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Abstract 
 
Many natural language processing approaches at vari-

ous complexity levels have been reported for extracting 
biochemical interactions from MEDLINE. While some 
algorithms using simple template matching are unable to 
deal with the complex syntactic structures, others exploit-
ing sophisticated parsing techniques are hindered by 
greater computational cost. This study investigates link 
grammar parsing for extracting biochemical interactions. 
Link grammar parsing can handle many syntactic struc-
tures and is computationally relatively efficient. We ex-
perimented on a sample MEDLINE corpus. Although the 
parser was originally developed for conversational Eng-
lish and made many mistakes in parsing sentences from 
the biochemical domain, it nevertheless achieved better 
overall performance than a co-occurrence-only method. 
Customizing the parser for the biomedical domain is ex-
pected to improve its performance further. 

 
 

1. Introduction 
 
MEDLINE is a rich source for mining biochemical in-

teractions for various tasks, such as populating databases 
of interacting proteins, constructing networks of protein 
interactions, and assisting human experts to sift through 
the most relevant documents. Many algorithms have been 
proposed in the literature, falling into two broad catego-
ries, statistical approaches and natural language processing 
(NLP) approaches. More attention has been paid to the 
latter, probably due to the fact that the single sentence 
(NLP’s main focus) is a good choice of text unit for min-
ing biochemical interactions [3], and many algorithms and 
tools can be borrowed from computational linguistics. In 
the existing reports, NLP approaches were used to analyze 
sentences with grammars of various levels of expressive 
power and computational complexity. However, it is chal-
lenging to find a good balance between the two factors. 
Most systems suffered from either not enough expressive 
power to deal with complex sentence structures, or too 
much computational overhead when processing complex 

sentences to be practical on large corpora. Yet MEDLINE 
abstracts are full of complex sentences, so without effi-
cient handling of complex sentences, the overall perform-
ance and application of any NLP interaction mining sys-
tem is limited. 

In this paper, we propose extracting biochemical inter-
actions from MEDLINE using a link grammar parser 
(LGP) [4]. The parser has good performance on complex 
sentences, attributable to its balance between expressive 
power and computational complexity. First, in section 2, 
we briefly discuss syntactic structures of MEDLINE sen-
tences, and give a review of the strengths and limitations 
of the current NLP interaction mining approaches in the 
literature. In section 3 we give a brief introduction to link 
grammar and a link grammar parser. In section 4, we re-
port the experiment results of using the parser on a sample 
MEDLINE corpus. Section 5 contains a discussion of the 
LGP’s expressive power and computational complexity. 
Future developments and a conclusion follow.  

 
2. Related work 

 
Biochemical interactions described in MEDLINE ab-

stracts are rarely stated as simply as “protein A activates 
protein B.” Various syntactic structures are used to com-
pact several interactions, as well as other information, into 
a single sentence. Among the most frequently used are 
nominalization (converting a predicate to a noun phrase) 
and coordination (combining two or more predicates with 
coordinating conjunctions). It is not uncommon in 
MEDLINE abstracts for a single sentence (or fragment) to 
describe a network of interactions. Consider an example 
from MEDLINE: 

Gamma-aminobutyric acid mediation of the inhibi-
tory effect of nitric oxide on the arginine vaso-
pressin and oxytocin responses to insulin-induced 
hypoglycemia. (PMID: 8952001) 

This sentence fragment has four instances of nominali-
zation and one of coordination. There are five biochemi-
cals in the sentence (ten possible interacting pairs). Three 
interactions are explicitly described, NO → GABA, NO 
→ AVP and NO → OXT), and four are implied (GABA 



→ AVP, GABA → OXT, insulin → AVP and insulin → 
OXT (NO means nitric oxide, AVP means arginine vaso-
pressin, OXT means oxytocin, and GABA means Gamma-
aminobutyric acid. All are nominalized. Among the three 
non-interacting pairs, only AVP/OXT is obvious because 
of the coordination evidenced by the coordinating con-
junction “and.” The complexity shown here illustrates the 
challenges that NLP interaction mining algorithms face in 
this domain. 

Natural Language Processing is still in its relative in-
fancy, so automatic full discourse analysis and semantic 
understanding are beyond the capability of today’s com-
puting systems. Current NLP algorithms, therefore, try 
various ways to simplify the syntactic structures, or focus 
on specific subsets of the structures.  

The syntactically simplest algorithms predict interac-
tion from a pair of co-occurring terms, as in  PathBinder 
[2]. Template matching algorithms require more evidence 
of interaction than just co-occurrence of the terms. One 
type of templates consists of two slots for interacting bio-
chemicals and an interactor (an interaction-related word) 
slot, such as in [6] and [10]. Blaschke et al. [1] added a 
constraint that the interactor must be between the two 
terms. An implicit assumption behind such templates is 
that there is no crossover among predicates or nominalized 
predicates, so they performed poorly on multiple-instance 
nominalization and coordination. For example, a “term-
interactor-term” template will miss two explicitly stated 
interactions in the example sentence given above (NO → 
AVP and NO → OXT), falsely include a non-interaction 
(GABA/insulin), either miss two implied interactions (in-
sulin → AVP and insulin → OXT) or include a non-
interaction (NO/insulin) depending on whether or not “re-
sponses” can fill the interactor slot. In addition, both “me-
diation” and “inhibitory” can fill the interactor slot be-
tween GABA and NO.  

To better deal with nominalization, Leroy and Chen [5] 
tried to first find noun phrases using templates built 
around the preposition “of,” and then fill the phrases into 
main templates built around the preposition “by.” Other 
researchers took advantage of progress in the NLP field. 
For example commercial and open-source part-of-speech 
taggers and parsers were experimented with, such as in [7] 
and [11]. However, these approaches have some limita-
tions. First, parsing is difficult, especially in face of the 
complexity of MEDLINE sentences. For example, Yaku-
shiji et al. [11] experimented with a full parser on 179 sen-
tences taken from MEDLINE. In only 66 (30%) were cor-
rect parse results obtained. Second, the parsing results 
(parse trees and grouped phrases) may or may not help 
extract interactions. Consider the example sentence men-
tioned above. The entire sentence (which is a title) is a 
noun phrase. Correct grouping of the entire phrase does 
not provide any useful information for interaction extrac-
tion. Park et al. [7] used a combinatory categorial grammar 

parser in their system to confirm their own noun phrase 
grouping rules, ignoring other output of the parser. In such 
systems, part of the computational resources goes into 
generating parse results that are irrelevant to the task at 
hand, which is a waste of computing resources. Finally, 
none of these algorithms dealt with coordination. 

Coordination occurs in a sentence when it contains a 
shared structure. The sharing avoids duplication, so that 
the sentence is more compact than if sharing had not oc-
curred. That is the main reason why this syntactic structure 
is so widely used in MEDLINE abstracts and elsewhere. 
Coordination can be applied to various sentence compo-
nents. For example, 

Protein A activates proteins B and C. 
Protein A activates protein B and protein C. 
Protein A activates protein B, and inhibits protein C. 
… 
All of these examples use coordination to avoid saying, 

for example, “Protein A activates protein B. Protein A 
activates protein C.” This kind of complexity cannot eas-
ily be handled by simple template matching. Note that the 
coordinating components (B and C) are not related to each 
other. They are put together only because they are related 
to a common third party. Therefore, coordination should 
be used to rule out interactions between the coordinating 
components. 

In the next section, we introduce a link grammar parser, 
which deals with coordination. In addition, the output of 
the parser is also suitable for extracting relationships be-
tween non-coordinating terms. 

 
3. Link grammar and the link grammar 
parser 

 
Link grammar was first introduced by Sleator and 

Temperley to simplify English grammar with a context-
free grammar [8]. The basic idea of link grammar is to 
connect pairs of words in a sentence with various links. 
Each word is viewed as a block with connectors coming 
out. There are various types of connectors, and connectors 
may point to the right or to the left. A valid sentence may 
have more than one complete linkage, just as a sentence 
may have several meanings. 

Grinberg et al. [4] developed a robust parser to imple-
ment the link grammar. It has a dictionary of about 60,000 
words, and can recognize a wide range of English syntac-
tic phenomena: noun-verb agreement, questions, impera-
tives, complex and irregular verbs, many types of nouns, 
past- or present-participles in noun phrases, commas, a 
variety of adjective types, prepositions, adverbs, relative 
clauses, possessives, coordinating conjunctions, and oth-
ers. The parser was tested on a corpus of English tele-
phone conversations. Its robustness was demonstrated by 
its ability to handle many “ungrammatical” sentences and 
sentence fragments. If a complete linkage cannot be found, 



the parser will try to form a “partial linkage” by ignoring 
one or more of the words in the sentence. The parser has 
an internal timer. If the timer runs down before a complete 
or partial linkage has been found, the parser will output 
whatever it has found so far (termed a fragmented link-
age). 

The example sentence discussed in the previous section 
can serve as an example input for the LGP. To prevent the 
parser from making unnecessary mistakes, we abbreviated 
and capitalized the biochemical names. We also modified 
the sentence fragment slightly to make it a real sentence, 
but kept all the interactions unchanged. The modified sen-
tence and one of the complete linkages are shown in Fig. 
1. It took the parser 0.13 sec to process the sentence [9]. A 
total of 50 complete linkages were found. The parser has a 
cost system to express preferences among the linkages 
(“cost vector” in Fig. 1). For example, the parser may pre-
fer the linkage with the shortest total link length. In this 
particular case, the linkage corresponding to the correct 
semantic meaning ranked 6th place. It has two sub-linkages 
(both shown in Fig. 1), because there was a coordinating 
conjunction in the sentence. The parser handles coordina-
tion by giving two sub-linkages. Each sub-linkage ignores 
one of the coordinating components (AVP and OXT). The 
parser also attached part-of-speech tags to some ambigu-
ous words (noun, verb, adjective, etc.). The question mark 
following “hypoglycemia” meant that the word was not in 

the parser’s dictionary, and was guessed to be a noun. 
To find the interactions described in the sentence, we 

extracted the link paths between the ten pairs of terms 
(Table 1). For example, to extract the path between GABA 
and NO, we started at “GABA”, followed the “Ss” link to 
“mediates”, the “Os” link to “effect”, the “Mp” to 
“of”, and ended with the “Js” link to “NO” which consti-
tutes four linking steps. The AVP/OXT pair can be ex-
cluded immediately from the interaction list because there 
is no link path between them. This is attributed to the 
parser’s ability to handle coordinating conjunctions. In this 
particular case, the other two non-interacting pairs can also 
be excluded easily by a cut-off value for the number of 
links that must be traversed to get from one to the other 
(e.g. 6 or 7 in this case). In general, it may not be clear 
what such a cutoff value should be. However, even if these 
two pairs were not excluded, we already have a gain in 
precision without any loss in recall compared to taking co-
occurrence alone as evidence of interaction. 

Note the tendency of the words in the link paths to be 
relevant to the chemical pairs of interest. These fragments 
could be further processed using methods such as those 
reviewed in the previous section.  
 
4. Experiment results on the IEPA corpus 

 
In order to see how the LGP works in a MEDLINE set-

Table 1. Extracted link paths between biochemical pairs from the LGP’s output. 
Pair Relevant fragment (link path) Steps Interaction 

GABA→NO GABA mediates effect of NO 4 Explicit 
NO→AVP effect of NO on AVP response 5 Explicit 
NO→OXT effect of NO on OXT response 5 Explicit 
GABA→AVP GABA mediates effect on AVP response 5 Implied 
GABA→OXT GABA mediates effect on OXT response 5 Implied 
AVP→insulin AVP response to insulin-induced hypoglycemia 4 Implied 
OXT→insulin OXT response to insulin-induced hypoglycemia 4 Implied 
GABA→insulin GABA mediates effect on response to insulin-induced hypoglycemia 7 None 
NO→insulin effect of NO on response to insulin-induced hypoglycemia 7 None 
AVP→OXT (None)  None 

Modified sentence: GABA mediates the inhibitory effect of NO on the AVP and OXT responses to insulin-induced hy-
poglycemia. 

Parsing result (portion): 
Linkage 6, cost vector = (UNUSED=0 DIS=2 AND=0 LEN=30) 
          +------------Os------------+           +----------Jp----------+                  
          |      +--------D*u--------+-----Mp----+  +--------Dmc--------+       +------------Jp-----------+ 
  +---Ss--+      |        +-----A----+--Mp-+Js+  |  |   +-------AN------+---Mp--+        +-------Ah-------+ 
  |       |      |        |          |     |  |  |  |   |               |       |        |                | 
GABA mediates.v the inhibitory.a effect.n of NO on the AVP and OXT responses.n to insulin-induced hypoglycemia[?].n 
 
          +------------Os------------+           +----------Jp----------+                  
          |      +--------D*u--------+-----Mp----+  +--------Dmc--------+       +------------Jp-----------+ 
  +---Ss--+      |        +-----A----+--Mp-+Js+  |  |           +---AN--+---Mp--+        +-------Ah-------+ 
  |       |      |        |          |     |  |  |  |           |       |       |        |                | 
GABA mediates.v the inhibitory.a effect.n of NO on the AVP and OXT responses.n to insulin-induced hypoglycemia[?].n

Figure 1. A complete linkage (No. 6 among 50 total linkages) with two sub-linkages produced by the 
LGP on the sample sentence. 



ting, we experimented with it on our Interaction Extraction 
Performance Assessment (IEPA) corpus [3]. This corpus 
has approximately 485 sentences taken from 303 abstracts. 
Each sentence contains at least one pair of biochemicals of 
interest. In order to increase parsing efficiency and accu-
racy, the sentences were manually preprocessed using the 
following rules:  
1. Capitalize the chemical names of interest in the sen-

tence. 
2. Connect compound names with an underscore. 
3. Replace special characters such as /, +, ), (, and ’ within 

chemical names with underscore,. 
4. Simplify the sentence as follows: 

If the chemical pair occurs within a sentence fragment 
between two consecutive punctuation marks in {,;.}, 
manually feed the fragment to the parser. If a complete 
linkage can be found, or link paths between the pair can 
be extracted from a partial or fragmented linkage, use 
the fragment only. Otherwise, use the entire sentence. 

5. Modify a title into a normal sentence as follows:  
• De-capitalize each word except the chemical names. 
• Apply rule 4, if applicable. 
• For a fragmental title or a two-sentence title: 

if no complete linkage is found, nor can any link path 
be extracted from a partial or fragmented linkage, and 
the sentence matches either the pattern string: string2 
or the pattern string1. string2, change the sentence to 
“string1 (string2) is described”. 
Otherwise append “is described”. 

A Java program (available upon request) then fed the 
modified sentences to the parser, read the output, and ex-
tracted link paths between the two biochemicals. A sen-
tence may have more than one pair of biochemicals; in 
that case paths were extracted for each pair. For sentences 
with multiple linkages, the first-ranked one, according to 
the parser’s default cost ranking system, was used to ex-
tract link paths, regardless of whether or not it was seman-
tically correct. Finally, the results were compared with  
manual analyses of the sentences. 

Although we automated some steps in the experimental 
procedure, we did not build a complete interaction mining 
system. The focus of this study was the capability and 
performance of the LGP on interaction extraction, not on 
constructing a complete system. If the parser were tested 
as part of a complete system, the performance of other 
modules (e.g. a biochemical name recognizer) would make 
it harder to interpret the results. However, the manual 
processing steps were specifically designed to be easily 
coded in software and to avoid requiring human judgment. 
For example, many titles are sentence fragment(s), such as 
the example in the previous section. Another example is 
“Anorexia nervosa and bulimia nervosa: An appraisal” 
(PMID: 12768223). To prevent the parser from wasting 
time and making errors on attempting to construct com-
plete linkages from such structures, we assumed them to 

be noun phrases and converted them to sentences by ap-
pending the phrase “is described” (rule #5). 

Out of 644 co-occurring biochemical pairs in the IEPA 
corpus, the parser found link paths between 429 pairs 
(timeout: 15 sec) or 476 pairs (timeout: 10 min), as sum-
marized in Table 2. A closer look at the extracted link 
paths, as well as the parser’s original output, revealed that 
the parser made a considerable number of mistakes. The 
mistakes may be categorized into four groups: 
1. Unknown words. The parser was targeted at conversa-

tional English. It did not recognize many words in 
MEDLINE abstracts. Although it made a correct guess 
in the example sentence in the previous section, the 
chances of correctly guessing multiple unknown words 
decreases rapidly. In addition, the parser did not use 
biomedical domain knowledge in its guessing rules (e.g. 
a word ending with “-ase” is very likely to be an enzyme 
name, a noun). 

2. Unfamiliar structures. The parser was confused by some 
structures frequently seen in MEDLINE abstracts, such 
as probabilities (R2=0.170, p<0.0001), comparisons 
(chemical 1 > chemical 2 > chemical 3) and units 
(mg/d, etc.). 

3. Ranking. The semantically correct linkage may not be 
ranked first by the parser’s default cost system, as 
shown in the example sentence in the previous section. 

4. Sentences that were too long and complicated. All too 
often the internal timer ran down, and the parser then re-
turned only fragmented linkages. 
 

  Table 2. Result of the LGP on the IEPA corpus. 
Timeout: 15 sec Timeout: 10 min 

Interaction 
type 

Interaction 
type  

Ex Im None 

Sub- 
total Ex Im None

Sub- 
total 

Link path 
found 210 70 149 429 215 77 184 476 

No link path 
found 29 27 159 215 24 20 124 168 

Subtotal 239 97 308 644 239 97 308 644 
Ex=explicit; Im=implied. 
 

Since the extracted link paths between a biochemical 
pair were probably incorrect, we did not try further analy-
ses on the exact links, such as setting a cut-off value on the 
number of link steps or developing templates to filter link 
types. Instead, we only used the existence or not of a link 
path between a pair as a decision rule: no link path, no 
interaction. Two reasons may cause the lack of a link path 
between a chemical pair. First, the pair is connected with a 
coordinating conjunction, as illustrated in the example 
sentence. This is a case where rejection is exactly what 
one hopes for. The other reason is that a sentence might be 
too complicated and only a fragmented linkage is found 
for it. This type of rejection can be interpreted as suggest-



ing that the syntactic connection between the two terms is 
tenuous enough that there is little chance of interaction 
between them. As shown in Table 2, when no link path 
was found, there was a relatively higher chance that there 
was in fact no interaction between the terms. Compared to 
co-occurrence of two biochemical names as an indicator of 
an interaction between them, precision improved 25% (13 
percentage points), outweighing the loss in recall and re-
sulting in a modest net increase of information retrieval 
effectiveness of 4–5% (Table 3). The recalls achieved us-
ing the decision rule were, not surprisingly, higher for 
explicitly stated interactions, as the table shows. Giving 
the parser more time (e.g. with a timeout of 10 min) did 
not lead to better results (the information retrieval 
effectiveness score went from 0.73 to 0.72). 

 
  Table 3. Performance of the link decision rule. 

 Co-occur. 
only [3] 

Link rule 
(15 sec) 

Link rule 
(10 min) 

Recall (explicit) 100% 88%  90% 
Recall (implied) 100% 72% 79% 
Recall (overall) 100% 83% 87% 
Precision 52% 65% 61% 
Effectiveness 0.68 0.73 0.72 

 
5. Discussion 

 
The LGP’s ability to handle coordinating conjunctions 

and other English syntactic phenomena is attributable to 
its expressive power as a context-free grammar [8]. Con-
text-free grammars are more powerful than regular expres-
sions. Will algorithms using more powerful grammars, 
such as context-sensitive or free grammar, be better for 
interaction extraction than the LGP? Potentially this must 
be the case if human NLP capabilities are assumed to be 
automatable at speeds faster than humans are capable of. 
However this is not on the horizon. Currently it is not nec-
essarily the case that more powerful grammars lead to bet-
ter biochemical interaction extraction.  

Context-free grammars have polynomial complexity. In 
the case of the LGP, the worst-case complexity is cubic 
[4]. This is important as polynomial algorithms are con-
sidered tractable, while exponential algorithms are consid-
ered intractable in the sense that as problem size increases, 
the computation required to solve it rapidly becomes un-
available.  

Although we have demonstrated that the LGP has the 
potential to be a useful part of a system for extracting bio-
chemical interactions, its current limitations are also evi-
dent, as highlighted by the moderate performance gain in 
our experiment. Below is a list of further developments 
that would enhance the value of link grammar parsing in 
the biomedical domain.  
• Extend its dictionary to include technical terms. 

• Extend its unknown-word-guessing rules, so that, for 
example, the parser can guess that a word ending with  
“-ase” is a protein name and not a verb. 
• Fine-tune its cost system for better ranking. 
• Develop other algorithms, such as template matching, to 

further process link paths extracted from the parser’s 
output. 

In conclusion, the LGP showed that link grammar parsing 
can be a useful tool for interaction mining from 
MEDLINE, particularly from the standpoint of precision. 
Its value could be enhanced by customizing it to the bio-
medical domain. 
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