal n As Long) As Double

For the extended simplex method, there are 4 access points as follows:
Public Declare Function Cor_ Min Lib "Cor_Min.dII" Alias " Cor Min@?28" (objective As
Double, X As Single, Y As Single, ByVal m As Long, ByVal n As Long, ByVal LowB As
Single, ByVal HighB As Single) As Double

Public Declare Function Cor Bound Lib "Cor Min.dll" Alias " Cor Bound@40" (X As
Single, Y As Single, ByVal m As Long, ByVal n As Long, LoWEXY As Single, HighEXY
As Single, LowB As Single, HighB As Single, XValue As Single, YValue As Single) As

Integer

Public Declare Function Cor Min_Exy Lib "Cor Min.dll" Alias " Cor Min Exy@40"
(objective As Double, X As Single, Y As Single, ByVal m As Long, ByVal n As Long,
ByVal LowB As Single, ByVal HighB As Single, ByVal maner As Long, EXYLow As
Single, EXYHigh As Single) As Double
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Public Declare Function Cor Min_Exy S Lib "Cor Min.dIl" Alias " Cor Min Exy S@44"
(objective As Double, X As Single, Y As Single, ByVal m As Long, ByVal n As Long,
ByVal LowB As Single, ByVal HighB As Single, ByVal maner As Long, EXYLow As
Single, EXYHigh As Single, ByVal callcount As Long) As Double

5.5 The computing layer

All the algorithms are implemented in this part. They are computing intensive and
time-consuming. This part consists of 4 packages. They are Standard Data, general simplex
method, Transportation simplex method, and extended solution using correlation as a

constraint.

5.5.1 Converting data

This package provides the implementation for converting data from one format to
another. It is provided using a dynamically linked library (DLL). This DLL is named
“mypdfcdf.dll”. This DLL includes just one method for converting data. This method is
called “mypdfcdf”. Its exact definition using C++ is listed as following:

#ifdef _ cplusplus

extern "C" __ declspec( dllexport ) void __stdcall mypdfcdf( int * idfno, int *
isapp, float idfdata[][3], int * pdfno, float pdfdata[][3], float * lobound, float *
upbound, int cdfno[], float cdfdata[][1025][3])

#endif
parameters:

int *idfno: the address of the number of the idf’s interval, if any

int *isapp: the address of whether it is application data

float idfdata[][3]: the 2 dimension array of idf data, if any. Each row includes 3
columns: low bound of interval, high bound, and probability for this interval.

int *pdfno: the address of the number of the pdf’s interval, if any.

float pdfdata[][3]: the 2 dimension array of pdf data, if any. Formation is the same as
that of idf

float *lobound: the address of the low bound

float *upbound: the address of the up bound
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int cdfno[]: the array for the number of cdf bounds

float cdfdata[][1025][3]: the 3 dimension array for cdf data

To support big size data, this package also provides an extended DLL, called
mypdfcdf 1.dll. This DLL does the same work as the original DLL, but the parameters of the
function are changed to support big size data. Its definition is as follows:

extern "C" __ declspec( dllexport ) void __stdcall mypdfcdf( int * idfno, int *
isapp, float idfdata[][3], int * pdfno, float pdfdata|][3], float * lobound, float *
upbound, int cdfnol], float cdfdata0[][3], float cdfdatal[][3])

Comparing it with the previous definition, only the last two parameters are different. In the
extended version, parameter cdfdata is split into 2 parameters. This will remove the
constraint the previous definition imposes of defining the size of array.

Although this function is defined in a “C++" file, it still requires the standard “C”
string in the declaration since this interface will be put into a DLL and called by another
language. So this interface has to be consistent with the requirement to use a “C” standard in
the declaration. On the Microsoft platform, there are three calling conventions:  cdecl,

_ fastcall, and __ stdcall. The different calling conventions define the different stack push
methods. We use only __ stdcall. Microsoft developer network (MSDN) gives detailed
information about how to make DLLs to be used by another language.

In this DLL, PDF information is often approximate and is derived from IDF format
for display purposes. CDF format has two sets of data: minimum probability and maximum
probability for the specified point on the horizontal axis. At most 64 bars are supported in the
DLL for PDF format. Probability will be assigned to these bars according to IDF data, so the
result for this transformation is approximate except when the IDF has no overlaps in it. The
following pseudo code describes how it works.

/* First get PDF from IDF */
If IDF no overlap then

Set lowbound as lowbound of first bar of IDF

Set highbound as highbound of last bar of IDF

Set PDF same as IDF
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Else
Number of bars <- max(number of bar of IDF, PDFMAX)
Set Lowbound as lowbound of frist bar of IDF
Set Highbound as highbound of last bar of IDF
Average Width of PDF bar <- ( Highbound — Lowbound) / Number of bars
Set low/high bound for every bar of PDF according to Lowbound and bar width
Assign the probabilities of PDF bars from IDF bars
End if
/* Then get CDFs from IDF, CDF1 contains data of high bound curve, CDF2 contains data of
low bound curve®*/
Number of bars of CDFs <- number of IDF +1
Lowbound of CDF1<- lowbound of each bar of IDF
Highbound of CDF2<-highbound of each bar of IDF
Order bars of CDF1 according to the lowbound of each bar
Order bars of CDF2 according to the highbound of each bar
Merge the same bars of CDF1 according to lowbound of each bar
Merge the same bars of CDF2 according to highbound of each bar
Set the highbound of each bar of CDF1
Set the lowbound of each bar of CDF2
Assign the probability to each bar of CDF1 based on IDF
Assign the probability to each bar of CDF2 based on IDF
Get the cumulative probability of each bar of CDF1
Get the cumulative probability of each bar of CDF2

5.5.2 General (legacy) simplex method
This package was inherited from the previous version. It uses the standard simplex

method to do linear programming. It was provided as a dynamically linked library. Its name
is max.dll. Its interface is defined as follows:

extern "C" _ declspec( dllexport ) double  stdcall Max( double* objective, double* x,
double* y, int m, int n);

Xie (1998) gave detailed information about this interface.
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5.5.3 Transportation simplex method
The transportation simplex method was implemented in this package. This package

also is provided as a dynamically linked library (DLL). The algorithm was discussed in the
previous chapter. In this part, we just focus on some details about design and
implementation.

This component is called t max.dll. The function is named T Max (please note
capitals in name). The full definition is listed as follows:
#ifdef  cplusplus

extern "C" _ declspec(dllexport) double  stdcall T Max(double *objective, double
*x, double *y, int m, int n)
#endif
Parameters:

double *objective: array for cost coefficient for every cell

double *x: marginal distribution for operand x

double *y: marginal distribution for operand y

int m: the number of bars for operand x

int n: the number of bars for operand y
This function’s definition is kept the same as the original interface called max. Xie (1998)
listed detailed information about its parameters. This function will return the maximum sum
of probabilities for cells specified by the parameter named objective. This DLL is stateless.
To call this function, parameters must be passed for every call although they are the same
except for the parameter called objective.

The transportation simplex method is implemented in a class called CTransport.

There is another utility class, called CConfigure in this package. Figure 4.4 shows the
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relationship between these classes.

CConfigure

#m/%:onﬁgure

CTransport

Figure 5.17. Class relationship for transportation simplex method.

Class CConfigure will read parameters from a configuration file to control the
transportation simplex method. Currently, there is only one parameter to control which
initialization method is used to get the initial feasible solution: Northwest corner method and

Russell approximation method.

CConfigure
h&zm_ConfigureFileName : char*

%< <virtual>> ~CConfigure()
SCConfigure()
®InitialConfigure()
SGetTermValue()

Figure 5.18. Class CConfigure.

Class CTransport implements the transportation simplex method. This figure shows

the flow of control:
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Figure 5.19. Flow of control for transportation Simplex implementation.

Handling degeneracy is a key part of this algorithm. Generally speaking, degeneracy
means the number of basic variables is less than M+N-1 for an MxN matrix. The reason for it
is a little complex. The number of basic variable is determined by the procedure for getting
an initial feasible solution. This number can’t be changed during subsequent iterations. So
the initial feasible solution is very important. Different initialization methods will produce
different initial feasible solutions. For example, the Northwest Corner approach is easy,
simple, and provides enough basic variables although maybe the value of some basic
variables is zero. Russell’s approximation method provides a good initial solution, which is
very close to the best solution, so subsequent computation will be lessened. But it may fail to
provide an initial feasible solution with enough basic variables. Two initial procedures were
implemented in this class: the Northwest corner method and Russell’s approximation
method. The Northwest corner method is the default method to get the initial feasible
solution. The user can choose Russell’s method as the initialization method through changing
a parameter in the configuration file. This is just a way provided for the advanced user who

knows what they are doing.

5.5.4 Incorporating correlation as a constraint
This package is in cor_min.dll. Four functions are provided in this package. They are

Cor Min, Cor Min_Exy, Cor Min_Exy S, and Cor Bound. The first 3 are used to operate

on random variables when correlation is set. Among these three, each subsequent one has a
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super set of functions compared with the previous one. The last one is used to get the
estimated range of possible correlations for the two operands.

The first three functions are defined as the follows:
extern "C"  declspec( dllexport ) double  stdcall Cor Min(double *pCost, float pX[][3],
float pY[][3], int mx, int ny, float LowBound, float HighBound);
Parameters:

double *pCost: array for cost coefficient for every cell

double *pX: 2 dimension array to contain every bar of operand x

double *pY: 2 dimension array to contain every bar of operand y

int m: the number of bars of operand x

int n: the number of bars of operand y

float LowBound: lowbound of correlation

float HighBound: highbound of correlation

extern "C" _ declspec( dllexport ) double _ stdcall Cor Min_Exy(double *pCost, float
pX[][3], float pY[][3], int mx, int ny, float LowBound, float HighBound, int
EXYManner,float *EXYLow,float *EXYHigh);
Parameters:
double *pCost: array for cost coefficient for every cell
double *pX: 2 dimension array to contain every bar of operand x
double *pY: 2 dimension array to contain every bar of operand y
int m: the number of bars of operand x
int n: the number of bars of operand y
float LowBound: lowbound of correlation
float HighBound: highbound of correlation
int EXYManner: indicate whether value of EXY set by the user is used
float *EXYLow: address of the lowbound of EXY
float *EXYHigh: address of the highbound of EXY
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extern "C" _ declspec( dllexport ) double stdcall Cor Min Exy S(double *pCost, float
pX[][3], float pY[][3], int mx, int ny, float LowBound, float HighBound, int
EXYManner,float *EXYLow,float *EXYHigh,long CallCount);
Parameters:
double *pCost: array for cost coefficient for every cell
double *pX: 2 dimension array to contain every bar of operand x
double *pY: 2 dimension array to contain every bar of operand y
int m: the number of bars of operand x
int n: the number of bars of operand y
float LowBound: lowbound of correlation
float HighBound: highbound of correlation
int EXYManner: indicate whether value of EXY set by the user is used
float *EXYLow: address of the lowbound of EXY
float *EXYHigh: address of the highbound of EXY

long CallCount: counter to count the time to call this interface

From the previous definitions, it is evident that more parameters are required for the later
functions. So the later functions have more functionality than the earlier ones.

The function to estimate the correlation range is not classified to other three. But they
all have some similarities and use some same utilities. So they are put together into a package

(DLL). Here is the interface of that 4™ function.

extern "C" _ declspec( dllexport ) int __ stdcall Cor Bound(float pX[][3], float pY[][3], int
mx, int ny, float *LowK, float *HighK, float *LowCor, float *HighCor, float *XValue, float
*Y Value);
Parameters:

double *pX: 2 dimension array to contain every bar of operand x

double *pY: 2 dimension array to contain every bar of operand y

int m: the number of bars of operand x

int n: the number of bars of operand y
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float *LowK: address to store the lowbound of possible EXY

float *HighK: address to store the highbound of possible EXY

float *LowCor: address to store the lowbound of possible correlation
float *HighCor: address to store the highbound of possible correlation
float *XValue: address to store the expectation and variance of operand X

float *Y Value: address to store the expectation and variance of operand Y

5.5.4.1 Class structure
This package provides 2 main functions: computing the possible correlation range

based on marginal distributions of operands X and Y; and getting CDF bounds’ values
according to the correlation setting. To perform these functions, there are 8 classes defined in
this package. They are COptimalMin, CConfig, CSimplex, CVariance, CMaxmin,
CBoundCorrelation, CMinCorrelation, and CMinCorrelationExy.

COptimalMin: getting the minimum value of the specified non-linear functions on the

specified variables range.

COptimalMin

i&zm_pLowBound : double*
i&sm_pHighBound : double*
&zm_plnitialValue : double*
i&zm_TotalDimension : int
¢<m_ErrorCode : int

¥ Optimization()

< <virtual>> ~COptimalMin()

S COptimalMin()

$<<virtual>> ObjectionFunctionValue()
$<<virtual>> ObjectionFunctionGrad()
®<<virtual>> PenaltyFunctionValue()
®<<virtual>> PenaltyFunctionGrad()
¥SampleMin()

Figure 5.20. Class: COptimalMin.
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CConfig: reading the configuration information from the configuration file: Statool.cfg.

CConfigure
f#@im_ConfigureFileName : char*

[Si<<virtual>> ~CConfigure()
[SiccConfigure()
[®iInitialConfigure()

[ SiGetTermValue()

Figure 5.21. Class: CConfigure.

CVariance: getting the min/max value of variance of random variable.

CVariance
E8m_pCoefficient : double*
B5m_Expectation : double
B8m_Variance : double

E¥CalculateMean()
E¥CalculateVariance()
[Si<<virtual>> ~CVariance()
[Sicvariance()
FSiROFValue()

I8ROF Grad()

F®OFValue()

[SIOFGrad()

FSPFvalue()
.P FGrad()
[SisetParameter()

SiGetMin()
[SiGetMax()

Figure 5.22. Class: CVariance.
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CSimplex: solving the linear programming problem using improved simplex method.

CSimplex
E2MAX LOOPNUMBER : long
B2 EAVE_EPS : double
=2 INVERSE_EPS : double
EZEPS : double
== m_pDebugFile : FILE*
B2 m_Version : short
“Z=m__Status : short
“Z=m_ pBuffer2 : double™*
“%==m_ pBuffer1 : double*
“Z=m_ PreviouslLeaveOrder : short
“Z2m__PreviousEnterOrder : short
“Z=m_ PreviouslLeaveVariable : short
“Z=m__PreviousEnterVariable : short
‘Z=m_LeaveOrder : short
“Z=m__EnterOrder : short
‘Z=m_LeaveVariable : short
‘“Z=m__EnterVVariable : short
Z=m_NumberofBasic : short
“Z=m_NumberofNonbasic : short
“Z2=m_BigConstant : double
‘“Z=m_plnverseB : double™*
‘“Z=m_pNonbasic : short*
‘Z=m_pBasic : short™
‘Z=m_pCost1 : double*
“Z=m_pW.i : double*
‘Z=m_pWi1l : double*
YZ=m_NumberofZeroCoefficient : int
«—mM_ErrorCode : int
<=tmM_Min : double
—m_pb : double*
—im_pCost : double™*
—m_pMatrixA : double**
«<mM_ NumberofVariable : short
—+m_ NumberofConstraint : short
<2mM_ pXSolution : double™
—im_CallCount : int

=¥IsLess()

¥ DetermineEnterVariable()

¥ DeterminelLeaveVariable()

¥ UpdatelnverseB()

¥ AdjustBasicNonbasic()

¥ GetMatrixAValue()

¥ HandleZeroCoefficient()
®<<virtual>> ~CSimplex()
LCSsimplex()
WGetCurrentSolution()
= GenerateResult()
WS etParameter()
LRuNLP()
SWChangeCostCoefficient()
= RecalculatelnverseB()
LWGetlnverseB()

Figure 5.23. Class: CSimplex.
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CMaxmin: getting the min/max value of the correlation formula.

CMaxmin

Y2z (m__pPenalty FunctionGrad)(double™, int) : double
“Zz=(m__pPenalty FunctionValue)(int*) : double
Yz (m_pObjectFunctionGrad)(double™) : double
Y2 (mM_pObjectFunctionValue)() : double
Yz=m_ pRholnitialVValue : double*

Yzrm_ pRhoHighBound : double*

Y%=m_ pRhoLowBound : double*

Y#z=m_ pYInitialVValue : double*

Y2=m_ pXlnitialValue : double™*

“%=m_ pYLowBound : double*

“Z=m_ pXLowBound : double*
‘Z=m_ pY HighBound : double*

Y2 __pXHighBound : double™

‘Z=m_ RhoCondition : char
‘Z=m_DimensionofX : int
hazsm__DimensionofY : int
Yz=m_ pY Coefficient : double*
Yzem__pXCoefficient : double*

Yz=m_ pCoefficient : double*

Y#=m_ plnitialValue : double*

Y%=m_ plLowBound : double*
Y%=m_pHighBound : double™*

‘Z=m_ TotalDimension : int

®CalculateXMean()
®CalculateYMean()
#,CalculateXVariance()
#,CalculateYVariance()
E¥FunctionValue()
E¥FunctionGrad()
E¥PenaltyFunctionValue()
E¥PenaltyFunctionGrad()
E¥ReverseFunctionValue()
E¥ReverseFunctionGrad()
=¥ ReversePenaltyValue()
E¥ReversePenaltyGrad()
E¥VarianceValue()
E¥VarianceGrad()
E¥VariancePenlaty ()
E¥ReverseVarianceValue()
E¥ReverseVarianceGrad()
TSetParameter()
TWGetMin()
TWGetMax()
WS etInitialValue()
WGetSolution()
WGetVVarianceMin()
WGetVVarianceMax()
¥ Optimization()
W< <virtual>> ~CMaxmin()
WCMaxmin()

Figure 5.24. Class CMaxmin.
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CBoundCorrelation: getting the possible correlation range for two operands.

CBoundCorrelation

&%m_Rows : int
E%m_Columns : int
izzm_pCost : double®
iEs(*m_pX)[3] : float
i&z(*m_pY)[3] : float
hzzm_NumberofX : int
hzzm_NumberofY : int
i&zm_pb : double*
i&zm_pMatrixA : double®
izzm_FunctionXBound[2] : double
i&zm_FunctionYBound[2] : double
i&zm_ErrorCode : int

«m_YV[2] : double

«m_YE[2] : double

«m_XV[2] : double

«m_XE[2] : double

«m_BoundEXY[2] : double

«m_BoundCorrelation[2] : double

E¥Multipy Intenval()

E¥GetMultipyBound()

@¥InitialMaxmin()
®FindBoundEXY()
$FindBoundCorrelation()
$<<virtual>> ~CBoundCorrelation()
¥ CBoundCorrelation()
¥SetParameter()
®FindXYEVValue()

Figure 5.25. Class: CBoundCorrelation.
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CMinCorrelation: getting the minimum value for specified correlation setting.

CMinCorrelation
%»m_Rows : int
i%zm_Columns : int
zm__MeanX[2] : double
zm_MeanY[2] : double
E=m_DXY[2] : double
%zm_AdditionalConstraints : int
f%»m_pCost : double*
22 (*m_pX)[3] : float
=z2(*m_pY)[3] : float
iZ»m_NumberofX : int
i%»m_NumberofY : int
%»m_pb : double*
Yezm__pMatrixA : double*
Y2zm_LowCorrelation : double
%zm_HighCorrelation : double
%zm_pVariableLowBound : double*
%zm_pVariableHighBound : double*
%z=m_FunctionXBound[2] : double
%=m_FunctionYBound[2] : double
%zm_ErrorCode : int
i%zm_IsCorrelation : int
<m_MinValue : double

HFEMultipy Interval()
¥ CalculateMean()
¥ GetMultipyBound()
f#¥CalculateFunctionBound()
F¥InitialMaxmin()
®<<virtual>> ~CMinCorrelation()
®WCMinCorrelation()
WSetParameter()
WRunforMin()
®|ContinueRunforMin()

Figure 5.26. Class: CMinCorrelation.
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CMinCorrelationExy: getting the minimum value for specified correlation or expectation of

XY setting.

CMinCorrelationExy
kzm_EXYHigh : float
i&zm_EXYLow : float
i&zm_EXYManner : int

#<<\irtual>> ~CMinCorrelationExy()
®CMinCorrelationExy()
¥SetParameter()

$RunforMin()

$GetEXYBound()

Figure 5.27. Class: CMinCorrelationExy.

5.5.4.2 Class relationships

In these classes, classes CBoundCorrelation, CMinCorrelation and
CMinCorrelationExy are control and boundary classes, which interface with other packages
or the caller and also manage the flow of logic. Classes CConfig, COptimalMin, and
CSimplex are utility classes, which solve a specified problem. Classes CMaxmin and
CVariance the specified functions. The following figure shows the relationship between these

classes.

COptimalMin
————

CConfigure

CMaxmin

CVariance

(i
CSimplex
—— %
1 hi _
#mNvariance - o i 7
e
#m implex
//
e O
CMinCorrelation
I
[

CBoundCorrelation ‘

CMinCorrelationExy
I |
[ |

Figure 5.28. Class diagram.
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5.5.4.3 Sequence diagrams
In this package, there are 4 interfaces: three are used to find the minimum value based

on the correlation setting, and the last one is used to find the possible range of correlation.
Interface Cor Bound is implemented in function Cor Bound in file cor min.cpp. The

following figure shows the sequence diagram:

Interface:Cor B : CSimplex : CMaxmin : CVariance

ound CBoundCorrelation

‘ SetParameter(@qt, float, int, int)
FindBoundEXY (

SetParameter inq, int, double**, double*, double*
RunLP()

SetParameter(i+t, int, double*, $ouble*, double®)

GenerateResult(

FindBoundCorrelation( )
InitialMaxmin( )
T

GetMin( ) ! Optimization(double*)
5 |
GetM .
© ax()i Optimjzation(double*)
FindXYEVValue( SetParameter(int, floht) ‘
Il Il L
caing) | 5
etMin() Optipization(double®)
| | <
GetMax
} O } Optintization(double*)
P—
SetParameter(int, ﬂoLt) L]
‘ GetMin( ) ‘ _ .
| O zation(double™)
P—
GetMax( ) . .
O zation(double*)
| <

Figure 5.29. Sequence diagram for Cor_Bound.
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As previously said this software supports 3 types of correlation information setting:
direct correlation, EXY setting, and X*Y information setting. Interfaces Cor Min,
Cor Min_Exy and Cor Min Exy S, are implemented in file cor min.cpp. Cor Min is the
simplest one of three, and supports only setting the correlation. The sequence diagram is

shown as follows:

Interface: o : CMaxmin : CSimplex
Cor_Min | CMinCorrelation

SetParameter(double*, float, float, int, int, float, float)

)

L RunforMin( ) ‘

Multlpylnterval kt int) ‘
CalculateMear( ‘
InitialMaxmin(,)
etParameter(lr‘\t int, double*, double*, double*)
GetMin( )
SetlnitialValue( )
5Optlmlzatlon double*)
<
GetMax( )
SetlnitialValye( )
< .
Optimization(double*)
<
SetParameter‘(nt int, double , double*, double*)
RunLP() ‘
DetermineEnterVariable( )
| < |
DetermineLeaveVariable( )
=
RecalculatelnverseB( )
<=
‘ UpdatelnverseB( )
<=
‘ AdjustBasicNonbasic( )
<= _
‘ GetCurrentSolution( )
=
GenerateL?esuIt
|

T*
|

Figure 5.30. Sequence diagram for Cor_Min.
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Cor_Min_Exy supports not only setting the correlation, but also setting EXY and
setting X*Y. It is a stateless interface. There is no relationship between successive callings.

The following figure shows the sequence diagram.

Interface: o : CMaxmin : CSimplex

Cor_Min | CMinCorrelationEx

SetParameter(double*, float, float, int, int, float, float) o
: : SetParameter(double*, fleat] float, int, int, float, float)

CMinCorrelation

RunforMin( ) T

Multipy Interval(int, int)

E—

CalculateMean( )

P

InitialMaxmin(

)

GetMin( )

1

SetlnitialVaIueL )

Optimization(double*)

1

GetMax( ) j
SetlnitialValue( )

|

etParameter(iTut, int, double*, Touble*, double*)

Optimization(double®)

1

e*)

RunLP()

DetermineE ntLrVariabIe( )
:I.
DetermineLea
<

Recalculateln%rseB( )
=

UpdatelnverseB( )

—

AdjustBasicNonbasic( )

Variable( )

GetCurrentSolution( )

1

SetParametek(int, int, double*l, double*, doub
I

Generateﬁesult( ) T

\
GetEXYBognﬁ(ﬂoat*, float*) ‘

Figure 5.31. Sequence diagram for Cor_Min_Exy.
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Cor Min Exy S is a state-retaining version of Cor Min_Exy. In this interface, a call
may use information from a previous call to speed computation time. The following figure

shows the sequence diagram.

‘ Interface: : CSimplex

o : CMaxmin
Cor_Min | CMinCorrelationE

SetParameter(double®, float, float, int, int, float, float) o
: ! | SetParameter(double*, flat] float, int, int, float, float)

CMinCorrelation

RunforMin() T
‘ Multipy Interval(int, int) ‘ ‘
=1
CalculateMea‘w( ) ‘ ‘
=1
InitialMaxmin(|)
etParameter(int, int, double*, double*, double*)
GetMin( ) "
SetlnitialValue( )
Optimization(double*) ‘
GetMax( )
L SetinitialValde( )

Optlmlzatlon(Fouble*)

le*)

RunLP( )

DetermineEnterVariable( )

|

DetermineLeaLeVariable( )

I

Recalculateln*erseB( )

|

UpdatelnverseB( )

|

AdjustBasicNLnbasic( )

|

SetParameteF{; nt, int, double"T, double*, doubl

GetCun’entS%lulion( )

|

Generate%esult( ) T

GetEXYBognd float*, float*) ‘
ContinueRunﬁJrMin(double*) ‘ ‘
‘ Cha%geCostCoefﬁcie t(double*, int)
‘ GetlnverseB(
‘ It( )

‘ % RunLP( )
GetEXYBoggdfﬂoat‘, float*) ‘ ‘

]

|

!

ngerateResu

Figure 5.32. Sequence diagram for Cor_Min_Exy S.
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6 Explanation of the results

All our experiments were conducted on the compiled version of Statool and DLLs
using Visual Basic 6.0 and Visual C++ 6.0. The running platform was windows 2000
professional. The machine had 256M memory and the CPU ran at 1000Mhz.

Our experiments focus on checking three issues: the accuracy of results, the effect of
correlation, and speed. Changing the accuracy of operands will affect the accuracy of results.
Different correlations will change the shapes of results. Increasing the number of intervals

will take more time to compute.

6.1 Experiments
The operand X, a random variable, was given a uniform distribution from 1 to 9. The

operand Y, another random variable, was given a tail-trimmed normal distribution from 2 to
10, whose mean was 6 and variance 1. This range almost covers all the probability for Y. A
small amount in the tail was omitted. We discretized the supports of X and Y into 16, 32, 64
intervals, then used the discretized X and Y as the inputs to operations. Results of operations
showed the accuracy changing for different discretizations. At the same time, correlation was
set to different values to check the effects. 4 operations were executed in these experiments.
They are plus, minus, multiply, and divide.
The following figures show the results for different number of intervals in the

operand discretizations when doing addition of X and Y with correlation zero.

L o 0 0 o g i o

e s Se s S s e Se e 2 Sy st Shen Soaine s TG Sean S Ses
BT e b e e e b e e b
| | H

B T e e T e T

[ Y R T IS TPy U S IO
B e T B S A S P e gty ol o gt Bty oy e sty o oty
=S| PR . ' : ;
R o s e e e e e S e R e s e e e s e S e S

a0

1.000 3000 5.000 T.000 a.000 1.000 13.000 15,000 17.000 13.000 21.000

Figure 6.1. X+Y when X and Y are 16 intervals.
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Figure 6.2. X+Y when X and Y are 32 intervals.
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Figure 6.3. X+Y when X and Y have 64 intervals.
From these three figures, it is clear the results will become better when the
discretization of the operands is increased.
Next, we show figures illustrating the effect of correlation. For this case, we let X and

Y have 64 intervals, and set correlation to four values: unknown, 0.98, 0, and -0.98.
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Figure 6.4. X*Y for unknown.
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Figure 6.5. X*Y for correlation 0.98.
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Figure 6.6. X*Y for correlation 0.
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Figure 6.7. X*Y for correlation -0.98.

From these figures, bounds of curves can be affected by the correlation. For unknown
correlation, the widest bound curves will be gotten. Compared with correlation 0, the high
bound curve for correlation 0.98 is changed and the low bound curve for correlation -0.98 is
changed.

The computing speed is also a factor to be considered. We did the different operations
for different discretizations. We checked whether the different operations would affect the
speed and what was the relationship among the computing times for the different

discretizations.

Table 6.1. Operation evaluation time (seconds) for correlation 0.

Intervals in

discretization

(XxY) addition | subtraction | multiplication | division | max min
16x16 1 1 3 5 1 1
32x32 22 26 154 328 13 11
64x64 3636 3297 52317 | 148173 1083 866

From this table, the times for plus, subtraction, max and min have the same level.
Operations for multiplication and division will cost more time. Especially, division will cost
2 times multiplication. The following figure shows the times for operations: addition,

subtraction, max and min.
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Figure 6.8. Times for operations.

This figure shows the times for multiplication and division.
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Figure 6.9. Times for multiplication and division.
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6.2 Discussion
Two improvements will be considered in the future: getting narrower bounds from

correlation and decreasing the computing time for discretizations with many intervals. Linear
programming problems have more than 4000 variables for a 64x64 discretization. So it is a
big problem for linear programming. It is possible to decrease computing time if another

linear programming method, whose speed is faster, or a parallel algorithm.
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