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Abstract 
 

Uncertainty exists frequently in our knowledge of the real world. Probability is a 

common way to measure uncertainty. People sometimes define random variables whose 

values are derived from arithmetic operations on other random variables. Generally there are 

two classes of methods to handle this topic: analytical and numerical. Analytical methods are 

restricted to specific classes of input distributions. Numerical methods only give numerical 

results and are widely used in real applications if approximate results can be accepted.  

Monte Carlo simulation is one of the best-known numerical methods. However the 

traditional approach of Monte Carlo has some limitations. Interval-based dependency 

analysis (DEnv) was developed by Berleant and Goodman-Strauss. Another approach is the 

copula-based approach. These two methods have been implemented in software. The copula-

based approach is implemented in the commercial software RiskCalc. DEnv is implemented 

in Statool.  

The current Statool supports a variety of dependence relationships: independence, 

unknown dependence, and specific correlation values. The algorithm extension to support 

correlation is a significant improvement. The current version of Statool uses the 

transportation simplex method to speed up computing. Cascaded operations, relational 

operations and monotonic binary functions are newly supported by the current Statool. These 

new functions, and using correlation as constraints, are the main advances in Statool.  

This software is based on a layer design including the user interface, the logical layer, 

and the computing layer. This is suitable for implementation and maintenance of distributed 

and other computing software. OO methods are adapted. Unified Modeling Language (UML) 

gives visualization and documentation support for the computing layer. The main algorithms 

are implemented in many objects. Currently it is developed for a Microsoft Windows 

platform. Visual C++ and Visual Basic were used for development. Dynamically linked 

libraries are used to contain the components of the computing layer. 
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1 Introduction 
Uncertainty exists frequently in our knowledge of the real world. Handling 

uncertainty is therefore a common problem. Probability is a common way to measure the 

level of uncertainty. Probability density functions (PDF) or their integrals, cumulative 

distribution functions (CDF), are often used to model the uncertainty in the value of a 

quantity. Often, uncertainty can be stated by using a random variable. But this is not enough. 

People some times define random variables, whose sample values are derived from 

arithmetic operations on the values of other random variables.  

Binary operations are very basic and common operations. When two random 

variables are operated on to derive a new random variable, the distribution to describe this 

random variable is termed a derived distribution (Springer, 1979). Such operations are well 

recognized in many fields, such as decision analysis and risk analysis, and many other fields 

as well.  

A variety of methods have been developed to address this topic. Generally there are 

two classes of methods to handle it: analytical and numerical. Analytical methods are 

restricted to specific classes of input distribution, under assumptions, such as independence. 

For example, normal distributions are often used. If two random variables are normal and 

independent, the sum of these two random variables still is normal. It is also possible to 

obtain derived distributions for specified dependency relationships other than independence, 

such as perfect positive rank correlation. However, it is often not easy to find analytical 

results for random variable operations and it is not always reasonable to make convenient 

assumptions about dependency. Sometimes, we don’t have any information about 

dependency. But an advantage of analytical methods is accurate result. Unlike analytical 

methods, numerical methods only give numerical results. But this is suitable for a wide class 

of distributions. Numerical methods are widely used in real applications if approximate 

results can be accepted within specific tolerances.   

Monte Carlo simulation is one of the best-known numerical methods.  However, the 

traditional approach of Monte Carlo has some limitations. It assumes the distribution of the 

random variables is known, and their relationship is independent or known (Ferson 1996). If 

either the probability distributions or the dependency relationship of the random variables are 
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not available, some assumptions are usually made to process it. If the assumptions don’t 

hold, results can be seriously affected.  

A discretized convolution approach can be used to calculate the result for the 

independent situation (Ingram et al. 1968; Colombo and Jaarsma 1980; Kaplan 1981).  

Interval analysis can be used to solve this problem. (It is obvious that interval numbers will 

be really close to point values if the interval is narrow enough.) Interval mathematics can 

then be applied (Moore, 1966).  

Intervals have the potential for bounding the result of an operation. Discretization 

error coming from discretizing distributions may be bounded by interval based discretization 

(Berleant 1993). If the dependency is not specified, result bounds will include the entire 

range of possible dependencies. These bounds should be wider than if a particular 

dependency is specified. Interval-based dependency analysis is developed by Berleant and 

Goodman-Strauss (1998). This approach has fundamental similarities with the copula-based 

approach (Frank et al. 1987), which was significantly extended by Williamson and Downs 

(1990). These two methods have been implemented in software. The copula-based approach, 

termed probabilistic arithmetic, is implemented in the commercial software RiskCalc (Ferson 

et al. 1998). DEnv is implemented as Statool (Berleant and Goodman-Strauss 1998), which 

extends the previous tool (Berleant and Cheng 1998) through eliminating the independence 

assumption. Statool can handle the case where a dependency relationship is unknown or 

unspecified, by not making any assumption about the dependency relationship between 

operands. But partial dependence information might be available in some cases. If we can use 

this information in the calculation, we will get more accurate results than can be obtained 

without using this information. 

The current Statool supports a variety of dependence relationships, such as 

independence, unknown dependence, and correlation values. The algorithm extension to 

support correlation is a significant improvement. The current version of Statool uses the 

transportation simplex method to speed up computing. Cascaded operations and monotonic 

binary functions are supported by the current Statool. These new functions, and using 

correlation as a constraint, are the main advances in Statool. Among the other contributions 

reported here are addressing example application problems. 
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1.1 Interval mathematics 
Interval mathematics was developed by Moore (1966). Compared with the real 

domain, let us see what interval arithmetic and analysis are. 

An interval value is composed of 2 real numbers, which are called the low bound and 

high bound. For example, given interval value X=[a,b], a and b are real numbers, and a is the 

low bound and b is the high bound. Thus, we can see that an interval value in the interval 

system corresponds to an interval in the real system. If a is equal to b, this interval value is 

the real number a.  Or you can use set theory to describe the interval X=[a,b]. We can define 

it as a set X={x: a<=x<=b}. Next, we will define how to describe the relationship between 

two interval values. If we say [a,b]=[c,d], it means a=c and b=d. if [a,b]<[c,d], it means b<c.  

Interval arithmetic includes addition, subtraction, multiplication and division. Here 

X=[a,b] and Y=[c,d] are two intervals. The following gives the definition for arithmetic 

based on the set definition for intervals.  

},:{ YyXxyxYX ∈∈⊗=⊗  

where ⊗  is in +,-,*,/. 

Clearly, X+Y = [a+c,b+d] and X-Y = [a-d,b-c]. Multiplication is a little more complex. 

X*Y=[min(ac,ad,bc,bd), max(ac,ad,bc,bd)]. And division is even more complex. First, note 

that Y doesn’t include zero. 

1/Y = [1/d,1/c] if 0∉ Y 

X/Y = X* (1/Y) if 0∉ Y 

If Y is an interval including zero, X/Y should be [-∞, ∞] if the interval system includes 

infinites as allowable endpoints.  

Interval arithmetic also includes the following characteristics: 

• Set Rule 

– (V∪W) ±Z = (V±Z) ∪(W ±Z) 

• Rule for the addition and subtraction of infinite or semi-infinite intervals 

– [a,b]+[-∞,d] = [-∞,b+d] 

– [a,b]+[c, ∞] = [a+c, ∞] 

– [a,b] ±[-∞,∞] = [-∞,∞] 

– [a,b]- [-∞,d] = [a-d,∞] 
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– [a,b]-[c,∞] = [-∞,b-c] 

• Associativity and Commutativity 

– X+(Y+Z) = (X+Y)+Z 

– X*(Y*Z) = (X*Y)*Z 

– X+Y = Y+X 

– X*Y = Y*X 

Unlike in real arithmetic, operations are not invertible, which means there is no inverse 

operation existing for a given operation. For the real domain, we know + and – are inverse 

operations, but in interval mathematics, this is not true.  

In interval analysis, interval functions form a major topic. An interval function F is an 

interval-valued function of one or more interval arguments. For a real-valued function f of 

real variables x1,…,xn, if we have an interval function F of interval variables X1,…Xn, and 

if  F(x1,…,xn) = f(x1,…,xn) for all xi(i=1,…,n) then F is an interval extension of f. Interval 

functions have the following characteristics: 

Inclusion monotonicity  

• If Xi⊆ Yi ( i=1,…,n) then F(X1,…,Xn) ⊆ F(Y1,…,Yn). 

 

Arithmetic inclusion monotonicity 

• If op denotes +,-,*, or /, then Xi⊂ Yi (i=1,2) implies (X1 op X2) ⊂(Y1 

op Y2) 

Excess width is a big problem in interval mathematics. Let us use a simple example to 

explain this problem. For interval value X=[a,c], what is the result for X-X? In naïve interval 

arithmetic, the result is not zero, but [a-c,c-a]. Zero is just one real number included in this 

result. Obviously it is really not our expected result since it is too wide. For functions, an 

interval function extension need not be unique, but can depend on the form of the real 

function. For example, there may be three expressions corresponding to the same real 

function: 

•  f1(x) = x*x – x +1, f2(x) = (x-1/2)2 + ¾, and f3(x) = x*(x-1) + 1. 

• The corresponding interval extensions are: 

•  f1(X) = X*X – X +1, f2(X) = (X-1/2)2 + ¾, and f3(X) = X*(X-1) + 1. 
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• These don’t represent the same interval function, as: 

•  f1([0,2]) = [-1,5], f2([0,2]) = [3/4,3], and f3([0,2]) = [-1,3]. 

• The true range of f ([0,2]) is [3/4,3] computed by the interval function 

f2, because x appears only once. 

• This is referred to as the dependency problem or excess width. 

• It enlarges intervals in the result collection. 

The reason why excess width occurs is that a variable occurs more than one time in 

expression. So far, many methods have been developed to address this issue. Some methods 

are as follows. 

• Various centered forms: 

– Computing the range of values (Asaithambi, Zuhe, and Moore,1982) 

– Enclosure methods (Alefeld, 1990) 

– Artificial intelligence work (Hyvonen, 1992) 

Computation time tends to be a problem with these excess width removal techniques. To 

apply interval analysis, the following guiding principles should be considered. (Walster 

1998): 

– “Interval algorithms should bound error” 

– “Interval input/output conventions should be consistent with people’s normal 

interpretation of numerical accuracy” 

– “The application of interval algorithms should be universal” 

– “Where interval algorithms currently do not exist, we should get to work 

developing them rather than abandoning the principle of universal 

applicability” 

1.2 Interval-based analysis 
An interval can be used to bound the range for a value. If this interval is associated 

with a specified probability, as when the domain of a random variable is partitioned, we have 

lost information about probability distribution in this interval. The partitioning of the domain 

of a random variable into intervals and probabilities is the basis for extending binary 

operations from intervals to distributions.  
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At this point, we only consider the binary operations. We can extend binary 

operations and later we will talk about how to do this. Assuming there are 2 random variables 

X and Y, to get the exact distribution for the result of operation, we must know the joint 

distribution for random variables X and Y. The joint distribution is related to the correlation 

for these two random variables.   Let us see an example. 

Consider two random variables X and Y. This table shows their distributions.  

Table 1.1. Distributions for X and Y. 

                X              Y 

Range [1,2] [2,3] [3,4] [2,3] [3,4] [4,5] 

Probability 0.25 0.5 0.25 0.5 0.3 0.2 

 

We don’t have any information about distribution within these ranges. And we also don’t 

have any information about the dependency relationship between X and Y. Obviously, we 

don’t know the joint distribution for X and Y. 

Consider addition: Z=X+Y. Because we don’t have the joint distribution for X and Y, 

it is impossible to find the exact result for Z.  Now we put these two random variables into a 

matrix shown in the following table. 

Table 1.2.  Marginal distribution for X and Y. 

]5,3[∈z  

?11 =p  

]6,4[∈z  

?12 =p  

]7,5[∈z  

?13 =p  

]3,2[∈y  

5.01 =Yp  

]6,4[∈z  

?21 =p  

]7,5[∈z  

?22 =p  

]8,6[∈z  

?23 =p  

]4,3[∈y  

3.02 =Yp  

]7,5[∈z  

?31 =p  

]8,6[∈z  

?32 =p  

]9,7[∈z  

?33 =p  

]5,4[∈y  

2.03 =Yp  

]2,1[∈x  

25.01 =Xp  

]3,2[∈x  

5.02 =Xp  

]4,3[∈x  

25.03 =Xp X
↔

      
Y
b

 

 

The last row in the table is the distribution for X and last column is the distribution 

for Y. We don’t know the value for cells p11 through p33 because we don’t know the joint 
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distribution. For the simple case, if X and Y are independent, we can fill in the missing 

values as in the following table.  

Table 1.3. Joint distribution for independency. 

]5,3[∈z  

125.011 =p  

]6,4[∈z  

25.012 =p  

]7,5[∈z  

125.013 =p  

]3,2[∈y  

5.01 =Yp  

]6,4[∈z  

075.021 =p  

]7,5[∈z  

15.022 =p  

]8,6[∈z  

075.023 =p

]4,3[∈y  

3.02 =Yp  

]7,5[∈z  

05.031 =p  

]8,6[∈z  

1.032 =p  

]9,7[∈z  

05.033 =p  

]5,4[∈y  

2.03 =Yp  

]2,1[∈x  

25.01 =Xp  

]3,2[∈x  

5.02 =Xp  

]4,3[∈x  

25.03 =Xp  X
↔

      
Y
b

 

 

Thus, we can see that the joint distribution is affected by the dependency relationship 

between X and Y. If we don’t know the relationship between X and Y, we can’t determine 

the joint distribution in this matrix. But we can infer some things about the result variable 

from this matrix. For example, consider z=5. It only occurs in the following grey cells. 

Table 1.4.  Joint distribution for specified value. 

]5,3[∈z  

?11 =p  

]6,4[∈z  

?12 =p  

]7,5[∈z  

?13 =p  

]3,2[∈y  

5.01 =Yp  

]6,4[∈z  

?21 =p  

]7,5[∈z  

?22 =p  

]8,6[∈z  

?23 =p  

]4,3[∈y  

3.02 =Yp  

]7,5[∈z  

?31 =p  

]8,6[∈z  

?32 =p  

]9,7[∈z  

?33 =p  

]5,4[∈y  

2.03 =Yp  

]2,1[∈x  

25.01 =Xp  

]3,2[∈x  

5.02 =Xp  

]4,3[∈x  

25.03 =Xp X
↔

      
Y
b
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As previous stated, we don’t know the exact probability for z<=5. But we can think 

about what are the possible probabilities for z<=5. As this matrix shows, only grey cells 

contribute to the probability of z<=5. We would like to determine the maximum probability 

and the minimum probability. To get the maximum value, all cells in which Z can be <= 5 

will have their probabilities summed. To obtain the minimum value, only cells, in which Z 

must be <= 5, will have their probabilities summed. For example, considering cell 12p  

for }5{ ≤Zp , when we calculate the maximum value, this cell must be counted because Z 

can be <= 5 in this cell. But for the minimum value, we don’t count this cell because Z might 

not <= 5 in this cell. This way, we can find the possible range of cumulative probabilities for 

various values of Z. We can find the maximum possibility and minimum possibility for every 

value of Z and connect all these points to get 2 curves: a top curve and a bottom curve. All 

the CDFs that are possible for Z, must belong between these two curves. 

In this example, Z’s range is from 3 to 9. It is clear that the probability for Z<3 is zero 

and for Z>9 is 1. The following part discusses the probability of 4≤Z . 

Maximum: We try to find all the cells in which this situation may occur. From the 

previous table, these cells are 11p , 12p , and 21p . So the maximum value should be the 

maximum value for the sum of 11p , 12p , and 21p .  

Minimum: To obtain the minimum, we will find all the cells in which Z must be <= 4. 

In this table, there are none. Although 11p , 12p , and 21p  may satisfy 4≤Z , they also might 

not. For example, the whole probability for the cell might be concentrated at the high bound 

of its range. So there is no cell in which Z must be <= 4. 

Summarizing the above analysis, we can define a way to tell which cells contribute to 

the maximum and minimum probability values.  

Maximum: all the cells in which the low bound is not greater than the value of Z 

contribute to the max value. 

Minimum: all the cells in which the high bound is not greater than the value of Z 

must contribute to the min value. 

After finding all the cells satisfying the max (or min) condition, we will calculate the 

sum of the probabilities of these cells. Based on the previous table, there exist constraints for 

the probabilities Pij. It is clear that the sum of the Pij’s in a row or column can’t go over the 
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marginal probability of that row or column. These constraints can be described as follows: 

Row Constraints: Yi
j

ij pp =∑
=

3

1
 for i=1 to 3 

Column Constraints: Xj
i

ij pp =∑
=

3

1
 for j=1 to 3 

Therefore, the question becomes: find the maximum and minimum value for the sum of cells 

under these constraints. For the case 4≤Z , we can describe these questions using 

mathematically:  

 

Maximum - make the sum of the specified cells’ value big enough, that is, find 

max ( 11p + 12p + 21p ) 

such that: 

Yi
j

ij pp =∑
=

3

1

 for i=1 to 3  

and Xj
i

ij pp =∑
=

3

1
 for j=1 to 3. 

 

Minimum - make the sum of specified cells’ value small enough, that is, find 

min (∑∑
= =

3

1

3

1
*0

i j
ijp ) 

such that: 

Yi
j

ij pp =∑
=

3

1
 for i=1 to 3  

and Xj
i

ij pp =∑
=

3

1
 for j=1 to 3 

For these two optimization questions, linear programming is the best tool to find the 

solution. This way, we can find the probability range for the specified value of Z. The 

following table shows the probabilities for various values of Z. 
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Table 1.5. Probabilities for result variable. 

Z range Maximum probability Minimum probability 

Z<3 0 0 

Z<=3 0.25 0 

Z<=4 0.75 0 

Z<=5 1 0 

Z<=6 1 0.25 

Z<=7 1 0.55 

Z<=8 1 0.8 

Z<=9 1 1 

Z<=10 1 1 

  

From this table, we can draw two curves, a top curve and a bottom curve, using the 

maximum and minimum probabilities shown Z value. These two curves also can be called 

envelopes for the CDF of derived variable Z because the CDF for derived variable Z must be 

between these 2 curves whatever the relationship between X and Y is. This figure shows the 

final result. 

 

Figure 1.1. Probability bounds 
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2 Narrowing the envelopes around results using 
correlation 

In the previous chapter we noted an important factor: correlation. If one knows 

something about correlation, it would be good to be able to use it. We describe how next. 

2.1 Facts about correlation 
Correlation is used to measure the degree of correspondence between random 

variables. To describe this kind of relationship, there are a number of methods. For example, 

we can consider the linear relationship between two random variables, or the square 

relationship. Currently, the most popular correlation coefficient is called Pearson correlation 

or product-moment correlation. It is used to measure the strength of the linear relationship 

between two random variables. It is defined as 

( )( )[ ]
)()( YDXD
EYYEXXE −−

=ρ  

Here D(X) is X’s variance and D(Y) is Y’s variance. E means expectation. 

It is clear that 11 ≤≤− ρ . Correlations can be classified into 3 types:  

positive correlation ( 0>ρ , meaning there is a direct linear correlation between the R.V.’s), 

negative correlation ( 0<ρ , meaning there is an inverse linear correlation between the 

R.V.’s), and no correlation ( 0=ρ , meaning there  is no apparent linear correlation between 

the R.V.’s). There also are 2 special cases: perfect positive correlation ( 1=ρ ) and perfect 

negative correlation ( 1−=ρ ). For perfect positive correlation, we can get: 

• P[Y=aX+b]=1, for some b and some a > 0. 

• When X takes on its largest value, Y also does. 

For perfect negative correlation, we can get: 

• P[Y=aX+b]=1, for some b and some a < 0. 

• When X takes on its largest value, Y has its smallest value. 



 12

2.2 Joint distributions 
A joint distribution is used to describe the detailed dependency between two R.V.’s. 

From the joint distribution, we can get the correlation. But correlation doesn’t imply a 

specific joint distribution, so we can’t get the joint distribution from a value of correlation, in 

general.  

2.3 Interval-valued correlations 
When the correlation is unknown we use linear programming to find CDF envelopes. 

If we know the correlation for two operands, we would like to use it to determine additional 

constraints for the linear programming problem. In another words, we wish to decrease the 

feasible solution space and get a better solution. 

According to the definition of correlation, for two random variables x and y, the 

correlation is  

])([])[(
)])([(

)()(
)])([(

22 yEyEExxE
EyyExxE

yDxD
EyyExxE

−−

−−
=

−−
=ρ  

Where Ex   and Ey  are the means for variable x and y. 

Using the following formulas, we can reduce (1): 

EyExExyEyExEyExExEyExy
EyExxEyyExxyEEyyExxE
****

]*[)])([(
−=+−−=

+−−=−−
 

Also, 

22

222

)(
**2]*2[])[(

ExEx
ExExExExExExExxExxEExxE

−=

+−=+−=−
 

 So previous formula becomes 

))()()((
*

])([])[(
)])([(

222222 EyEyExEx
EyExExy

yEyEExxE
EyyExxE

−−

−
=

−−

−−
=ρ  

Using the definition of mean, when variable x is discrete, 

∑=
i

ii pxEx *  where  iii pxxp == )(  

When variable x is continuous, and has density function f, then 

∫= dxxxfEx )( . 
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In the DEnv algorithm, we don’t care if a random variable is discrete or continuous. 

We use bars to discretize the distribution. This method has the following characteristics: 

1. Bars may overlap. 

2. Histograms are a special case of collections of bars. 

3. A bar describes the probability of an interval containing the value of a variable. 

4. No assumption is made about the distribution over the interval of bar. 

We now extend the definition of mean to intervals. We can handle it like the discrete 

case. So  

∑=
i

ii PXEX *  where iii PXxP =∈ )( .  

It’s clear that the mean of variable x must be in EX. 

When x is continuous, we also can get the mean based on the following argument. 

 
 
 
 
   
 
 

Consider some bar in the discretization of variable x whose distribution function is 

f(x). The probability that it is in [a,b] is the area of f(x) between a and b.  

∫=≤≤
b

a

dxxfbxaP )()(  

We can partition the domain of variable x into many intervals such as this one, 

denoting them Xi. These intervals do not overlap. They together will cover the range for 

variable x.  So the mean of variable x becomes 

∑∫∫ ==
i

Xi
dxxxfdxxxfEx )()(  

Consider one item in the previous formula, assuming Xi is [a,b] as in the previous figure. 

ibababaX
padxxfadxxafdxxxfdxxxf

i

*)(*)()()(
],[],[],[

==≥= ∫∫∫∫ . 

Similarly, we also get 

a b
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ibababaX
pbdxxfbdxxbfdxxxfdxxxf

i

*)(*)()()(
],[],[],[

==≤= ∫∫∫∫ . 

So, dxxxf
iX∫ )(  must belong to Xi*pi. So, Ex contains the mean of interval variable X. 

If the intervals overlap, the width of the mean is wider than in the non-overlapped 

case. So the mean of the non-overlapped intervals is a subset of that of the overlapped 

intervals. Thus the Ex belongs to mean of interval variable X in this case too. 

Here is how we use this result. If any intervals overlap, it means at least two intervals 

overlap. We know the left endpoint for one interval is not bigger than that of the non-

overlapped condition and the right endpoint for one interval is not less than that of the non-

overlapped condition.  

2.4 Legal and illegal correlation values 
In the current software, the user can input any value of correlation from –1 to 1. But 

in fact, for some marginal distributions, there are correlation values which will not be 

exhibited by any joint distribution. In fact, the constraints coming from setting correlation to 

an impossible value should be conflict with the constraints coming from the marginals of the 

joint distribution matrix.  

From the definition of correlation, we can get this formula for Exy: 

))()()((* 2222 EyEyExExEyExExy −−+= ρ  Let f(x,y)=Exy, so f(x,y) is a real function 

of x and y. We can rewrite Exy with intervals X and Y. 

2222

2222

)(()((

))()()((*),(

∑∑∑∑∑∑ −−+=

−−+=

j
yjjyjj

i
xiixii

j
yjj

i
xii PYPYPXPXPYPX

EYEYEXEXEYEXYXf

ρ

ρ
. 

The corresponding real function is  

2222 )(()((),( ∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxyxf ρ  

where ii Xx ∈  and jj Yy ∈ . If ρ  is an interval, it becomes another variable for function f.  

2.4.1 Solution 
The software should provide a way to help the user to set a reasonable correlation. To 

do this, first, the software must figure out the range of possible correlations for the current 
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random variables. Then the software can display this information. It then only accepts values 

intersecting with this range. 

As mentioned before, there are 2 kinds of constraints, one coming from the marginals 

of the joint distributions matrix and another coming from the correlation setting. The joint 

distribution matrix marginals are assumed correct. So, the constraints coming from it are a 

given. If constraints coming from a correlation setting conflict with them, they must be in 

error. Constraints coming from the matrix are primary and constraints coming from 

correlation should be considered secondary.  

Consider a joint distribution matrix for an operation⊗ . 

Table 2.1. Joint distribution matrix. 

 Y1 … Ym  

X1 11p  … mp1  1xp  

… … … … … 

Xn 1np   nmp  xnp  

 1yp  … ymp   

 
We can get Exy as follows:  

∑∑
= =

=
n

i

m

j
ijji pYXExy

1 1

 where Xi and Yj are interval values. ijp  is the probability assigned to 

cell ij. We use underlining to indicate the low bound of an interval and overlining to indicate 
the high bound of an interval. We can get the bounds of Exy as follows: 

nmmn pyxpyxpyxpyxpyxpyxpyxExy ++++++++= ...... 233222222112133112211111  

nmmn pyxpyxpyxpyxpyxpyxpyxExy ++++++++= ...... 233222222112133112211111  
From this, we get two linear programming problems:  
 
Min nmmn pyxpyxpyxpyxpyxpyxpyxExy ++++++++= ...... 233222222112133112211111  
subject to: 

           row Constraints: xi

m

j
ij pp =∑

=1
 for i=1 to n; 

           column Constraints: yj

n

i
ij pp =∑

=1
 for j=1 to m. 
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Max nmmn pyxpyxpyxpyxpyxpyxpyxExy ++++++++= ...... 233222222112133112211111  
subject to:  

           row Constraints: xi

m

j
ij pp =∑

=1
 for i=1 to n; 

           column Constraints: yj

n

i
ij pp =∑

=1

 for j=1 to m. 

Solving these two linear programming problems, we can get the bounds of Exy, call these 

numbers k  and k . We also know  

2222 )(()(( ∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxExy ρ  

where ii Xx ∈  and jj Yy ∈ .  

In this formula, only ρ  is an unknown range. Now the problem becomes solving for 

Exy.  The minimum should be the minimum value of ρ . The maximum should be the 

maximum value of ρ .  So the problem is transformed into finding the root range of a 

nonlinear function.  

2.4.2 Approximate solution 

From f(x,y)= ))((
2222 yyxxyx −−+⋅ ρ , in most cases, yx ⋅  is greater than 

))((
2222 yyxx −− . So we just consider yx ⋅ . It is obvious that it is an increasing function 

of x and y. Assigning the minimum values to x and y, and the maximum value possible for 

f(x,y), we can obtain the maximum value of ρ . Assigning the maximum values to x and y, 

and the minimum value to f(x,y), we can get minimum value of ρ . 

2.5 Additional constraints gotten from correlation 
When the user sets the correlation range, we know the range of every variable in 

formula f(x,y). Under this situation, we can get the range of f(x,y). This range of f(x,y) is 

thus controlled by the user. At the same time, we know another range for f(x,y) which is 

derived from the joint distribution matrix. As previous noted, the range derived from the joint 

distribution matrix is considered given. So it is always correct. The range coming from the 
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user must be intersected with this range. From this restriction, we can get additional 

constraints for linear programming. 

Obviously, formula f(x,y) is non-linear, so we use non-linear optimization to do 

minimization and maximization on it. Using a penalty function transforms a constrained 

optimization problem to a non-constrained problem. We also can get the first and second 

derivative for this function. Call the values obtained fmin and fmax. So we get 

f(x,y)=[fmin,fmax].  

From the previous section, we know another range for f(x,y), ],[ kk , from the joint 

distribution matrix. It is obvious that these two ranges must intersect; otherwise, the user 

input is not possible. These two ranges both are intervals. If the following conditions are 

satisfied, these two intervals must be intersected: 

kf ≥max  and kf ≤min . Since 

nmmn pyxpyxpyxpyxpyxpyxpyxk ++++++++= ...... 233222222112133112211111  

nmmn pyxpyxpyxpyxpyxpyxpyxk ++++++++= ...... 233222222112133112211111  

we know fmin and fmax. So we get an additional two linear constraints for the linear 

programming problems based on correlation:  

max...... 233222222112133112211111 fpyxpyxpyxpyxpyxpyxpyx nmmn ≤++++++++  

min...... 233222222112133112211111 fpyxpyxpyxpyxpyxpyxpyx nmmn ≥++++++++  

2.6 Nonlinear optimization to remove excess width 
From the previous section, we saw that f(X,Y) is an interval, not a real number. In 

interval mathematics, it is called an interval function (Ramon E.Moore, 1966). In evaluating 

an interval function, excess width may happen. Different function formats will result the 

different values for function although they are the same function in the real domain. 

From the term )()()(*)(* YEXEYDXD +ρ , we defined the corresponding 

function f(x,y): ))()()((*),( 2222 EyEyExExEyExyxf −−+= ρ . First, we can consider 

f(x,y) as a real function of variables x and y. If we replace x and y with intervals X and Y, it 

becomes an interval function.  
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Based on the rule “cancellation or reduction of the number of occurrences of a 

variable before interval evaluation”, if the number of occurrences of each variable is only 

one, evaluating an interval function cannot result in excess width. However it is impossible to 

use this rule for this function. Instead, we can avoid this problem by evaluating this function 

in the real domain using real numbers x belonging to interval X. So we can use the minimum 

value and the maximum value of this real function as the way to get bounds on the interval.  

 
Now we rewrite the formula with intervals X and Y. 

 2222

2222

)(()((

))()()((*),(

∑∑∑∑∑∑ −−+=

−−+=

j
yjjyjj

i
xiixii

j
yjj

i
xii PYPYPXPXPYPX

EYEYEXEXEYEXYXf

ρ

ρ
 

The corresponding real function is  
2222 )(()((),( ∑∑∑∑∑∑ −−+=

j
yjjyjj

i
xiixii

j
yjj

i
xii pypypxpxpypxyxf ρ  

Here ii Xx ∈  and jj Yy ∈ . If ρ  is an interval number, it becomes another variable for 
function f.  

Obviously, f(x,y) is a non-linear function. We use non-linear optimization to figure 

out the minimum and maximum. But this optimization question is restricted to a special 

region, the intervals for the x’s and y’s. 

2.7 Improving results by adding constraints to LP 
Based on the above discussion, we get another two constraints for LP after calculating 

the interval k. From the joint distribution matrix,  

Table 2.2. Joint distribution for X and Y. 

 […] … […] X 
[…] 11p  … np1  1px  
… … … … … 
[…] 1mp  … mnp  mpx  
Y 1py  …. npy  1 

 
we get the LP model: 
Minimize ∑

Ω∈

=
ji

ijpZ
,
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subject to: 















==
≥≥≥

==

==

∑∑

∑
∑

1,1
,0,0,0

...1,

...1,

ji

jiij

i
jij

j
iij

pypx
pypxp

njpyp

mipxp

 

To these we add the two constraints implied by the correlation. When the two 

constraints, kpa ijij =∑  and kpa ijij =∑ , are added to the LP, the transportation simplex 

method can’t handle this augmented model because we can’t put these two constraints into 

the balanced transportation tableau. 

So we use the simplex method to solve the problem. The speed of calculation is very 

important. This is discussed later. 

2.8 Improved simplex method 
Consider the standard LP question: 

Min CXZ =  

Subject to: bAX = , 0≥ix  and 0≥ib  for i=1 to n. 

Here ),...,( 1 nccC =  is a row vector, 















=

nx

x
X ...

1

 is a column vector. ),...,( 1 nPPA =  

and 















=

mi

i

i

a

a
P ...

1

. So, A is an m*n matrix and 















=

mb

b
b ...

1

 is a column vector. 

 

We can transform the maximization problem to a minimization problem through the 

following approach. 

Max CXZ =   Min CXZY −=−=  

The constraints are unchanged.  
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Based on the simplex method, A is split into ( )NB AA . BA  has the coefficients for 

the basic variables (assuming there are m  basic variable from 1x to mx ), and NA  has the 

coefficients for the non-basic variables (from 1+mx to nx ). X is also separated into 








N

B

X
X

.  

So AX=b becomes ( ) b
X
X

AA
N

B
NB =








. 

 bXAXA NNBB =+ **  

 )*(*1
NNBB XAbAX −= −  

Here 1−
BA  means the inverse matrix of BA . In other word, IAA BB =−1*  where I  is the unit 

matrix. For example, 
100
010
001

 is a 3*3 unit matrix. 

So, the objective function becomes  

NNBBNBB

NNNNBB

NNBB

N

B
NB

XAACCbAC

XCXAbAC

XCXC
X
X

CCXCZ

)(

*)*(*

**

*)(*

11

1

−−

−

−+=

+−=

+=









==

 

 
Let us see an example. 
Minimize 54321 373 xxxxxz ++−−=  

Subject to: 








=≥
=+−+−

=+−+−

5...1,0
85

2021345

54321

54321

ix
xxxxx

xxxxx

i

 

Here ( )13713 −−=C , 















=

nx

x
X ...

1

, 
11511
121345

−−
−−

=A  and 







=

8
20

b . 
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If we assume 1x  and 2x  are the basic variables, we get 













=








=

5

4

3

2

1 ,
x
x
x

X
x
x

X NB , 

( ) ( )
115
1213

,
11
45

,137,13
−
−

=
−
−

=−=−= NBNB AACC . We also get 

6/56/1
3/23/11

−
−

=−
BA , )(1

2

1
NNBB XAbA

x
x

X −=







= − . 

The following discussion will be based on the previous definition and equations, and also in 

part on Qian and Murty (1985). 

2.8.1 How to find the initial feasible solution 
For the standard LP question, if you can find a unit mm×  matrix in A, you let this 

matrix be BA  by multiplying one row by a constant and adding it to another row, repeating as 

needed. Set NX  (non-basic variables) to zero (that is nmm xxx ,...,, 21 ++  all equal 0). Then 

bbIbAXAbAX BNNBB ===−= −− **)( 11  because since A is a unit matrix, so is 1−A . 

Then, )...1(,0 mibx ii =≥=  is a feasible solution although it is probably not the optimal 

solution. 

If you can’t find a unit matrix, you can choose a sub-matrix ( mm× ) of A which is 

nonsingular (meaning that the determinant of the matrix doesn’t equal zero and the rank of 

the matrix is m), and every ix  of bAX BB *1−=  is not less than 0. Under this condition, it is a 

feasible solution. 

But frequently, it is not so easy. Therefore artificial variables are introduced. 

To bAX = , we add the artificial variables 0...
1

≥















=

my

y
Y , and revise the equation to 

bIYAX =+ . In the objective function, the coefficients of Y should be very large positive 

real numbers. Through this way, the minimizing objective function will be unaffected by 

artificial variables Y. Still we can use Y as the initial feasible solution. Importing the 

artificial variables just provides an easy way to get an initial feasible solution.  
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2.8.2 How to decide the termination condition and entering variable 
Now consider optimization of Z. Let ),...,( 1

1
mnNBBN wwAACCW −

− =−= . Here iw  is 

the coefficient of imx +  and describes the coefficient of a non-basic variable in the objective 

function. If we want to make 

NBBNNBBNBB WXbACXAACCbACXCZ +=−+== −−− 111 )(*  smaller, we must hope to 

find the negative elements of W because all elements of NX  are positive. From this 

discussion, we can derive the termination rule for an iterative optimization process. 

1. If every element iw  of W is not less than 0, then the current solution is optimal. 
2. If at least one element of W is negative, we continue to search for the optimal 

solution. Let )0|min( <= iik www . This means if every non-basic variable changes 
by the same factor, value kmk xw +* will have the maximum effect in minimizing the 
value of Z. So let non-basic variable kmx +  be the entering variable (entering the basic 
variable set from non-basic variable set). 

3. If 01 ≤+
−

kmB PA , there is no solution (k is the entering variable index, and kmP + , 
belonging to ),...,( 1 nmN PPA += , is the coefficient for non-basic variable kmx + ). 

Proof:  
From )*(*1

NNBB XAbAX −= − , assuming the entering variable kmx +  does not equal 

0 and other non-basic variables still equal 0, let kmx +  equal α  and be greater than 0. Then 

 

kmBB

kmkmBB

n

m

nmBB

NNBBB

PAbA

xPAbA

x

x
PPAbA

XAAbAX

+
−−

++
−−

+

+
−−

−−

−=

−=
















−=

−=

11

11

1

1
11

11

*

*

...),...,(*

**

α

 

Because 01 ≤+
−

kmB PA , BX  still are greater than 0, and 0=NX  except for α=+kmx . 

So it is a feasible solution. Consider the objective function: 

α*

...),...,(

)(

1

1

1
1

11

kBb

n

m

mnBb

nNBbnBb

wbAC

x

x
wwbAC

XAACCbACZ

+=
















+=

−+=

−

+

−
−

−−
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Because kw  is less than 0, if +∞→α , −∞→Z .  
So, there is no minimum value for the objective function. 
 
Let us see an example: 
Minimize 21 xxz −−=  

Subject to: 








=≥
=+−

=++−

4...1,0
2

42

421

321

ix
xxx
xxx

i

 

We choose 2x  and 4x  as basic variables. Then 
11
01

−
=BA , 

01
12−

=NA , ( )01−=BC  

and ( )01−=NC . 
11
011 =−

BA , so ( )131 −=−= −
NBBN AACCW . We can choose 1x  as 

the entering variable. We get 0
1
2

1
2

11
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1
1 <
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
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Here BX  is a feasible solution if 01 ≥x . But 

( ) 111
2

1 34)24(11 xxx
x
x

Z −−=+−−=







−−= . If ∞→= β1x , then −∞→Z . So there is 

no minimum value for Z. 
 
Based on the previous discussion, there are three conditions that can occur during the 
iterative procedure. 

1. Finding the solution 
2. Continuing to try minimizing Z 
3. No minimization solution 

2.8.3 How to determine the leaving variable 
Let BX  be a feasible solution. So bXA BB =* . Here ( )mB PPA ...1= . We know 

BA is nonsingular, so 1P  to mP  are the independent vectors. The other vectors 1+mP  to nP  are 

linearly dependent on 1P  to mP . Therefore we can get 

∑
=

++ =
m

i
ijmijm PP

1
, *α  
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=> 0...*),...,(
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From bXA BB =* , we get 
( ) bXPP Bm =*...1 . 
Let β  a positive real number. Then 

0)),...,(*),...,((*),...,( '
,,111 =−+ +++ jmmjmmjmBm PPPXPP ααβ  

=> 0)),...,((*),...,( '
,,11 =+− +++ jmjmmjmBm PXPP βααβ . 

Let jmx + replace a variable in BX . We can get a new feasible solution if we set 

suitable values for X and make sure 0≥ix . We can get a suitable solution from the previous 

formulation through setting the new BX  to equal '
,,1 ),...,( jmmjmBX ++− ααβ . We will let one 

element that equals 0 to be replaced by jmx + . To assure the other variables in BX  stay 

positive, we can choose a suitable β . Let  

jml

l
jmi

jmi

i xx

+
+

+

=>=
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,
,

)0|min(
α

α
α

β . 

This implies that lx  is the leaving variable and entering variable
jml

l
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xx
+

+ =
,α

. 

Now we can apply this result. Based on 
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we know jmx + is the entering variable. We can determine the leaving variable by choosing 

the minimum β  using the equation 

ljmB

lB
ijmB

ijmB

iB

PA
bAPA

PA
bA

)(
)(

)0)(|
)(

)(
min( 1

1
1

1

1

+
−

−

+
−

+
−

−

=>=β . 

This implies that the leaving variable is lx . 

2.8.4 Decreasing computing 
The simplex method is a good way to solve linear programming. But it can have 

computational complexity problems. 
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From the previous discussion, we can see the main complexity problem focuses on 

the inverse matrix BA . If we can find a better way to compute it, we can get better efficiency.  

A simple approach is to find the relationship between the two BA  in the closing steps. If we 

can use the previous BA  to speed computing the next BA , it will help. If the 

original ( )mB PPA ...1= , the new BA  is ( )mlkmlB PPPPPA ...... 111 ++−= . There 

is only one different column. So the coefficient of the leaving variable is replaced with that 

of the entering variable. We can guess there is a relationship between these two BA . From 

bAX old
B

old
B

1−
= , bAPAxbAX new

Bkm
old
Bkm

old
B

new
B

111 * −

+

−

+

−
=−= , and basic variable lx  is 

replaced with kmx + , 

CAA old
B

new
B = . 

Then  
1111 −−−−

== old
B

old
B

new
B DAACA  

So if we can find D, the inverse of C, we will speed computing the inverse of BA . 

From the relationship of the original and new BX , limiaxxx ik
new
km

old
i

new
i ≠=−= + ,...1,  and 

lk
old
l

new
km axx /=+ . Here ikmik PBa )( 1

+
−= , i=1…m (i refers to the ith element of the vector 

kmPB +
−1 ). We can see 

),..,,,,...,( 111 mll eeEkeeD +−=  and 










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








=

0
...
1
...
0

ie , and only element of i row is 1, while the others 

are 0. '
)1()1(1 )/,..,/,/1,/,...,/( lkmklkkllklkkllkk aaaaaaaaaEk −−−−= +− . 

 
This way, we can use the previous inverse matrix to calculate the new inverse matrix. Sposito 
(1989) gives a similar description of this method. 

2.8.5 Applying method 
For our case: 
Min CXZ =  
subject to: bAX =  and X>=0. 
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Using artificial variables















=

+

+

mn

n

av

x

x
X ...

1

, the equation becomes bIXAX av =+ . Let 

Con be a very big positive real number based on Big-M method. Then the objective function 

becomes ( ) avXConCXZ 1...1*+= . 

Based on the previous discussion, X are non-basic variables. BA equals I. It is easy to 

compute. It’s not needed to calculate the inverse matrix. But artificial variables are in the 

objective function. We must remove them from the objective function. If an artificial variable 

is removed from the basic variables, it will be removed from the objective function. This 

means the coefficient of the artificial variable becomes 0, not 1. After changing the 

coefficient of an artificial variable to 0, the artificial variable is in effect not present. When 

the optimum is reached, the coefficients of the artificial variables must be zero. Otherwise, 

there is no optimum. 

2.8.6 An example 
Minimize 321 23 xxxZ +−=  

subject to: 








=≥
=+−
=+−

3,2,1,0
1242

723

21

321

ix
xx
xxx

i

 

Solution: 
using artificial variables 4x  and 5x , we can get an initial feasible solution. The question 
changes to: 
minimize )(*23 54321 xxMxxxZ +++−=  

subject to: 








=≥
=++−
=++−

5,...,1,0
1242

723

521

4321

ix
xxx
xxxx

i

 

 
To remove the effects of the artificial variables, we set the coefficient M of the 

artificial variables in the objection function to a big real number, for example 100000.  

Iteration 1: 

( )10000100000231 −=C , 







=

12
7

b . ( )321042
213

PPPA =
−

−
= . IAB =

0 . 

4x and 5x  are the basic variables. AAN = . 
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( ) ( )

( ) ( ) ( )19999830000399999200000300000100000231
042
213

1000001000002311

−−−=−−=

−
−

−−=−= − IAACCW NBBN  

So 2x is the entering variable. In the next step we will decide on the leaving variable. 









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12
71bAB , 




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4
1

2
1PAB . So the leaving variable is 5x . 4=lka . 

So )4/1,4/1(=kE . We get 
4/10
4/111011 ==

−−

BB EAA . 

Iteration 2: 
Now 4x and 2x are basic variables, and 5x  is discarded. ( )100000231 −=C . 

02
23

−
=NA  

( ) ( )

( ) ( ) ( )1999985.2500002000005.25000121
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So 1x  is the entering variable.  


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1
1PAB . So the leaving variable is 4x . 5.2=lka . 

So )5/1,5/2(=kE . We get 
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10/15/21112 ==

−−

BB EAA . 

Iteration 3: 

Now 1x and 2x are basic variables, and 4x  is discarded. ( )231 −=C . 







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So the optimal solution becomes:  
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
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
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
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1 bA
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X BB , ( ) 11
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31 −=







−== BB XCZ . 

2.9 Nonlinear optimization 
For most cases, there is a function f(x), called the objective function, which belongs 

to 2C , meaning that the function f(x) has a second derivative. We want to find the minimum 

or maximum value of f(x). We can describe this question as follows: 

)(min xf
x
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Subject to: 

 nRx∈   

where nR is the n-dimension real domain. 

For the maximization question, we convert it to the minimization problem according to the 

following formulation: 

            ))((min)(max xfxf
xx

−−=  

So we only need to solve the minimization question.  

In this case, the variable x belongs to the n-dimension real domain. The number of 

dimensions may vary from 1 to n. This kind of minimization problem is called 

unconstrained optimization.  

If any constraints are applied to the variable x, we have the following situation: 

)(min xf
x

 

subject to: 

The p equality constraints are: 0)( =xei  for i=1,2…p  

            and the q inequality constraints are:  0)( ≥xw j  for j=1,2,…q. 

This kind of problem is called constrained optimization.  

All points x satisfying all the constraints are feasible and all others are non-feasible. 

All feasible x form the feasible region. All non-feasible x form the non-feasible region. For 

unconstrained optimization, the feasible region is the real domain.  

2.9.1 Local and global optimums 
A local maximum is a point in the feasible region which is higher than all other points 

within its immediate vicinity, but not necessarily the whole feasible region. The global 

maximum is the maximum for the whole feasible region. The following figure illustrates 

local optimums: 

  
 
 
 
 
 Local minimum

Local maximum
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From this figure, we can see the following points about the global and local 

optimums. 

• There may be more than one local optimum for the function and their values perhaps 
are not the same. 

• The global optimum must be a local optimum. 
• A local optimum may be the global optimum. 
• It is possible that there is more than one global minimum or maximum, if the function 

values are be same. 
The global optimum is the best of all the local optimums and is the solution for our problem.  

2.9.2 Classical theory of unconstrained optimization 

Given a function f(x), for vector x, assume all the first derivatives 
ix
f

∂
∂ exist at all 

points in the domain of f.  

A necessary statement for a minimum of f(x) is: 

0...
21

=
∂
∂

==
∂
∂

=
∂
∂

nx
f

x
f

x
f . 

The condition “necessary” means that where the function is at a minimum, the equation 

holds. But this equation is not a sufficient condition.  

A sufficient condition for a point to be a minimum of f(x) is that the second 

derivatives of function f(x) exist at the optimum point and Di > 0. 

2

2
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2
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2
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∂

∂
∂

=  

Note: when the derivatives of the function f(x) are discontinuous, the classical theory is not 

fully applicable. 

2.9.3 Finding a solution iteratively 
Almost all numerical optimizations methods use iterative techniques. They start at an 

initial point x0 and proceed by generating a sequence of points x1,…xm (each xi is an n-
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dimension vector). Let )()( 1 ii xfxf ≤+ . Then, the minimum of f(x) will be approached more 

closely with each iteration. Clearly, the choice of xi is very important.  

Defined by iiii sdxx +=+1 , di is an direction vector for finding the next x and si is the step 

size or distance to move. Here, a suitable choice of direction di is very important. How to 

search for the next x is an important issue. Typically, methods are classified into two classes: 

direct search and gradient methods. 

2.9.4 Search methods: direct and gradient 
Direct search methods don’t require the explicit evaluation of any derivatives of the 

function, but rely solely on values of the objective function f(x) and information gained from 

earlier iterations. Some use function values to obtain numerical approximations of the 

derivatives.  

Gradient methods select the direction using the values of the derivatives of the 

function f(x). Usually, the first order derivatives are used by these methods. 

2.9.5 Converting constrained to unconstrained optimization 
For constrained optimization problems, it can be useful to make use of unconstrained 

optimization methods. So converting to an unconstrained optimization problem is the first 

task. Many methods have been developed for transforming the optimization problem. The 

following methods are widely used: 

1. Transfer functions 
2. Lagrangian multipliers 
3. Penalty functions 

2.9.5.1 Transfer functions 
Its basic idea is to extend the restricted feasible region to the whole real domain. For 

example, to minimize f(x), subject to x >a, we can define a new variable y. Let  
2yax +=  

Using this equation, we can convert f(x) to f(y), and then minimize f(y). Here variable y 

doesn’t have any restriction. So this is now an unconstrained optimization problem.  
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2.9.5.2 Lagrangian multipliers 
This is a very common method for transforming optimization problems. If a 

minimization problem has many equality constraints  

             0)( =xei  for i=1,2…p  

define a new objective function to minimize with a new variable λ  

             ∑
=

+=
p

j
jj xexfxh

1

)()(),( λλ .  

For the first derivatives of this function,  

∑
= ∂

∂
+

∂
∂

=
∂

∂ p

j i

j
j

ii x
xe

x
xf

x
xh

1

)()(),( λλ =0 

0)(),(
==

∂
∂ xexh

j
iλ
λ  

The solution will satisfy the constraints 0)( =xei . 

For the inequality constraints  

            0)( ≥xw j  for j=1,2,…q 

we can introduce new variables called slack variables, qnn xx ++ ...1 . Let 

0)( 2 ≥= + jnj xxw . 
Now we can transform the inequality into equality: 
            0)( 2 =− + jnj xxw  
So using this method, we can handle the constrained optimization problem. 

2.9.5.3 Penalty functions 
The basis for the penalty function method is to define a new objective function like 

the following: 

               ))(()()( xcpxfxh += , 

where f(x) is the original objective function, and p(c(x)) is the penalty function based on the 

equality and inequality constraints. 

For a minimization problem, the main point is to choose the penalty function to make 

sure that it is zero for all feasible points and is very high for all non-feasible points. Then, the 

minimum of h(x) is equivalent to the minimum of f(x).  
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2.9.6 Our case 
For our problems, the optimization question is defined as follows: 

Find the minimum and maximum of function 

2222 )(()((),( ∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxyxf ρ  

subject to: 

 uxl ≤≤  
 pys ≤≤  
where )...( 1 nlll = , )...( 1 nuuu = , )...( 1 msss =  and )...( 1 mppp = . il , iu , is  and ip are real 
numbers, not infinity. This kind of question is called box-constrained optimization or bound-
constrained optimization. 

We only discuss the minimization problem. For maximum problems, we can use the 

previous formulation to convert them to minimization problems.  

Next, we need to convert the problem to an unconstrained optimization. Let use the 

three methods introduced previously. 

2.9.6.1 Transfer function 
The constraints for variable x and y are uxl ≤≤ , and pys ≤≤ . This means that x 

lies between l and u and y lies between s and p. so we need to introduce a new variable to 

replace x and make sure x satisfies the constraint. Defining 

              ululx 2sin)( −+= , and vspsy 2sin)( −+=  

we will get the new objective function ),( vuf . 

For this function, y belongs to the whole real domain, so it is unconstrained. But this 

function is very complicated.  If you want to use the first derivative to get the solution, it is 

tricky because y has many solutions. 

2.9.6.2 Lagrangian multipliers 
For uxl ≤≤ , pys ≤≤ ,  we can convert to: 

0≥− lx , 0≥− xu , 0≥− sy , and 0≥− yp . Using the previous methods, we can get a 

new objective function. But this method introduces many slack variables and equalities. To 

solve these equalities is not easy work. It needs much CPU time to compute and it is also 

very complicated. 
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2.9.6.3 Penalty function 
We will design a suitable penalty function. Based on the constraints, we introduce 

this penalty function: 

),,...,...,,,,,...,...,,,0max(*)( 11111111 mmmmnnnn pyyspyysxxlxxlxp −−−−−−−−= µµλ  

Here, λ will be chosen as a very large positive real number. So the new objective function is  

                            ),(),(),( yxpyxfyxh += . 

From this function, we can see that if uxl ≤≤ , and pys ≤≤ , then x and y belong 

to the feasible region and h(x,y) equals f(x,y), but if constraints are violated, h(x,y) will 

become very large, clearly far from the minimum value. 

2.9.6.4 Search method 
Our objective function has a good attribute; both the first derivatives and second 

derivates exist. So gradient search (Luenberger, 1984, pp. 384) can be freely applied to our 

case. And generally speaking, gradient searching methods provide efficient direction 

information in searching for the next x. In view of the previous discussion, gradient search is 

used to our case. 

2.9.6.5 Solution 
Find the minimum value of function f(x), stated by 

Min 2222 )(()((),( ∑∑∑∑∑∑ −−+=
j

yjjyjj
i

xiixii
j

yjj
i

xii pypypxpxpypxyxf ρ  

subject to: 

uxl ≤≤  

pys ≤≤  

where )...( 1 nlll =  , )...( 1 nuuu = , )...( 1 msss =  and )...( 1 mppp = . il , iu , is  and ip are real 

numbers, not infinity. 

We use a penalty function to convert this problem to an unconstrained problem. The 

new objective function h(x,y) is constructed 

as:

),,...,...,,,,,...,...,,,0max(*),(),( 11111111 mmmmnnnn pyyspyysxxlxxlyxfyxh −−−−−−−−+= µµλ S

o the problem is to find the minimum value for function h(x,y). For this unconstrained 
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optimization problem, the iterative technique is adopted. First, we define some terms:  

∑=
n

i
xii pxx  

∑=
m

j
yjj pyy  

22 )(( ∑∑ −=
i

xiixiix pxpxD  

22 )(( ∑∑ −=
j

yjjyjjy pypyD  

yxxy DDD *= . 

Now we get the first derivative of h(x,y) through f(x,y) and penalty function p(x,y). 
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Along the direction determined by the derivatives, the next x and y are defined. 

Through iteration, the numerical solution can be found. 

Next, finding the maximum value of function f(x), 

Max ),( yxf  

subject to: 

uxl ≤≤ , 
pys ≤≤ . 

Based on the formulation )),((min),(max yxfyxf
xx

−−= , we can transform this problem to: 
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Min  ),( yxf−  
subject to: 

uxl ≤≤ , 
      pys ≤≤ . 

Using the previous method, we can get the minimum value fmin, and negate to get the 

maximum value of f(x), –fmin. 
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3 Enhancement of functions 
 

This version of Statool removes certain important limitations existing in the previous 

version. The following extensions had to be developed in order to apply Statool to the 

problems we wanted to solve. 

• Use of the transportation method to speed linear programming 

• Cascading operations to support more than two variables 

• Relational operations 

• Evaluation of f(x,y) for monotonic functions f 

3.1 Transportation method 
In the previous version, only the standard simplex method is provided to solve linear 

programming. The speed of this method is slower than that of the transportation simplex 

method.  

3.1.1 Background on the transportation simplex method 
Many companies need to determine how to optimally transport goods from different 

warehouses to different destinations. Isomorphic problems are found in other situations 

unrelated to transportation, such as the assignment problem and production scheduling. 

Hillier (2001) gave detailed information about such applications. 

3.1.1.1 Model 
In general, this kind of problem involves 2 different types of location: sources and 

destinations. Sources supply something and destinations accept resource. Costs for 

transferring resources between each source and destination may be different. The aim is to 

minimize the total cost to transfer resource from these sources to those destinations. In most 

cases, the total supply for all sources is equal to the total demand for all destinations. If we 

have M sources, N destinations, the supply at source i is Si, and the demand at destination j is 

Dj, we get the equation ∑∑
==

=
N

j
j

M

i
i DS

11
. Let Cij be the unit cost of moving resources from 
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source i to destination j. This table displays the relationship between sources and 

destinations. 

Table 3.1. Parameter table for transporation model. 

 
Cost per unit distributed 

Destination 

 
 
 
 
 
Source 

1 2 3 …… N 

 
 
 
 
 
Supply 

1 C11 C12 C13  NC1  S1 

2 C21 C22 C23  NC2  S2 

……       

M 1MC  2MC  3MC   MNC  MS  

Demand D1 D2 D3  ND   

 

We can describe this mode as a standard linear programming problem.  

min 
∑∑
= =

=
M

i

N

j
ijij xCZ

1 1  

 Subject to:  

i

N

j
ij Sx =∑

=1  for i=1 … M 

j

M

i
ij Dx =∑

=1  for j=1 … N 

and 0≥ijx  for all i and j 

If total supply is not equal to total demand, it is called an unbalanced model. For these cases, 

we can use dummy sources or destinations to make the model balance. If total supply is 

greater than total demand, we can make up dummy destinations to demand extra resources 

and set the unit cost from each source to any dummy destinations to be very small. This way, 

extra resources will be transferred to dummy destinations. If total supply is less than total 
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demand, we make up some dummy sources and set unit cost from each dummy source to any 

destinations very large. If these unit costs are really large, no destination will want to get 

resources from these dummy sources. So the solution will be for resources from actual 

sources rather than dummy sources.  

3.1.1.2 Solution 
The Transportation problem is a special type of linear programming. We can use 

general methods for linear programming such as the simplex method. If the simplex method 

is used, the simplex tableau will be complex and consists of M+N+1 rows and (M+1)(N+1) 

columns. To handle this big table, you will need a lot of computation.  

As a special type of linear programming problem, there is an efficient method called 

the transportation simplex method to handle it. This method uses a tableau, but it only has M 

rows and N columns. You don’t need to use artificial variables to get an initial solution. It 

has just M+N-1 basic variables (not M+N), so a degree of freedom will be removed. 

To solve transportation problems, generally two steps are necessary.  

Step One: Initialization to get an initial basic feasible (BF) solution. There are 3 common 

methods for this step.  

• Northwest corner rule 

• Russell’s approximation method 

• Vogel’s approximation method 

Russell and Vogel’s methods consider costs in generating an initial solution. The solutions 

are better than for the Northwest corner method. Hillier and Lieberman (2001) clearly 

compares these three methods. 

Step two: Optimality testing. In this step, every solution is a feasible solution. Our aim is to 

find the best solution. It has a loop to do the following work.  

• Get the two variables ui and vj from each basic variable’s equation (Cij=ui+vj). 

• Calculate the related cost CCij of each non-basic variable according to CCij=Cij-

ui-vj. 

• Get the entering non-basic variable, the one with the minimum CCij of all non-

basic variables with negative CCij. 
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• Determine whether the solution is optimal. If all CCij are not less than 0, the 

solution is optimal. 

• Get the leaving basic variable. This is done in a loop whose calculations use the 

entering non-basic variable and other basic variables. This loop identifies the cell 

whose assigned flow is the minimum and whose order to the entering cell is odd. 

This cell will be the leaving variable. 

• Adjust the flow of the loop. For all the cells adjacent to the entering cell or another 

odd distance from it in the loop, subtract the minimum flow and for all cells an 

even distance, add the minimum. 

• Get the new basic variable set. Marking the entering cell basic variable and the 

leaving cell non-basic variable. Begin the loop again from step 1. 

3.1.2 Exceptions in finding the initial solution 
Handling the exception of degeneracy can be very important in finding the initial 

solution in a transportation simplex problem. Degeneracy means there are not enough basic 

variables in the initial feasible solution. For example, there are 5 basic variables for 2*3 

tables. In fact, maybe only 4 variables are found for some initialization methods for some 

problems. This situation occurs where there are too many choices for which ones are basic. 

In the previous initialization methods, the northwest corner method doesn’t have this kind of 

problem. This method always can find enough basic variables although values of some of 

them may be zero. But Russell’s method will have this kind of problem for some cases. 

Usually, the initial solution found by Russell’s method is closer to the optimal solution than 

that found by the northwest corner method. So computing time is less for Russell’s method. 

Therefore, there is a tradeoff. 

3.1.3 Adaptation to the unknown dependency case 
For the unknown dependency case, the marginal distribution table for variables X and 

Y is really a transportation tableau. Here you can consider X as the sources and Y as the 

destinations. The total supply is 1 and total demand is also 1. Next we use an example to 

illustrate this situation.   

Example: 
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X distribution: P([0,1]) = 0.2, P([1,2]) = 0.2, P([2,3]) = 0.2, P([3,4]) = 0.4. 

Y distribution: P([1,2]= 0.25, P([2,3]) = 0.25, P([3,4]) = 0.2, P([4,5]) = 0.3. 

Consider X+Y for the case of unknown dependency. We get the marginal distribution table 

next: 

Table 3.2. Marginal distribution 

     X 
Y 

[0,1] [1,2] [2,3] [3,4] Prob. 

[1,2] [1,3] 
p11 

[2,4] 
p12 

[3,5] 
p13 

[4,6] 
p14 

0.25 

[2,3] [2,4] 
p21 

[3,5] 
p22 

[4,6] 
p23 

[5,7] 
p24 

0.25 

[3,4] [3,5] 
p31 

[4,6] 
p32 

[5,7] 
p33 

[6,8] 
p34 

0.2 

[4,5] [4,6] 
p41 

[5,7] 
p42 

[6,8] 
p43 

[7,9] 
p44 

0.3 

Prob. 0.2 0.2 0.2 0.4 1 

 
Our question is how to assign the distribution to p11 … to p44 to give some subset a 

maximized probability. E.g. to find the upper bound for X+Y at 1 (the previous chapter 

discussed finding the subset), we get the linear programming problem 

Max f=p11 

subject to:  

p11+p12+p13+P14 = 0.25 

P11+p21+p31+p41 =0.2 

….. 

To find the upper bound for the CDF at 2, we get the problem 

Max f=p11+p12+p21 

subject to:  

p11+p12+p13+P14 = 0.25 

P11+p21+p31+p41 =0.2 

….. 

For every point in the support of the result distribution, we will get a linear programming 

problem. Through solving these problems, the upper bound of the CDF will be gotten. 
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The low bound of the CDF is found similarly to the upper bound. To speed the 

solutions, we use the transportation method to solve these linear programming problems.  

From the previous example, we can see these linear programming problems use 

transportation tables. The main difference is to maximize the value of the objective function 

rather than the minimize as in real transportation problems. To solve these problems, we can 

use negation to transform Max to Min. The Cij are very  important in transforming the 

problems. For the objective function, we have to let Cij be 1,0, or -1.  We need to transform 

Max to Min, so we must use Cij=-1 for all items that will contribute to the objective function, 

with others zero.  For the previous 2 cases we will get: 

Min -f=-p11 

subject to:  

p11+p12+p13+P14 = 0.25 

p11+p21+p31+p41 =0.2 

C11 = -1, other Cij=0 

 

Min -f=-p11-p12-p21 

subject to:  

p11+p12+p13+P14 = 0.25 

p11+p21+p31+p41 =0.2 

C11=C12=C21=-1, other Cij=0  

Thus we have a way to transform an unknown dependency case to a transportation 

problem. It includes two steps: 

• Get the transportation table from the marginal distribution table 
• Set the cost attribute for cells contributing to the objective function to –1, and other 

cells’ cost to zero. 
Because the balance of supply and demand is a basic requirement for the transportation 

problem, we must keep marginal sum of X and Y equal to 1 and the same for Y. 

3.1.4 Test result: 
Consider an example: 

X, p([0,0.333])=0.2, p([0.333,0.667])=0.4, p([0.667,0.999])=0.4 

Y, p([0,0.5])=0.5565437, p([0.5,1])=0.4434564. 
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Consider X+Y under the unknown dependency condition. 

Table 3.3. Lower bound. 

Result interval Simplex Transportation 
[-0.25,0.833] -1.490116E-08 0 
[0.833,1.167] -1.490116E-08 0 
[1.167,1.333] 0.1565436 0.1565437 
[1.333,1.5] 0.2 0.1999999 
[1.5,1.667] 0.5565436 0.5565436 
[1.667,2] 0.6 0.6 
[2,2.25] 1 1 

 

Table 3.4. Upper bound. 

Result interval Simplex Transportation 
[-0.25,0] 0 0 
[0,0.333] 0.2 0.2 
[0.333,0.5] 0.5565437 0.5565437 
[0.5,0.667] 0.6 0.6 
[0.667,0.833] 07565437 07565438 
[0.833,1.167] 1 1 
[1.167,2.25] 1 1 

 
For this example, we got almost the same answer for both methods. 

3.2 Cascading operations 
Previous Statool software only supported binary operations (two operands). But in 

real applications, there are often over 2 operands to be calculated, for example, x+y+z, 

Max(x,y,z), etc. 

Association is how to solve this question. E.g. for x+y+z, we can first calculate x+y, 

and save the result to temporary variable w=x+y, then calculate w+z. This way, we can get 

x+y+z. But there is a constraint that this kind of operation must support association and 

commutation. For example, you can first calculate x+y or y+z, for x+y+z.  
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In Statool, we would get the CDF envelopes for the result of two variables’ operation 

under unknown dependence. So we can solve this problem if we can convert CDF envelops 

to a set of intervals and associated probabilities.  

3.2.1 Solution 
We can transform upper and lower envelops into a set of intervals and associated 

probabilities. The probability of each envelope is its top-to-bottom height. For example, four 

intervals will be gotten from the following CDF envelopes.  

 

Figure 3.1. Convert CDF to IDF. 

This method is implemented in Statool using VB. Now both CDF and IDF data 

format can be saved or displayed. From the following figures, we can now use the results of 

one operation as input to the next. 

 
Figure 3.2. Result for operation. 

The above figure shows the CDF envelopes resulting from an operation on two variables. 
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The following figures show the procedure to calculate using multiple operands (e.g. x+y+z). 

 
Figure 3.3. Result for x+y. 

First, we get the result of x+y. Result is shown in the 3rd panel. 
 

 
Figure 3.4. Result for x+y+z. 

Then we load the result of x+y as a new operand (top panel above) and operate on it and z, 

which is shown in the middle panel. The bottom panel shows x+y+z. 
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3.3 Relational operations 
Relational operations are used to describe the relationship between two operands. 

This version of Statool supports 4 relational operations: >, >=, <, and <=.   

3.3.1 Relational operations on intervals 
Consider two real numbers x and y. We define the interval value to describe the 

relationship between x and y. The value [0,0] indicates the relationship is false. The value 

[1,1] indicates the relational operation is true. The value [0,1] means the value of the 

relational operation is not determined or it’s uncertain. 

For interval number A, A-left means the left (or low) bound of interval value A, and 

A-right means the right (or high) bound of it. Now consider two interval numbers A and B.  








−≤−

−>−
=>

otherwise
leftBrightA
rightBleftA

BA
]1,0[
]0,0[
]1,1[

 








−<−

−≥−
=≥

otherwise
leftBrightA
rightBleftA

BA
]1,0[
]0,0[
]1,1[

 








−≥−
−<−

=<
otherwise

rightBleftA
leftBrightA

BA
]1,0[
]0,0[
]1,1[

 








−>−
−≤−

=≤
otherwise

rightBleftA
leftBrightA

BA
]1,0[
]0,0[
]1,1[

 

3.3.2 Relational operations on random variables 
Consider 2 random variables X and Y. We consider the probability of X>Y, P{X>Y}. 

According to the DEnv algorithm, random variables X and Y are split into intervals which 

are assigned probabilities. Therefore, operation X>Y is transformed into a series of interval 

operations. Here is an example to show how to handle this.  
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Table 3.5. Distribution for X and Y. 

     X 
Y 

[0,1] [1,2] [2,3] Prob. 

[1,2] p11 p12 p13 0.25 
[2,3] p21 p22 p23 0.5 
[3,4] p31 P32 p33 0.25 
Prob. 0.5 0.25 0.25 1 

 

Consider the relational operation X>Y. It is transformed into an interval relational 

operation between intervals of X and intervals of Y. for example, the result of [0,1] > [1,2] is 

[0,0], so [0,0] will be put into cell p11. similarly, [0,1] will be put into cell p12. Finally, we 

get the following result: 

Table 3.6. Interval value for relational operation. 

     X 
Y 

[0,1] [1,2] [2,3] Prob. 

[1,2] [0,0] 
p11 

[0,1] 
p12 

[0,1] 
p13 

0.25 

[2,3] [0,0] 
p21 

[0,0] 
p22 

[0,1] 
p23 

0.5 

[3,4] [0,0] 
p31 

[0,0] 
P32 

[0,0] 
p33 

0.25 

Prob. 0.5 0.25 0.25 1 

 

Based on the DEnv algorithm, we can now get the probability for X>Y. It is clear that 

all cells whose interval bounds include 1 are consistent with X>Y. To get the maximum 

value of P{ x>y}, the sum of all cells including 1 will be maximized. For this case, maximize 

(p12+p13+p23). To get the minimum value of P{x>y}, the sum of all cells with the value 

[1,1] will be minimized. All cells whose value is [0,1] will be discarded since for them, 

maybe x<=y.  

In summary, the value of each cell should be one of [0,0], [0,1], and [1,1]. Here [0,0] 

means this relationship doesn’t hold. The value [0,1] means this relationship is not certain. 

The value [1,1] indicates this relationship must hold. To get the maximum value, maximize 
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the sum of all cells whose bound include 1. To get the minimum value, minimize the sum of 

all cells whose values are [1,1].  

3.4 Complex expressions 
The previous Statool only supported the basic arithmetic operations +,-,*, and /. It is 

more useful to be able to calculate any arithmetic expression. User should be able to input the 

expression desired. To solve this problem, Statool needed an arithmetic expression editor to 

provide the functionality to input an arithmetic formula. We decided to support expressions 

using arithmetic operators +,-,*, and / and also to support association through using ( ).  

3.4.1 Expression editor 
To implement this expression editor, first, a grammar definition of allowed 

expressions was written. This grammar is context-free. The following grammar describes 

arithmetic expressions that Statool supports: 

<expression>::=<term> | <term> + <expression> |<term> - <expression> 
<term>::=<factor> | <factor> * <term>| <factor> / <term> 
<factor>::=(<expression>) | <number> | <variable> 
<number>::= <integer> | <integer>.<integer> 
<integer>::=<integer>|v 
<variable>::=x|y 
Here v indicates the numbers from 0 to 9. 

Based on this grammar, arithmetic expressions such as (a*X+b*Y)/(c*X+d*Y) are 

allowed. Parsing is a good method to generate a parse tree: a diagram of the complete 

grammatical structure of the string being parsed. For this case, it is not very complex. Every 

operator needs two operands. ‘( )’ will increase the priority of operation. So, expression 

tables could be used. In such a table, the operands and operators will be recorded. Every row 

describes an operator. Software will analyze the input string, and generate the expression 

table according to the order of calculations. Then using this table, the result can be 

calculated.  

Statool software now only supports 2 random variables, X and Y. When an 

expression is input, variable names must use the symbols X and Y. The expression editor will 

check the input expression after the user confirms the input. If this expression is not allowed, 
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error information will be displayed and reason also will be listed. Here is a figure showing 

the expression editor. 

 
Figure 3.5. Expression editor. 

From the following figure, we can see the error information and reason for a bad 

input expression. 

 
Figure 3.6. Error information for experssion editor. 

3.4.2 Limitations on evaluating expressions 
This expression editor can’t handle division by 0 since the expression evaluator 

doesn’t know how to evaluate the value of such expressions. Therefore, operands X and Y 

can’t include zero in their support if the user want to use the expression editor. 
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3.4.3 Excess width in expressions 
A typical expression is P(x,y) = f(x,y)/g(x,y) = (aX+bY)/(cX+dY). For this kind 

expression, there is excess width in interval calculations. The reasons include that a random 

variable is cited more than one time in the expression. To solve the problem, it is necessary 

to remove excess width in calculating this type of expression. 

3.4.3.1 Removing excess width 
The easiest way to handle it is to simplify the expression such that each random 

variable is cited only one time. It is a quick way to handle this question. But it is a very 

restrictive constraint. Many expressions can’t be simplified to meet this kind of condition.  

For some expressions, we can use another way to remove excess width. It is to use the 

low and high bounds of the interval operands to calculate the expression. Then from these 

calculated values, the result bound is determined. For two variables, there are four 

combinations of bounds. So 4 candidate result values are obtained. We select the minimum 

of the 4 as the low bound of the result interval, and the maximum of the 4 as the high bound 

of the result interval. Let us see an example: 

Suppose: x = [1,2], y =[2,3] F(x,y)= (8.4x + 7.2y)/(0.04 x + 0.02y). 

First: let x=1, y=2, calculate F(x,y), and we get the value 285. 

Second: let x=1, y=3, calculate F(x,y), and we get the value 300. 

Third let x=2, y=2, calculate F(x,y), and we get the value 260. 

Finally, let x=2, y=3, calculate F(x,y), and we get the value 274.3.  

So, the interval for F(x,y) is [260,300]. 

If we calculate the expression based on the intervals for x and y, we will get the 

interval [162.9, 480]. It is obvious that result interval has excess width. So we can use this 

method to remove excess width for this expression. 

3.4.3.2 Limitation of the method for removing excess width 
Although the method of selecting the min and max value to get the result bound 

works for our case, there are limitations to this method. When the expression is monotonic, 

the method can handle excess width. In addition, the denominator of the expression can not 
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include the zero, that is, zero is not in the support of g(x,y), otherwise this expression can’t 

be calculated.  
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4 Software architecture 
 

This chapter describes the architecture of “Statool”. First an overview of this software 

is given. Then the components of “Statool” are described. 

4.1 Overview 
Layer design is widely used for software development. It provides a clear description 

of software architecture and makes it easily understood. It is also suitable for implementation 

and maintenance of distributed computing software. Figure 4.1 shows the general layer 

architecture of “Statool.”  This version was developed for a Microsoft Windows platform. 

Layer design is helpful for porting to other platforms.  

 

Figure 4.1.  Architecture. 

Statool consists of 3 levels layers as shown in the previous figure. The first level, the 

application layer, is the user interface layer, which is in charge of interaction with the user 

such as receiving the user settings and displaying the results of operations. The middle level 

transforms user inputs to fit the underlying algorithms. This layer can be called the logical 

layer. The low level, the computing layer, implements the specified algorithms. It can run in 

the background and be provided as dynamically linked library.  

Since Microsoft operating systems are widely used in the world, the platform for this 

software is the Microsoft windows series, such as Windows 98 and Windows 2000. But the 



 52

primary platform is the Windows 2000 family. The software will be fully tested on this 

platform. For other windows platforms, it won’t be fully tested.  

For the current software, the user interface and the logical layer were developed using 

Visual Basic. Visual Basic is a very good rapid development tool. Since the user interface is 

not designed to run in a Web browser currently, it was developed together with the logical 

layer component using Visual Basic.  It may be useful to move the user interface to a Web 

browser platform in the future because the browser / server architecture is so popular. The 

computing layer involves a lot of computing, so speed is a key issue. Therefore, this layer 

was developed using Visual C++.  

This software can be run on any machine in which windows 2000 is installed. There 

is no other requirement for hardware. But as previous noted, this software will consume a lot 

of computing and memory resource. If you solve bigger problems, a configuration should 

have at least 256M memory and a Pentium III at 1000 Mhz.    

4.2 Input/output 
The file is the primary way to exchange and save the data for this software. Graphs 

are used to show probability distribution functions (PDFs) and cumulative distribution 

functions (CDFs) of the data. Data lists can show the exact information representing a 

random variable.  

In this software, 4 kinds of files are used to describe random variables. One is called a 

probability distribution file (PDF), which is a list of intervals and probabilities and, and 

discretizes a probability density function. The second is called a cumulative distribution file 

(CDF), which is used to describe the envelopes of the cumulative distribution. The third kind 

is called an intermediate distribution file (IDF), which is like a .PDF file but the intervals can 

overlap. Although its interval can be overlapped, the sum of their probabilities should be 

equal to 1. Otherwise, this file is invalid. The last one is the sample data file (SMP). It is a 

special type of file. It is used to show the probability distribution of sample data. Only IDF 

and SMP files are used to input or output distributions. PDF and CDF files are mainly used 

internally. Output displays are plotted based on these 2 types of files.  

Both IDF and SMP are text files. They are composed of 2 parts: a control line and 

data lines. The control line is the first line and includes 2 items: the number of intervals and 
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whether it is an application file (this parameter is not used for most cases). The comma is 

used as a separator. The number of data lines is specified by the “number of intervals” part of 

the control line. Every data line includes 3 items: low bound of an interval, high bound, and 

probability for this interval.  The following file gives an example IDF file: 

4,0 

0,0.25,0.2 

0.25,0.50,0.3 

0.5,0.75,0.25 

0.75,1.0,0.25 

This file describes the distribution of a variable consisting of 4 bars from 0 to 1. A 

sample file is a special .IDF. In this type of file, the low bound of every interval is set to 

equal the high bound. It just is used to say how much the probability at this point is.  

Two different ways are used to input data in Statool. One is to directly load the 

distribution of a random variable from a file. The other is to edit the distribution of a 

variable.  To use the editor to input the distribution, Xie (1998) gave a detailed description. 

There are two ways to output the result of an operation. One is to draw the graph of 

the variable. It is convenient for seeing the result immediately. The other way is to save data 

as an IDF or SMP file. These two files are discussed in the previous paragraph. The user can 

permanently keep data in and use these files in the future. 

There are 2 types of graph to show the data: probability bars for PDF format and 

probability bound curves for CDF format. From the probability bars of PDF format, the user 

can see the histogram of random variable. Probability bound curves show envelops bounding 

the space of possible cumulative probability functions of a random variable.  

4.3 The user interface 
"A user interface is an interface that enables information to be passed between a 

human user and hardware or software components of a computer system." [IEEE, Std 

610.12-1990]. Based on the Microsoft platform system, windows are used to implement the 

user interface. Generally, the user interface consists of various windows. They can be moved 

on the screen, overlap each other and minimized into icons on the task bar of MS operating 

system. 
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In general, a program running on an MS platform includes the primary windows and 

the secondary windows. The primary windows handle major interactions with the user, and 

often contain an arbitrary number of objects. Secondary windows are used to support the 

interactions with primary windows by providing details about the objects of the primary 

window and operations on those objects.  

Statool is comprised of these two types of windows. There are three primary windows 

and there are secondary windows for each of the primary windows. The three primary 

windows are the operation window, the data editor window, and the data view window. The 

operation window is the main primary window. The other two primary windows can be 

accessed from this main primary window. To decrease interaction overhead, window 

navigation paths are restricted to three levels. Otherwise the user will be likely to get lost in 

the system. The operation window is opened when the user starts the program and is always 

open as long as the program is running.  

4.3.1 Main primary window: the operation window 
The operation window is the place to perform the binary operations. It also includes 

some associated functions such as file operations and setting options. The user can use this 

window to perform the following functions: 

• Data maintenance ( including load, save, view, and edit data) 

• Data operation ( choosing the operation type) 

• Options for data operation 

• Help and additional information about this software 

• Control software (including program termination and options to run this 

software) 
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Based on these functions requirement, this figure gives a prototype interface for it. 

 

Figure 4.2.  Operation window. 

This window consists of five parts: menu bar, data display panels, option area for 

correlation, operation area, and exit button. The menu bar is used to contain all 

functionalities’ entries. Data display panels include 3 panels. Two panels are used to store 

operand X and Y, and a third one to show the operation result Z. The option area is used to 

choose the correlation for operands X and Y. Currently, 3 types of correlation are supported 

for this software. They are independent, unknown, and known correlation. the operation area 

contains all the operations. The user can choose the specific operation to calculate. The exit 

button is a convenient way to exit the program although you can also do this by selecting the 

exit option on the menu bar. 

The operation window includes 5 property windows, which are the secondary 

windows. They are the display mode window, display color setting window, about window, 

correlation value setting window, and expression editor window. The display mode window 

is used to choose the data display mode: PDF or CDF. The display color setting window is 

used to choose the colors for the 3 display panels. The about window lists information about 
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this software. The correlation value setting window enables the user to input information 

about correlation when the user selects the known correlation radio button.  

4.3.2 Other primary windows: the data editor and the view windows 
The data editor window is used to edit the input data, which is shown in the following 

figure: 

 

Figure 4.3.  Data editor. 

This window includes a menu bar, a display panel for data, operations for editing 

data, and control buttons for the window.  

The data editor window includes 4 property windows: Bar number, Value range, 

Value for single bar and About. The bar number window is used to set the total number of 

bars. The value range window is used to set the range for the operand. The value for single 

bar window controls the probability and the width for this bar. The about window is the same 

as the operation window. 

The data view window is used to show the exact values for data. It is shown in the 

following figure: 
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Figure 4.4. Data view. 

This window consists of 2 parts: menu bar and display table for data. The user can 

choose the expected data format to show in the table. The data view window does not include 

any property windows. 

4.3.3 Windows management 
All windows of Statool are compatible with the standard of MS windows. Every 

window includes the standard functions: move, size, min, max, restore and close. The 

following visual dimensions will be considered: position, size, shape and color.  

Position: every window will be placed in the central of the current screen. 

Size: the main primary window will not exceed 640x480 pixels to make sure it can be shown 

on any monitors. Other primary windows will not exceed the size of the main primary 

window. Property windows can’t exceed the size of their primary windows. 

Shape: set different shapes for different objects. 

Color: keep the colors consistent for the same parts of different windows, such as 

background and foreground color. 
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The length of the windows’ navigation path is three. The following figure shows the 

windows’ navigation path: 

 

4.4 The logical layer 
This layer lies between the user interface and the computing layer. It contains access 

points from the user interface, all logical controls and internal data, utility functions and 

access points to call the next layer. This layer just provides the subsystems to service the user 

interface and doesn’t perform any actions related to the “real” functions: uncertainty 

operations, which are the real work of this software. Therefore, it makes sense to call it the 

business-specific layer. The figure shows the structure of this layer: 
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Figure 4.5.  Logical layer. 

The major function of the logical layer is to map user actions to the logical functions’ 

view of the software.  For example, the user might click to load a file from storage into 

memory in the logical view. This layer will do the real work in response to an action 

happening in the user interface. This part mainly includes the response functions for the 

menu bar and response functions for the radio buttons displayed in the user interface. 

This layer will also provide the many utility functions and classes and maintenance of 

internal data structures to keep the important state information.  

Finally, this layer provides a uniform interface to the computing layer. All the 

computing sensitive work is put into the computing layer. To use and manage these modules 

efficiently, the standard interface is necessary. It also increases the reusability of these 

modules.   

In summary, this layer is used to formulate the user problem to fit the developed 

uncertainty algorithm. Three main functions are provided in this layer: logical functions to 

respond to the user actions, maintenance state information to control uncertainty operation, 

and efficient access points to call the computing layer. 

4.5 The computing layer 
This layer is the computing subsystem. It implements almost all the algorithms of the 

uncertainty operations. It is obvious that this layer is computing sensitive and will consume a 

lot of computing and memory resources. 
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 This layer was developed separately from the other two layers since it does not really 

depend on the other two layers. A benefit is that this layer can be extended to run on other 

computing resources to decrease its dependency on computing resources at the client side. 

Based on the MS platform, a dynamically linked library (DLL) was used . Calling a DLL is 

language independent. Any development languages can call this type of library by following 

the calling conventions.  

This layer includes mainly 4 packages: converting data, general simplex method, 

transportation simplex method, and extended simplex method. These 4 packages are 

independent of each other. There is no calling relationship among them. Every package just 

finishes the specific function using the corresponding algorithm.  

mypdfcdf max t_max cor_min

 

Figure 4.6.  Package view for the computing layer. 
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5 Component design and implementation 
 

This chapter lists detailed information about components belonging to different 

layers. At the same time, implementation issues also are included with components design. 

5.1 Overview 
Components design is closely related to the development language.  For the user 

interface and the logical layer, MS Visual Basic is used since it is a very popular rapid 

development tool. Each window maps to a form. Response actions map to a function or 

routine of this form. So these two parts are integrated together. This is a convenient way for 

implementing although separated from the logical view. Internal data structures and utility 

functions and classes will be defined in module files of visual basic. For the computing layer, 

Visual C++ is used since DLLs developed in it provide acceptable computing speed.  

5.2 Operation and properties windows 
The operation window is the primary window for this program. So it is the main form 

(also the starter form) for the visual basic implementation. The compiled program, “Statool” 

will start from this form. This window also includes 5 properties windows: display mode, 

display color, about, correlation value, and expression editor. 

5.2.1 Operation window 
This form is called frmMain in the project form view. The following figure indicates 

this form: 
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Figure 5.1.  Operation window design. 

5.2.1.1 Menu bar 
There are six items in the menu bar. They are File, Edit, Switch, View, Options, and 

Help.  

File: manage files and control program running. This figure shows its submenu: 

 

Figure 5.2.  File menu. 

It includes 6 submenus: New, Open, Save, Save As, Print and Exit.  

New: create a new IDF file for operand X or Y. Response subroutine is mnuNewX_Click() 

for new X and mnuNewY_Click() for new Y in form: frmMain.  
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Open: open the existing file for operand X or Y. Response subroutine is mnuOpenX_Click() 

for open X and mnuOpenX_Click() for open Y. 

Save: save the current result Z. Response subroutine is mnuSave_Click(). 

Save As: save the current result Z as a specific file. Response subroutine is 

mnuSaveAs_Click(). 

Print: print the current operation window. Response subroutine is mnuPrint_Click(). 

Exit: terminate the current program. Response subroutine is mnuExit_Click. 

 

Edit: edit the specific operand. This figure shows its submenu: 

 

Figure 5.3.  Edit menu. 

Edit PDF: activate the editor window to edit the PDF file chosen from X, Y and Z. Response 

subroutine is mnuEditX_Click() for operand X, mnuEditY_Click() for operand Y, and 

mnuEditZ_Click() for operand Z. 

Clear Window: clear the specific display panel. Response subroutine is 

mnuClearwin_Click(). 

 

Switch: switch the files between 2 the 3 main window panels. It provides a convenient way 

to exchange displays among the three display panels. This figure shows its submenu: 

 

Figure 5.4.  Switch menu. 

Interchange X Y: switch operands X and Y. Response subroutine is mnuInterXY_Click().  

Interchange X Z: switch operands X and Z. Response subroutine is mnuInterXZ_Click().  

Interchange Y Z: switch operands Y and Z. Response subroutine is mnuInterYZ_Click().  
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View: provide the entries to set the display mode for panels and activate the data view 

window. This figure shows its submenu: 

 

Figure 5.5.  View menu. 

Display Mode: activate the property window to set the display mode for operands. Response 

subroutine is mnuDisplayMode_Click. 

Data: activate data view primary window. Response subroutine is mnuData_Click. 

 

Options: set options controlling the program and its operation. This figure shows its 

submenu: 

 

Figure 5.6.  Options menu. 

ColorSet: activate the property window to set the display color for panels. Response 

subroutine is mnuColorSet_Click. 

Algorithm: set the preferred algorithm to handle the linear programming problems. There are 

two choices: Simplex method and Transportation. Response subroutine is mnuSimple_Click 

for Simplex method, and mnuTransportation_Click for Transportation. 

 

Help: display help information and about information for this software. This figure shows its 

submenu: 

 

Figure 5.7.  Help menu. 
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Contents: activate the help information. Response subroutine is mnuContent_Click. 

About Statool: activate the property window to show the about information. Response 

subroutine is mnuAbout_Click. 

5.2.1.2 Display panels 
There are three display panels to contain operands X and Y, and result Z. These 

display panels use PictureBox (one type of Visual Basic visual component).  Their names are 

picX, picY, and picZ. They are used to show the graphical representation of PDF bars or 

CDF bound curves according to the display mode for X, Y and Z. 

Every panel provides a popup menu to support mouse functions. When the right 

button of the mouse is clicked, a popup menu will be shown. Response subroutine is 

picX_Click for operand X, picY_Click for Y, and picZ_Click for Z. The following figures 

show 3 popup menus for 3 display panels. 

 

Figure 5.8.  Popup menu for operand X. 

 
Figure 5.9.  Popup menu for operand Y. 

 
Figure 5.10.  Popup menu for result Z. 

These popup menus provide the same functionalities as the menu bar. But its 

implementation is different from that of the menu bar. Operands X and Y use the same popup 
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item object, whose name is Popupitem. Response subroutine for choosing popup menu is 

Popitem_Click. Result Z uses its own popup item object, called PopZitem. Response 

subroutine is PopZitem_Click to handle menu commands.  

5.2.1.3 Correlation setting 
This part consists of 3 option buttons (a type of visual component in VB). They 

correspond to 3 types of relationships between X and Y. They are unknown dependence, 

known dependence and independence. These 3 option buttons are exclusive since only one 

situation is true for the current operands X and Y. This figure shows this part.  

 

Figure 5.11.  Correlation setting. 

Response subroutine is optDep_Click for unknown dep., optInd_Click for 

independent, and OptCorrelation_Click for known dep. 

5.2.1.4 Operation type 
This part consists of seven command buttons and one listbox (both are the basic 

visual components for visual Basic), whose names are cmdOp1 to cmdOp8. By choosing 

these buttons and listbox, the user can choose the different operations for operands X and Y. 

This figure shows this part. 
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Figure 5.12.  Operation types. 

Button “X+Y” performs the addition operation between X and Y. Response 

subroutine is cmdOp1_Click. Button “X-Y” performs the subtraction operation between X 

and Y. Response subroutine is cmdOp2_Click. Button “X*Y” performs the multiplication 

operation between X and Y. Response subroutine is cmdOp3_Click. Button “X/Y” performs 

the division operation between X and Y. Response subroutine is cmdOp4_Click. Button 

“max(x,y)” finds maximum value distribution envelopes from X and Y. Response subroutine 

is cmdOp5_Click. Button “min(x,y)” finds minimum value distribution from X and Y. 

Response subroutine is cmdOp6_Click. Button “Parsing” activates the property window to 

input expression consisting of X and Y. Then it evaluates this expression using X and Y. 

Response subroutine is cmdOp7_Click. Listbox performs relational operations between X 

and Y, which include 4 types of relationship: greater than, not less than, less than, and not 

greater than.  Response subroutine is cmdOp8_Click. 

5.2.1.5 Exit button 
This button provides a convenient way to terminate this program. If the user wants to 

exit this program, by clicking this button, this program will exit. Response subroutine is 

cmdExit_Click. 
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5.2.2 Properties windows of the operation window 
For the operation window, there are 5 properties windows. Their windows are used to 

set the parameters and control information for the operation window. They are Display mode, 

Display color, About, Correlation Value, and Expression editor. 

5.2.2.1 Display mode 
This property window is used to set the display mode for operands X/Y and result Z. 

There are 2 types of display modes: PDF bars and CDF envelope curves. Response form is 

called frmDisplay. This figure shows it: 

 

Figure 5.13.  Display mode window. 

Choosing the different display mode for X, Y and Z will change the internal control 

variables da_pdfmode, db_pdfmode, and db_pdfmode. When values for these variables are 1, 

PDF mode is chosen. Otherwise CDF mode is chosen. 

5.2.2.2 Display Color 
This window controls the color for three display panels. Response form is 

frmColorSet. The following figure shows it. 
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Figure 5.14.  Display color window. 

This window controls the color variables for X, Y and Z. These variables are 

XMainColor, XSecondColor, YMainColor, YSecondColor, ZMainColor, and ZSecondColor.  

5.2.2.3 About Window 
This window displays the copyright information for this software.  

5.2.2.4 Correlation Value Window 
This window is used to set any known information about correlation. Response form 

is DlgCorSet. When user choose the option “Known dep..” from the operation window, this 

window will be activated. Through this window, the user can input any known correlation 

information that may narrow the CDF envelope curves. This figure shows this window: 

 

Figure 5.15.  Correlation setting window. 
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From this window, there are 3 ways to input information about operand X and Y: 

known correlation range or exact value, known expectation range for XY, and known 

expectation and variance for X and Y. .  

5.2.2.5 Expression editor window 
User can input expressions consisting of two variables X and Y. Response form is 

frmExpression. When user clicks the “Parsing” button on the main window, this window will 

be activated so that the user can input and edit the expression desired. This figure shows this 

window: 

 

Figure 5.16.  Expression editor window. 

The expression input by the user will be evaluated using intervals in the 

discretizations of X and Y. This form will call the utility functions in the modules file, named 

MathParserRoutines. All the functions related to expression parsing are saved in this modules 

file. 

5.3 Other primary windows 
The Data editor window provides the data editing function for the user. The user can 

use this editor to create and modify operands X and Y. Response form is frmHistEdit. 

The Data View window is used to display the data of X, Y and Z when user needs 

numerical output instead of graphs. Response form is frmViewer.  

5.4 Lower 2 levels of logical layer 
From the structure of the logical layer, the lower 2 levels consist of utility functions, 

internal data structures, and access points to the next layer. 
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5.4.1 Utility functions and internal data structure 
This level consists of two module files: Module1 and MathParserRoutines. All the 

internal data structures are defined in Module1. This module also includes the basic utility 

functions, such as load and save data. MathParserRoutines just provides the support functions 

for the expression parser.  

All the data structures are defined as public in the module file. This way, all other 

forms and subroutines can access them directly. There are 2 main types of internal data 

structures: parameters to control uncertainty operation and program, and data buffers to store 

data of X, Y, and Z. 

Utility functions are related to file management and to drawing graphs in the three 

display panels. There also is a very important utility function for synchronizing data among 

the different data types for the same random variable. 

As the previous described, there are four types of data used by the software. 

Generally, only the .IDF or .SMP files are used to input or output data. So there is a need to 

keep other type data consistent with it. The different types of data describe the same variable 

from different points of view. But they still say the same thing, so they can be transformed 

from one to another.  To execute a transformation, there are different requirements for the 

different types of random variables. The transformation can be computationally expensive. It 

is not suitable to do the transformation directly in this function, so it is put into the computing 

layer. This utility function is defined as following: 

HavePdfCdf (distribution-type as integer)  

This subroutine has only one parameter specifying the type of distribution. The parameter 

value determines if the data structure under transformation is an operand variable or result 

variable.  

5.4.2 Access points to the computing layer 
There are 4 packages in the computing layer. Every package provides the entry points 

for the layer above.  

For the standard data package, there are 2 access points as follows: 

Public Declare Sub GetPdfCdf Lib "mypdfcdf.dll" Alias "_mypdfcdf@36" (idfno As Long, 
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isapp As Long, idfdata As Single, pdfno As Long, pdfdata As Single, lobound As Single, 

upbound As Single, cdfno As Long, cdfdata As Single) 

 

Public Declare Sub GetPdfCdf_1 Lib "mypdfcdf_1.dll" Alias "_mypdfcdf@40" (idfno As 

Long, isapp As Long, idfdata As Single, pdfno As Long, pdfdata As Single, lobound As 

Single, upbound As Single, cdfno As Long, cdfdata0 As Single, cdfdata1 As Single) 

 

For the legacy simplex method, there is 1 access point as follows: 

Public Declare Function Max Lib "Max.dll" Alias "_Max@20" (objective As Double, X As 

Double, Y As Double, ByVal m As Long, ByVal n As Long) As Double 

 

For the transportation simplex method, there is 1 access point as follows: 

Public Declare Function T_Max Lib "T_Max.dll" Alias "_T_Max@20" (objective As 

Double, X As Double, Y As Double, ByVal m As Long, ByVal n As Long) As Double 

 

For the extended simplex method, there are   4 access points as follows: 

Public Declare Function Cor_Min Lib "Cor_Min.dll" Alias "_Cor_Min@28" (objective As 

Double, X As Single, Y As Single, ByVal m As Long, ByVal n As Long, ByVal LowB As 

Single, ByVal HighB As Single) As Double 

 

Public Declare Function Cor_Bound Lib "Cor_Min.dll" Alias "_Cor_Bound@40" (X As 

Single, Y As Single, ByVal m As Long, ByVal n As Long, LowEXY As Single, HighEXY 

As Single, LowB As Single, HighB As Single, XValue As Single, YValue As Single) As 

Integer 

 

Public Declare Function Cor_Min_Exy Lib "Cor_Min.dll" Alias "_Cor_Min_Exy@40" 

(objective As Double, X As Single, Y As Single, ByVal m As Long, ByVal n As Long, 

ByVal LowB As Single, ByVal HighB As Single, ByVal maner As Long, EXYLow As 

Single, EXYHigh As Single) As Double 
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Public Declare Function Cor_Min_Exy_S Lib "Cor_Min.dll" Alias "_Cor_Min_Exy_S@44" 

(objective As Double, X As Single, Y As Single, ByVal m As Long, ByVal n As Long, 

ByVal LowB As Single, ByVal HighB As Single, ByVal maner As Long, EXYLow As 

Single, EXYHigh As Single, ByVal callcount As Long) As Double 

5.5 The computing layer 
All the algorithms are implemented in this part. They are computing intensive and 

time-consuming. This part consists of 4 packages. They are Standard Data, general simplex 

method, Transportation simplex method, and extended solution using correlation as a 

constraint.  

5.5.1 Converting data 
This package provides the implementation for converting data from one format to 

another. It is provided using a dynamically linked library (DLL). This DLL is named 

“mypdfcdf.dll”.  This DLL includes just one method for converting data. This method is 

called “mypdfcdf”. Its exact definition using C++ is listed as following: 

#ifdef __cplusplus 

extern "C" __declspec( dllexport ) void __stdcall mypdfcdf( int * idfno, int * 

isapp, float  idfdata[][3], int * pdfno, float pdfdata[][3], float * lobound, float * 

upbound, int   cdfno[],  float cdfdata[][1025][3] ) 

#endif 

parameters:  

  int *idfno: the address of the number of the idf’s interval, if any 

  int *isapp: the address of whether it is application data 

  float idfdata[][3]: the 2 dimension array of idf data, if any. Each row includes 3             

columns: low bound of interval, high bound, and probability for this interval. 

  int *pdfno: the address of the number of the pdf’s interval, if any. 

  float pdfdata[][3]: the 2 dimension array of pdf data, if any. Formation is the same as 

that of idf 

  float *lobound: the address of the low bound 

  float *upbound: the address of the up bound 
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  int cdfno[]: the array for the number of cdf bounds 

  float cdfdata[][1025][3]: the 3 dimension array for cdf data 

 

To support big size data, this package also provides an extended DLL, called 

mypdfcdf_1.dll. This DLL does the same work as the original DLL, but the parameters of the 

function are changed to support big size data. Its definition is as follows: 

extern "C" __declspec( dllexport ) void __stdcall mypdfcdf( int * idfno, int * 

isapp, float  idfdata[][3], int * pdfno, float pdfdata[][3], float * lobound, float * 

upbound, int   cdfno[], float cdfdata0[][3], float cdfdata1[][3]) 

Comparing it with the previous definition, only the last two parameters are different. In the 

extended version, parameter cdfdata is split into 2 parameters. This will remove the 

constraint the previous definition imposes of defining the size of array.  

Although this function is defined in a “C++” file, it still requires the standard “C” 

string in the declaration since this interface will be put into a DLL and called by another 

language. So this interface has to be consistent with the requirement to use a “C” standard in 

the declaration. On the Microsoft platform, there are three calling conventions: __cdecl, 

__fastcall, and __stdcall. The different calling conventions define the different stack push 

methods. We use only __stdcall.  Microsoft developer network (MSDN) gives detailed 

information about how to make DLLs to be used by another language. 

In this DLL, PDF information is often approximate and is derived from IDF format 

for display purposes. CDF format has two sets of data: minimum probability and maximum 

probability for the specified point on the horizontal axis. At most 64 bars are supported in the 

DLL for PDF format. Probability will be assigned to these bars according to IDF data, so the 

result for this transformation is approximate except when the IDF has no overlaps in it. The 

following pseudo code describes how it works. 

/* First get PDF from IDF */ 

If IDF no overlap then 

Set lowbound as lowbound of first bar of IDF 

Set highbound as highbound of last bar of IDF 

Set PDF same as IDF  
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Else 

Number of bars <- max(number of  bar of IDF, PDFMAX) 

Set Lowbound as lowbound of frist bar of IDF 

Set Highbound as highbound of last bar of IDF 

Average Width of PDF bar <- ( Highbound – Lowbound) / Number of bars 

Set low/high bound for every bar of PDF according to Lowbound and bar width 

Assign the probabilities of PDF bars from IDF bars 

End if  

/* Then get CDFs from IDF, CDF1 contains data of high bound curve, CDF2 contains data of 

low bound curve*/ 

Number of bars of CDFs <- number of IDF +1 

Lowbound of CDF1<- lowbound of each bar of IDF 

Highbound of CDF2<-highbound of each bar of IDF 

Order bars of CDF1 according to the lowbound of each bar 

Order bars of CDF2 according to the highbound of each bar 

Merge the same bars of CDF1 according to lowbound of each bar 

Merge the same bars of CDF2 according to highbound of each bar 

Set the highbound of each bar of CDF1 

Set the lowbound of each bar of CDF2 

Assign the probability to each bar of CDF1 based on IDF 

Assign the probability to each bar of CDF2 based on IDF 

Get the cumulative probability of each bar of CDF1 

Get the cumulative probability of each bar of CDF2 

5.5.2 General (legacy) simplex method 
This package was inherited from the previous version. It uses the standard simplex 

method to do linear programming. It was provided as a dynamically linked library. Its name 

is max.dll.  Its interface is defined as follows: 

extern "C" __declspec( dllexport ) double __stdcall Max( double* objective, double* x, 

double* y, int m, int n); 

Xie (1998) gave detailed information about this interface.  
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5.5.3 Transportation simplex method 
The transportation simplex method was implemented in this package. This package 

also is provided as a dynamically linked library (DLL).  The algorithm was discussed in the 

previous chapter. In this part, we just focus on some details about design and 

implementation.  

This component is called t_max.dll. The function is named T_Max (please note 

capitals in name). The full definition is listed as follows:  

#ifdef __cplusplus 

extern "C" __declspec(dllexport) double __stdcall T_Max(double *objective, double 

*x, double *y, int m, int n) 

#endif 

Parameters: 

 double *objective: array for cost coefficient for every cell 

 double *x: marginal distribution for operand x 

 double *y: marginal distribution for operand y 

 int m: the number of bars for operand x 

 int n: the number of bars for operand y 

This function’s definition is kept the same as the original interface called max. Xie (1998) 

listed detailed information about its parameters. This function will return the maximum sum 

of probabilities for cells specified by the parameter named objective. This DLL is stateless. 

To call this function, parameters must be passed for every call although they are the same 

except for the parameter called objective.  

The transportation simplex method is implemented in a class called CTransport. 

There is another utility class, called CConfigure in this package. Figure 4.4 shows the 
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relationship between these classes. 

CConfigure

CTransport

#m_Configure

 

Figure 5.17.  Class relationship for transportation simplex method. 

Class CConfigure will read parameters from a configuration file to control the 

transportation simplex method. Currently, there is only one parameter to control which 

initialization method is used to get the initial feasible solution: Northwest corner method and 

Russell approximation method.  

CConfigure
m_ConfigureFileName : char*

<<virtual>> ~CConfigure()
CConfigure()
InitialConfigure()
GetTermValue()

 

Figure 5.18.  Class CConfigure. 

Class CTransport implements the transportation simplex method. This figure shows 

the flow of control: 

 
 
 
 
  



 78

Initial 
solution

Double 
Variables

Enter 
Variable

Leave 
Variable

Adjust flow

 

Figure 5.19. Flow of control for transportation Simplex implementation. 

Handling degeneracy is a key part of this algorithm. Generally speaking, degeneracy 

means the number of basic variables is less than M+N-1 for an MxN matrix. The reason for it 

is a little complex. The number of basic variable is determined by the procedure for getting 

an initial feasible solution. This number can’t be changed during subsequent iterations. So 

the initial feasible solution is very important. Different initialization methods will produce 

different initial feasible solutions. For example, the Northwest Corner approach is easy, 

simple, and provides enough basic variables although maybe the value of some basic 

variables is zero. Russell’s approximation method provides a good initial solution, which is 

very close to the best solution, so subsequent computation will be lessened. But it may fail to 

provide an initial feasible solution with enough basic variables. Two initial procedures were 

implemented in this class: the Northwest corner method and Russell’s approximation 

method. The Northwest corner method is the default method to get the initial feasible 

solution. The user can choose Russell’s method as the initialization method through changing 

a parameter in the configuration file. This is just a way provided for the advanced user who 

knows what they are doing.  

5.5.4 Incorporating correlation as a constraint 
This package is in cor_min.dll. Four functions are provided in this package. They are 

Cor_Min, Cor_Min_Exy, Cor_Min_Exy_S, and Cor_Bound. The first 3 are used to operate 

on random variables when correlation is set. Among these three, each subsequent one has a 
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super set of functions compared with the previous one. The last one is used to get the 

estimated range of possible correlations for the two operands.  

The first three functions are defined as the follows: 

extern "C" __declspec( dllexport ) double __stdcall Cor_Min(double *pCost, float pX[][3], 

float pY[][3], int mx, int ny, float LowBound, float HighBound); 

Parameters: 

 double *pCost: array for cost coefficient for every cell 

 double *pX: 2 dimension array to contain every bar of operand x 

 double *pY: 2 dimension array to contain every bar of operand y 

 int m: the number of bars of operand x 

 int n: the number of bars of operand y 

            float LowBound: lowbound of correlation 

            float HighBound: highbound of correlation 

 

extern "C" __declspec( dllexport ) double __stdcall Cor_Min_Exy(double *pCost, float 

pX[][3], float pY[][3], int mx, int ny, float LowBound, float HighBound, int 

EXYManner,float *EXYLow,float *EXYHigh); 

Parameters: 

 double *pCost: array for cost coefficient for every cell 

 double *pX: 2 dimension array to contain every bar of operand x 

 double *pY: 2 dimension array to contain every bar of operand y 

 int m: the number of bars of operand x 

 int n: the number of bars of operand y 

            float LowBound: lowbound of correlation 

            float HighBound: highbound of correlation 

            int EXYManner: indicate whether value of EXY set by the user is used 

            float *EXYLow: address of the lowbound of EXY 

            float *EXYHigh: address of the highbound of EXY 
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extern "C" __declspec( dllexport ) double __stdcall Cor_Min_Exy_S(double *pCost, float 

pX[][3], float pY[][3], int mx, int ny, float LowBound, float HighBound, int 

EXYManner,float *EXYLow,float *EXYHigh,long CallCount); 

Parameters: 

 double *pCost: array for cost coefficient for every cell 

 double *pX: 2 dimension array to contain every bar of operand x 

 double *pY: 2 dimension array to contain every bar of operand y 

 int m: the number of bars of operand x 

 int n: the number of bars of operand y 

            float LowBound: lowbound of correlation 

            float HighBound: highbound of correlation 

            int EXYManner: indicate whether value of EXY set by the user is used 

            float *EXYLow: address of the lowbound of EXY 

            float *EXYHigh: address of the highbound of EXY 

            long CallCount: counter to count the time to call this interface 

 

From the previous definitions, it is evident that more parameters are required for the later 

functions. So the later functions have more functionality than the earlier ones.  

The function to estimate the correlation range is not classified to other three. But they 

all have some similarities and use some same utilities. So they are put together into a package 

(DLL). Here is the interface of that 4th function. 

 

extern "C" __declspec( dllexport ) int __stdcall Cor_Bound(float pX[][3], float pY[][3], int 

mx, int ny, float *LowK, float *HighK, float *LowCor, float *HighCor, float *XValue, float 

*YValue); 

Parameters: 

 double *pX: 2 dimension array to contain every bar of operand x 

 double *pY: 2 dimension array to contain every bar of operand y 

 int m: the number of bars of operand x 

 int n: the number of bars of operand y 
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            float *LowK: address to store the lowbound of possible EXY 

            float *HighK: address to store the highbound of possible EXY 

            float *LowCor: address to store the lowbound of possible correlation 

            float *HighCor: address to store the highbound of possible correlation 

            float *XValue: address to store the expectation and variance of operand X 

            float *YValue: address to store the expectation and variance of operand Y 

5.5.4.1 Class structure 
This package provides 2 main functions: computing the possible correlation range 

based on marginal distributions of operands X and Y; and getting CDF bounds’ values 

according to the correlation setting. To perform these functions, there are 8 classes defined in 

this package. They are COptimalMin, CConfig, CSimplex, CVariance, CMaxmin, 

CBoundCorrelation, CMinCorrelation, and CMinCorrelationExy.  

 

COptimalMin: getting the minimum value of the specified non-linear functions on the 

specified variables range. 

COptimalMin
m_pLowBound : double*
m_pHighBound : double*
m_pInitialValue : double*
m_TotalDimension : int
m_ErrorCode : int

Optimization()
<<virtual>> ~COptimalMin()
COptimalMin()
<<virtual>> ObjectionFunctionValue()
<<virtual>> ObjectionFunctionGrad()
<<virtual>> PenaltyFunctionValue()
<<virtual>> PenaltyFunctionGrad()
SampleMin()

 

Figure 5.20.  Class: COptimalMin. 
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CConfig: reading the configuration information from the configuration file: Statool.cfg. 

CConfigure
m_ConfigureFileName : char*

<<virtual>> ~CConfigure()
CConfigure()
InitialConfigure()
GetTermValue()

 

Figure 5.21.  Class: CConfigure. 

CVariance: getting the min/max value of variance of random variable. 

CVariance
m_pCoefficient : double*
m_Expectation : double
m_Variance : double

CalculateMean()
CalculateVariance()
<<virtual>> ~CVariance()
CVariance()
ROFValue()
ROFGrad()
OFValue()
OFGrad()
PFValue()
PFGrad()
SetParameter()
GetMin()
GetMax()

 

Figure 5.22. Class: CVariance. 
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CSimplex: solving the linear programming problem using improved simplex method. 

CSimplex
MAX_LOOPNUMBER : long
LEAVE_EPS : double
INVERSE_EPS : double
EPS : double
m_pDebugFile : FILE*
m_Version : short
m_Status : short
m_pBuffer2 : double*
m_pBuffer1 : double*
m_PreviousLeaveOrder : short
m_PreviousEnterOrder : short
m_PreviousLeaveVariable : short
m_PreviousEnterVariable : short
m_LeaveOrder : short
m_EnterOrder : short
m_LeaveVariable : short
m_EnterVariable : short
m_NumberofBasic : short
m_NumberofNonbasic : short
m_BigConstant : double
m_pInverseB : double**
m_pNonbasic : short*
m_pBasic : short*
m_pCost1 : double*
m_pWi : double*
m_pWi1 : double*
m_NumberofZeroCoefficient : int
m_ErrorCode : int
m_Min : double
m_pb : double*
m_pCost : double*
m_pMatrixA : double**
m_NumberofVariable : short
m_NumberofConstraint : short
m_pXSolution : double*
m_CallCount : int

IsLess()
DetermineEnterVariable()
DetermineLeaveVariable()
UpdateInverseB()
AdjustBasicNonbasic()
GetMatrixAValue()
HandleZeroCoefficient()
<<virtual>> ~CSimplex()
CSimplex()
GetCurrentSolution()
GenerateResult()
SetParameter()
RunLP()
ChangeCostCoefficient()
RecalculateInverseB()
GetInverseB()

 

Figure 5.23. Class: CSimplex. 
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CMaxmin: getting the min/max value of the correlation formula. 

CMaxmin
(m_pPenaltyFunctionGrad)(double*, int) : double
(m_pPenaltyFunctionValue)(int*) : double
(m_pObjectFunctionGrad)(double*) : double
(m_pObjectFunctionValue)() : double
m_pRhoInitialValue : double*
m_pRhoHighBound : double*
m_pRhoLowBound : double*
m_pYInitialValue : double*
m_pXInitialValue : double*
m_pYLowBound : double*
m_pXLowBound : double*
m_pYHighBound : double*
m_pXHighBound : double*
m_RhoCondition : char
m_DimensionofX : int
m_DimensionofY : int
m_pYCoefficient : double*
m_pXCoefficient : double*
m_pCoefficient : double*
m_pInitialValue : double*
m_pLowBound : double*
m_pHighBound : double*
m_TotalDimension : int

CalculateXMean()
CalculateYMean()
CalculateXVariance()
CalculateYVariance()
FunctionValue()
FunctionGrad()
PenaltyFunctionValue()
PenaltyFunctionGrad()
ReverseFunctionValue()
ReverseFunctionGrad()
ReversePenaltyValue()
ReversePenaltyGrad()
VarianceValue()
VarianceGrad()
VariancePenlaty()
ReverseVarianceValue()
ReverseVarianceGrad()
SetParameter()
GetMin()
GetMax()
SetInitialValue()
GetSolution()
GetVarianceMin()
GetVarianceMax()
Optimization()
<<virtual>> ~CMaxmin()
CMaxmin()

 

Figure 5.24.  Class CMaxmin. 
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CBoundCorrelation: getting the possible correlation range for two operands. 

CBoundCorrelation
m_Rows : int
m_Columns : int
m_pCost : double*
(*m_pX)[3] : float
(*m_pY)[3] : float
m_NumberofX : int
m_NumberofY : int
m_pb : double*
m_pMatrixA : double*
m_FunctionXBound[2] : double
m_FunctionYBound[2] : double
m_ErrorCode : int
m_YV[2] : double
m_YE[2] : double
m_XV[2] : double
m_XE[2] : double
m_BoundEXY[2] : double
m_BoundCorrelation[2] : double

MultipyInterval()
GetMultipyBound()
InitialMaxmin()
FindBoundEXY()
FindBoundCorrelation()
<<virtual>> ~CBoundCorrelation()
CBoundCorrelation()
SetParameter()
FindXYEVValue()

 

Figure 5.25. Class: CBoundCorrelation. 
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CMinCorrelation: getting the minimum value for specified correlation setting. 

CMinCorrelation
m_Rows : int
m_Columns : int
m_MeanX[2] : double
m_MeanY[2] : double
m_DXY[2] : double
m_AdditionalConstraints : int
m_pCost : double*
(*m_pX)[3] : float
(*m_pY)[3] : float
m_NumberofX : int
m_NumberofY : int
m_pb : double*
m_pMatrixA : double*
m_LowCorrelation : double
m_HighCorrelation : double
m_pVariableLowBound : double*
m_pVariableHighBound : double*
m_FunctionXBound[2] : double
m_FunctionYBound[2] : double
m_ErrorCode : int
m_IsCorrelation : int
m_MinValue : double

MultipyInterval()
CalculateMean()
GetMultipyBound()
CalculateFunctionBound()
InitialMaxmin()
<<virtual>> ~CMinCorrelation()
CMinCorrelation()
SetParameter()
RunforMin()
ContinueRunforMin()

 

Figure 5.26. Class: CMinCorrelation. 
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CMinCorrelationExy: getting the minimum value for specified correlation or expectation of 

XY setting. 

CMinCorrelationExy
m_EXYHigh : float
m_EXYLow : float
m_EXYManner : int

<<virtual>> ~CMinCorrelationExy()
CMinCorrelationExy()
SetParameter()
RunforMin()
GetEXYBound()

 

Figure 5.27.  Class: CMinCorrelationExy. 

5.5.4.2 Class relationships 
In these classes, classes CBoundCorrelation, CMinCorrelation and 

CMinCorrelationExy are control and boundary classes, which interface with other packages 

or the caller and also manage the flow of logic. Classes CConfig, COptimalMin, and 

CSimplex are utility classes, which solve a specified problem. Classes CMaxmin and 

CVariance the specified functions. The following figure shows the relationship between these 

classes. 

COptimalMin

CVariance

CConfigure

CBoundCorrelation

#m_Variance

CMaxmin

#m_Maxmin

CSimplex

-m_Config

#m_Simplex

CMinCorrelation

#m_Maxmin

#m_Simplex

CMinCorrelationExy

 

Figure 5.28.  Class diagram. 
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5.5.4.3 Sequence diagrams 
In this package, there are 4 interfaces: three are used to find the minimum value based 

on the correlation setting, and the last one is used to find the possible range of correlation.  

Interface Cor_Bound is implemented in function Cor_Bound in file cor_min.cpp. The 

following figure shows the sequence diagram: 

 : CVarianceInterface:Cor_B
ound

 : 
CBoundCorrelation

 : CSimplex  : CMaxmin

SetParameter(float, float, int, int)

FindBoundEXY( )
SetParameter(int, int, double**, double*, double*)

RunLP( )

GenerateResult( )

FindBoundCorrelation( )
InitialMaxmin( ) SetParameter(int, int, double*, double*, double*)

GetMin( )

GetMax( )

FindXYEVValue( ) SetParameter(int, float)

GetMin( )
Optimization(double*)

GetMax( )
Optimization(double*)

SetParameter(int, float)

GetMin( )
Optimization(double*)

GetMax( )
Optimization(double*)

Optimization(double*)

Optimization(double*)

 

Figure 5.29.  Sequence diagram for Cor_Bound. 
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As previously said this software supports 3 types of correlation information setting: 

direct correlation, EXY setting, and X*Y information setting. Interfaces Cor_Min, 

Cor_Min_Exy and Cor_Min_Exy_S, are implemented in file cor_min.cpp. Cor_Min is the 

simplest one of three, and supports only setting the correlation. The sequence diagram is 

shown as follows: 

Interface: 
Cor_Min

 : 
CMinCorrelation

 : CMaxmin  : CSimplex

SetParameter(double*, float, float, int, int, float, float)

RunforMin( )
MultipyInterval(int, int)

CalculateMean( )

InitialMaxmin( )
SetParameter(int, int, double*, double*, double*)

GetMin( )
SetInitialValue( )

Optimization(double*)

GetMax( )
SetInitialValue( )

Optimization(double*)

SetParameter(int, int, double**, double*, double*)

RunLP( )

GenerateResult( )

DetermineEnterVariable( )

DetermineLeaveVariable( )

RecalculateInverseB( )

UpdateInverseB( )

AdjustBasicNonbasic( )

GetCurrentSolution( )

 

Figure 5.30.  Sequence diagram for Cor_Min. 
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Cor_Min_Exy supports not only setting the correlation, but also setting EXY and 

setting X*Y. It is a stateless interface. There is no relationship between successive callings. 

The following figure shows the sequence diagram. 

Interface: 
Cor_Min

 : 
CMinCorrelationExy

 : CMaxmin  : CSimplex  : 
CMinCorrelation

SetParameter(double*, float, float, int, int, float, float)

RunforMin( )

CalculateMean( )

InitialMaxmin( )
SetParameter(int, int, double*, double*, double*)

GetMin( )
SetInitialValue( )

Optimization(double*)

GetMax( )
SetInitialValue( )

Optimization(double*)

SetParameter(int, int, double**, double*, double*)

RunLP( )

GenerateResult( )

DetermineEnterVariable( )

DetermineLeaveVariable( )

RecalculateInverseB( )

UpdateInverseB( )

AdjustBasicNonbasic( )

GetCurrentSolution( )

SetParameter(double*, float, float, int, int, float, float)

GetEXYBound(float*, float*)

MultipyInterval(int, int)

 

Figure 5.31.  Sequence diagram for Cor_Min_Exy. 
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Cor_Min_Exy_S is a state-retaining version of Cor_Min_Exy. In this interface, a call 

may use information from a previous call to speed computation time. The following figure 

shows the sequence diagram. 

Interface: 
Cor_Min

 : 
CMinCorrelationExy

 : CMaxmin  : CSimplex  : 
CMinCorrelation

SetParameter(double*, float, float, int, int, float, float)

RunforMin( )

CalculateMean( )

InitialMaxmin( )

GetEXYBound(float*, float*)

MultipyInterval(int, int)

SetParameter(int, int, double*, double*, double*)
GetMin( )

SetInitialValue( )

Optimization(double*)

GetMax( )
SetInitialValue( )

Optimization(double*)

SetParameter(int, int, double**, double*, double*)

RunLP( )

GenerateResult( )

DetermineEnterVariable( )

DetermineLeaveVariable( )

RecalculateInverseB( )

UpdateInverseB( )

AdjustBasicNonbasic( )

GetCurrentSolution( )

SetParameter(double*, float, float, int, int, float, float)

GetEXYBound(float*, float*)

ContinueRunforMin(double*)

ChangeCostCoefficient(double*, int)

GetInverseB( )

RunLP( )

GenerateResult( )

 

Figure 5.32.  Sequence diagram for Cor_Min_Exy_S. 
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6 Explanation of the results 
 

All our experiments were conducted on the compiled version of Statool and DLLs 

using Visual Basic 6.0 and Visual C++ 6.0.  The running platform was windows 2000 

professional. The machine had 256M memory and the CPU ran at 1000Mhz.  

Our experiments focus on checking three issues: the accuracy of results, the effect of 

correlation, and speed.  Changing the accuracy of operands will affect the accuracy of results. 

Different correlations will change the shapes of results. Increasing the number of intervals 

will take more time to compute. 

6.1 Experiments 
The operand X, a random variable, was given a uniform distribution from 1 to 9. The 

operand Y, another random variable, was given a tail-trimmed normal distribution from 2 to 

10, whose mean was 6 and variance 1.  This range almost covers all the probability for Y. A 

small amount in the tail was omitted. We discretized the supports of X and Y into 16, 32, 64 

intervals, then used the discretized X and Y as the inputs to operations. Results of operations 

showed the accuracy changing for different discretizations. At the same time, correlation was 

set to different values to check the effects. 4 operations were executed in these experiments. 

They are plus, minus, multiply, and divide.    

The following figures show the results for different number of intervals in the 

operand discretizations when doing addition of X and Y with correlation zero. 

 

Figure 6.1. X+Y when X and Y are 16 intervals. 
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Figure 6.2. X+Y when X and Y are 32 intervals. 

 
Figure 6.3. X+Y when X and Y have 64 intervals. 

From these three figures, it is clear the results will become better when the 

discretization of the operands is increased. 

Next, we show figures illustrating the effect of correlation. For this case, we let X and 

Y have 64 intervals, and set correlation to four values: unknown, 0.98, 0, and -0.98. 
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Figure 6.4. X*Y for unknown. 

 

Figure 6.5. X*Y for correlation 0.98. 

 
Figure 6.6. X*Y for correlation 0. 
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Figure 6.7. X*Y for correlation -0.98. 

From these figures, bounds of curves can be affected by the correlation. For unknown 

correlation, the widest bound curves will be gotten. Compared with correlation 0, the high 

bound curve for correlation 0.98 is changed and the low bound curve for correlation -0.98 is 

changed.  

The computing speed is also a factor to be considered. We did the different operations 

for different discretizations. We checked whether the different operations would affect the 

speed and what was the relationship among the computing times for the different 

discretizations.  

Table 6.1. Operation evaluation time (seconds) for correlation 0. 

Intervals in 
discretization 
(X x Y)  addition subtraction multiplication division max min 
16x16 1 1 3 5 1 1 
32x32 22 26 154 328 13 11 
64x64 3636 3297 52317 148173 1083 866 

 

From this table, the times for plus, subtraction, max and min have the same level. 

Operations for multiplication and division will cost more time. Especially, division will cost 

2 times multiplication. The following figure shows the times for operations: addition, 

subtraction, max and min.  
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Figure 6.8. Times for operations. 

This figure shows the times for multiplication and division. 
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Figure 6.9. Times for multiplication and division. 
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6.2 Discussion 
Two improvements will be considered in the future: getting narrower bounds from 

correlation and decreasing the computing time for discretizations with many intervals. Linear 

programming problems have more than 4000 variables for a 64x64 discretization. So it is a 

big problem for linear programming. It is possible to decrease computing time if another 

linear programming method, whose speed is faster, or a parallel algorithm.  
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