
 

  
Abstract—Market based contracting introduces increased 
competition in the power industry, and creates a need for 
optimized bids and bidding strategies. To maximize the Expected 
Monetary Value (EMV) of a bid, generation companies 
(GENCOs) must strive to use models better than their 
competitors. Such models should account for factors such as 
buyers’ market power, market mechanisms, other competitors, 
substitutes, and equipment status. This paper explores bounds on 
the probability distribution describing the competitors’ bids. 
This weak probabilistic information is used to formulate a basic 
competitive bidding problem. In this environment, the bidder is 
expected to perform better provided they are informed about 
factors impacting the competitor’s bids. However, the acquisition 
of this kind of information involves costs that may exceed the 
expected benefit. Therefore, the bidder must decide whether or 
not to acquire information to alter the optimal bid. This paper 
explores use of Information Gap Decision Theory to quantify 
severe uncertainty. The value of additional information is 
compared under a more informative info-gap model where it 
determines the demand value of the information.   

Index Terms—Bidding strategy, 2nd-order uncertainty, 
Expected Monetary Value, Information Gap, value of 
information. 

I. NOMENCLATURE 
The following is the list of notations used throughout this 

paper. Other notations, especially those needed in describing 
the information gap model, are given in the relevant sections. 
Fij Operating cost for generation company i for generating 

unit j. 
Gij Generator for generation company i of generating unit j. 

(This notation is introduced to refer to the physical unit 
itself as opposed to the cost, which is Fij). 

XD Total demand in MWh for a given one-hour time period. 
Xij Generation capacity of Gij in MWh. 
Bj Bid price for j number of bids. 
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II. INTRODUCTION 
HIS paper addresses a bidding problem faced by a 
generation company (GENCO) in a dynamically 

restructured electricity market. In this environment, GENCOs 
are exposed to risks and uncertainties. Electric energy sales by 
a GENCO depend not only on demand and technical 
constraints but also on the strategies followed by its 
competitors. This creates a need for effective decision-support 
mechanisms that model competitors. In real situations, 
intelligence about competitors is often uncertain and 
incomplete, so it is important to develop bidding models that 
can flexibly handle various kinds of partial information about 
competitors’ bids. Partial information includes but is not 
restricted to the dependency relationships among various 
relevant random variables, such as the bids put forth by a 
competitor. In the problem addressed in this paper, two 
GENCOs are competing to supply a fixed electricity demand. 
Taking GENCO 1’s perspective, the bidding strategy against 
GENCO 2 is formulated to include some past data together 
with expert judgment about GENCO 2’s bidding behavior. 
Using this imprecise information, we will attempt to quantify 
the uncertainty GENCO 1 faces and how to improve the 
situation by acquiring new information. The acquisition of 
information will be justified or not by its cost and its 
contribution to the process of developing a bid.   

Most publications that propose methods to estimate the 
bidding behaviors of rival participants are developed based on 
probabilistic analyses [11,13]. However, these probabilistic 
techniques do not handle fuzzy or heuristic information. 
Research on that has investigated techniques such as fuzzy set 
based methods [6], possibility theory [14], and intelligent 
trading agents, such as genetic algorithm, genetic 
programming, and finite state automata that are utilized for 
developing adaptive and evolutionary bidding strategies [7,8]. 
 This paper proposes information gap (info-gap) decision 
theory (IGDT) [1] to develop bidding strategies for generation 
companies. IGDT is useful when decisions must be made 
under severe uncertainty. A non-probabilistic quantifier of 
uncertainty that makes no underlying assumptions about the 
structure of the uncertainty, an info-gap model aims to 
concentrate on what is known and what could be known. 
Given very sparse information, a “robustness” function will be 
introduced to describe immunity to failure. This function helps 
to facilitate the study of various trade-offs inherent in the 
decision.  
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The analysis presented here is based on the previous work 
[3] developed by the authors to address the following 
question: How is a company to bid when information about 
the competitor’s bids is highly uncertain? The framework for 
the analysis is a simplified day-ahead auction where the 
market is cleared one day in advance on an hourly basis [9]. 
Producers, GENCOs in this case, submit hourly bids 
consisting of blocks of energy and their corresponding prices. 
It is further assumed that this is a single-round auction 
structure where the market participants only submit the bids 
once. The price of a bid accepted by the buyer is the price it 
will pay to the winning GENCO to deliver the corresponding 
block of electric energy, which is also known as 
discriminatory pricing. 

The following section begins with the problem formulation 
and explains how the Expected Monetary Value (EMV) for 
each bid is bounded. An info-gap model is then developed 
based on the resulting EMV bounds. Acquisition of additional 
information can be expensive and depends on the demand 
value of information. A comparison on how much gain we can 
get from the extra information will be discussed to justify the 
worth of acquiring possibly costly information. Finally, we 
summarize the results discovered as well as the directions for 
future work. 

III. PROBLEM FORMULATION 
This problem is formulated with two generation companies, 

GENCO 1 and a competitor, GENCO 2. Both GENCOs are 
competing to sell XD megawatt-hours (MWh) of electric 
energy. GENCO 1 is to determine a bid for an amount and a 
price that will serve its profit-making interests. In a 
competitive environment, GENCO 1’s decision should depend 
in part on its competitor, GENCO 2. GENCO 1 thus attempts 
to model GENCO 2.  

In general, the basic elements of contract bidding include 
direct labor costs, mark up or return, overhead, and profit. If 
GENCO 1 intends to undercut GENCO 2 and win the sale, 
then GENCO 2 generation cost has to be included in the 
model. Various traditional methods can be used to build this 
model; one such method is to use random variables with 
applicable distributions to represent the unknowns.  While 
these approaches may be able to produce results, the 
dependability of these results on the underlying assumptions 
about the details of the distributions can make them 
problematic. To force assumptions in order to make the 
problem tractable is undesirable.  

 Given lack of knowledge about the generation costs and 
the relationships among these variables, a natural approach is 
uncertainty quantification. Instead of using specific 
distribution functions to model the cost functions, F2A and F2B, 
we employ probability boxes to model the incompleteness of 
the available information. In other words, the uncertainty is 
described by distribution functions together with error bounds, 
as shown in Figs. 1-2. 

Given the 2nd-order uncertainty for GENCO 2’s cost 

functions, GENCO 1 has the options to submit one bid or two 
bids. By submitting one bid, GENCO 1 decides whether to 
underbid G2A or G2B. Two-bid submission involves trying to 
underbid both generators. These 3 scenarios are simulated and 
analyzed to determine the optimal one given the total demand 
of XD=1000MWh with F1A=$40/MWh. The generation 
capacity for each generator is as follows: 

X1A ≥  1000MWh   
X2A = 300MWh   
X2B ≥  700MWh   

 
Fig. 1. GENCO 2 cost function F2A for G2A. 

 

 
Fig. 2. GENCO 2 cost function F2B for G2B. 

A. Scenario 1: Attempt to underbid G2A 
 In this scenario, GENCO 1 formulates its analysis by 
ignoring the existence of G2B. With only one goal in mind, 
that is to outbid G2A, two different decisions are made with 
respect to the cost of G2A, which is represented by F2A. If F2A > 
B1, GENCO 1 can sell all 1000MWh of electricity because 
G2A has higher cost. On the other hand, if F2A < B1, then 
GENCO 1 definitely loses to G2A and thus, can at best sell 
700MWh of electricity. Since F2A is described by a probability 
box with error bounds (Fig. 1), the EMV calculated will be 
bounded by an interval. An example of how the EMV values 
are calculated is shown in Fig. 3. 

F2A(b) 

Bid B1

Bid B2

F2B(b) 



 

 
Fig. 3.  GENCO 2 cost function, F2A, for G2A. 

Assuming that bid B1=$97/MWh, the cumulative 
probability range for F2A definitely less than B1 is [0, 0.1], 
with a width and therefore in this case a probability of 0.1. 
The cumulative probability range for F2A definitely greater 
than B1 is [0.3, 1.0], with a width and therefore a probability 
of 0.7. The cumulative probability range over which it is not 
known whether F2A is less than or greater than B1 is [0.1, 0.3], 
which has width and therefore probability 0.2. The following 
calculations may be performed, where the low bound of the 
EMV is denoted by EMV(low) and the high bound is 
represented by EMV(high). 

1) Case 1: F2A < B1 (definitely)  
Profit = 700*(97-40)*(0.1-0) = 3990 

2) Case 2: F2A > B1 (definitely) 
Profit = 1000*(97-40)*(1.0-0.3) = 39900 

Case 3:  
The EMV of this case can vary from a case 1-like 
minimum of 700*(97-40)*(0.3-0.1) = 7980 to a case 2-
like maximum of 1000*(97-40)*(0.3-0.1) = 11400.  

Since either case 1, 2, or 3 will turn out to apply, the EMV 
of a bid of $97/MWh is the sum of the three EMVs of the 
three cases, or 3990+39900+[7980, 11400]=[51870, 55290].  

Doing the same computations on other bid prices, it turns 
out that the bid with the highest potential EMV occurs at 
$96.25/MWh with an EMV of 55714 and the bid with the 
highest guaranteed minimum is $94/MWh with an EMV of 
54000, as shown in Fig. 4. The upward trend toward the right-
hand side of Fig. 4 would be the left-hand side of an 
analogous figure illustrating scenario 2, described next. 
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Fig. 4   Plot of EMV bounds (in thousands) against bid prices (in $/MWh). 

B. Scenario 2: Attempt to underbid G2B 
 In this scenario GENCO 1 attempts only to underbid 

GENCO 2’s more expensive generator, perhaps thinking that 
the resultant high rate of return per MWh if that 700 MWh bid 
is accepted will more than make up for the 300 MWh block 
that will not be sold because GENCO 2’s less expensive 
generator G2A wins that block.  

The EMV calculations are performed similarly to the 
previous scenario except that the cost function for G2B is used 
in this case instead of the cost function for G2A. It turns out 
that the highest EMV that may be obtained with certainty 
under this scenario is at a bid of $143/MWh, for an EMV of 
72,100. However, a bid of $143.90/MWh leaves open the 
possibility that we may enjoy an even higher EMV than that 
because then the EMV is within the interval [71664.42, 
72195.25] (Fig. 5). 

 
Fig. 5  Plot of EMV(low) and EMV(high) based on the cost function of G2B. 

C. Scenario 3: Attempt to underbid both G2A and G2B 
 Here, GENCO 1 submits 2 different bids (B1 and B2) based 
on an attempt to underbid the two generators of GENCO 2. If 
it is definite that B1 > F2A, GENCO 1 does not sell the 300 
MWh block because it did not underbid G2A. When on the 
other hand it is definite that B1 < F2A, GENCO 1 sells the 300 
MWh block. When it is not definite whether B1 > F2A or B1 < 
F2A, the EMV cannot be exactly known because the 
distribution of Fig. 1 is not exactly known. As for the attempt 
to underbid GENCO 2’s higher cost generator G2B, when it is 
definite that B2 > F2B, once again GENCO 1 loses (and hence 
need not even bother to bid). However, when it is definite that 
B2 < F2B, GENCO 1 can sell 400MWh of electricity at a price 
of B2 because it sells 300MWh at price B1 and loses another 
300MWh to G2A. Working through the computations gives a 
maximum certain EMV of 57400, obtained by submitting a bid 
of $94/MWh for 300MWh and a bid of $143/MWh for 
400MWh. However, higher bids can result in interval-valued 
bounds on EMVs for which the high bound is higher than 
57400 although the low bound would be lower than that. 

D. Summary Based on the 3 Scenarios 
 The results clearly show that the best scenario of the 

three is the second, in which GENCO 1 attempts to underbid 
only G2B. Thus, this scenario should be used to guide the bid. 
However this still leaves open the question of exactly what to 
bid given the uncertainty present. Perhaps additional 
information will reduce uncertainty and allow us to better 
determine a value to bid. The next section introduces the info-



 

gap model to quantify the uncertainty described by the 
envelopes bounding the cost function of G2B (Fig. 2) in order 
to assist GENCO 1 in determining the best bid value. 

IV. THE INFO-GAP MODEL 
 Information Gap Theory [1] is useful for making 

decisions in cases where uncertainty is present and severe. For 
example, distributions may be not fully specified, as in Figs. 
1-2.  

Suppose that we wish to ensure that the EMV of a bid 
(corresponding to the expected profit) meets or exceeds a 
given minimum value. An information gap model helps to 
identify bids that meet that requirement. More interestingly, 
the model also identifies the uncertainty-reducing information 
that would need to be obtained to ensure that other, possibly 
more desirable bids, meet that requirement. An example of 
such a potentially more desirable bid would be one that 
corresponds to a wide range of possible EMV values, some 
quite high and desirable, and others below a minimum 
tolerable EMV. For example, in Figs. 5-6, the bidder may 
enjoy a high EMV of 74200, at a bid of $145/MWh, but that 
bid may also result in an EMV of 29680 if the true curve 
happens to be the lowest EMV curve shown. This staggering 
range can be reduced with more information that reduces the 
amount of uncertainty in the model. A comparison between 
the cost of obtaining such information and its benefits should 
be performed to decide on whether to obtain the information 
or not.  

 
Fig. 6. A wide range of possible EMV values for a given bid. 

An information gap model for this example problem may be 
specified as follows. 

1. Decision variable. This is our bid B2 in $/MWh. 
2. Uncertain variable. Define a CDF for the 

competitor’s bid that serves in the role of nominal 
best guess. Any CDF judged to fill this role could be 
used. For purposes of illustration we use “horizontal 
averaging” of the left and right CDF envelopes of 
Fig. 2, giving the intermediate curve of Fig. 8. In 
horizontal averaging, for each vertical axis value yi, 
the corresponding horizontal axis values of the left 
envelope, Bl, and of the right envelope, Br, are 
averaged, giving a value Bi=(Bl+Br)/2 . The point (Bi, 
yi) is on the average CDF curve, which may be 

plotted as precisely as desired by using an 
appropriate set of values for i. The average CDF 
serves as a nominal best guess CDF. Our current 
work suggests that considering other averaging 
methods as well, but the structure of the following 
discussion is independent of what averaging method 
is used. Horizontal averaging as just defined weights 
the left and right envelopes equally. However the 
weights of the envelopes could potentially be 
anything between 0 and 1 (the weights must add up 
to 1). These weights effect the averaging 
computation. Accounting for weights generalizes the 
averaging formula to Bi=(wBl+(1-w)Br)/2.  
Let the uncertain variable in the info-gap model be 
the weight w of the left envelope, with the weight of 
the right envelope then being 1-w. Then Fig. 7 
describes the EMV values calculated from the CDF 
envelopes of Figs. 2 & 8. 

3. Nominal value of uncertain variable. There seems 
to be no particular reason to prefer weighting one 
envelope more than the other when doing horizontal 
averaging, so the default nominal value of weight w 
is w~ =0.5. 

4. Uncertainty parameter. The amount of uncertainty in 
the model, α, is the amount of deviation from the 
nominal value of the uncertain variable that is to be 
considered. In this model, that is the amount of 
deviation from w~ =0.5. In the worst case, this might 
be ±0.5, giving a range of weights from 0 to 1. 
Further information might shrink the uncertainty 
parameter to a subset of ±0.5, and it might be 
necessary to obtain such information to ensure goals 
are met. Determining this is the goal of the 
information gap analysis. 

 
Fig. 7.  EMV curves corresponding to the left envelope of Figs. 2 
& 8 (lowest curve), the right envelope (highest curve), and the 
horizontal average of the left and right envelopes.  

 

5. Uncertainty model. This is the function U(α, w~ ) that 
describes the amount of uncertainty in the uncertain 
variable w in terms of its nominal value w~  and 
uncertainty parameter α. Consistent with points 2-4 
above, we have U (α, w~ )={w: w = | w~ + α|}. 



 

6. Reward function. The reward is the EMV of a bid. It 
is determined by the bid value and the EMV curve 
that applies. In this problem, the EMV curve is 
uncertain, so the worst possible EMV curve is used, 
to allow the reward function to provide the minimum 
EMV that the bid could be associated with, as 
required by the info-gap analysis. The worst possible 
EMV curve is in turn determined by the leftmost 
possible CDF curve for the competitor’s bid. This 
curve is found by horizontal averaging with an 
averaging weight of .~ α+w  Using this curve is 
consistent with the ultimate goal of designing the bid 
and any necessary information-seeking activities to 
ensure at least a minimum EMV. Thus reward 
function R is defined by:  

))()1()(,(),( 22 jBjBjj BFwBFwBEMVwBR ⋅−+⋅=  

Where )( 22 BF B
 is the highest possible envelope 

around the function F2B (i.e. the left envelope in Fig. 
2), and )( 22 BF B

is the corresponding lowest possible 

envelope (i.e. the right envelope). 
7. Critical reward. This is the minimum acceptable 

value of the reward function, call it rc. The results of 
an information gap analysis differ depending on the 
value assigned to rc, as we will see. This minimum 
acceptable value is an input to the model. 

8. Robustness function. This function, ),(ˆ crbα , returns 
the greatest value of uncertainty parameter α for 
which falling below the critical reward rc is not 
possible in the model. It therefore measures the 
ability of the model to deliver acceptable reward in 
the presence of uncertainty, hence the term 
robustness. Its value is therefore dependent on 
acceptable reward rc. It is also dependent on the bid 
B2, because the reward is dependent on B2.  

 
Fig. 8. Best-guess curve between the left and right envelopes computed by 
horizontal averaging, and the maximum uncertainty α, showing that the 
space of plausible curves is within the envelopes. 
 

Fig. 9 gives information about ),(ˆ crbα  for a range of bid 
values, and a specific value of rc, which would be a business 
decision provided as a model input. For bid values toward the 
left of Fig. 9 (denoted as region ‘X’), the EMV is above rc 
regardless of which EMV curve is considered, so rc will be 
safely met for any of those bids.  

However it may be desired to consider bidding higher in 
order to reap the potential opportunity for greater gain due to 
potentially higher EMV values such as, for example, the peak 
feasible EMV of $146.25/MWh for region ‘Y’. This is simply 
an analytical elaboration of the intuition that the higher the 
bid, the greater the profit if the bid is successful, but the 
higher the chance that a competitor will undercut the bid 
resulting in no profit. Thus, bids in the range designated by 
‘Y’ in Fig. 9 are not guaranteed to have an EMV of at least rc 
unless new information is obtained that rules out values of w 
that are too close to 0 (thereby moving the worst-case EMV 
curve upward). Note that from Fig. 9, a bid of $146.25/MWh, 
which would possibly result in an EMV as high as 74315.5, is 
infeasible if we want to be sure to get a reward at least as high 
as critical reward rc. 

Finally, bids so high that even the top EMV curve falls 
below rc (somewhere to the right of the domain shown in Fig. 
9) are infeasible in that they will definitely result in an EMV 
below rc.     

To summarize, the result of an information gap analysis is a 
validation (or invalidation) of a bid value based on whether its 
EMV meets minimal requirements. However, the analysis does 
not tell us what the best bid is. This leads us to the next 
section. 

 
Fig. 9. Critical reward separates the EMV curves into regions. 

V. DETERMINING THE BID 
There are several ways to determine the bid, including 

maximizing worst-case EMVs, maximizing expected EMVs, 
and converting EMVs to utilities using risk profiles. Fig. 9 
shows that the set of bids that ensure a minimum critical 
reward of rc is in region ‘X’. If GENCO 1 is risk-seeking, it 
would bid based on the high EMV curve, which predicts a 
yield of 73150 from a bid of $144.5/MWh. From a risk-averse 
viewpoint, GENCO 1 would bid $143.9/MWh for an EMV 
value of 72195.25, the maximum of the low EMV curve. 

Another approach is to seek information that will reduce the 
uncertainty in the model, thereby enabling a more informed 
bid. However acquisition of information requires an 
expenditure of resources. The question then is how to gauge 
the value of the information. Suppose new information leads 
us to a more informative info-gap model Unew which is a 
subset of U (α, w~ )={w: w = | w~ + α|} mentioned earlier. Since 
Unew is more informative, then this implies a model which is 



 

likely to be more robust. In the bidding example, a larger 
range of bids is likely to be feasible (Fig. 10).  

Clearly more information is good to have. This can be 
quantified. Suppose that the additional information results in 
improved bounds on the behavior of the system as shown in 
Fig. 10. For the same critical reward rc with a pessimistic 
decision criteria, we can bid at a higher price, with the 
increase denoted by ∆B. On the other hand, if we do not bid 
higher but instead use the same bid shown earlier in Fig. 9, we 
enjoy a higher minimum EMV. The change in EMV is shown 
in Fig. 10 by ∆EMV. From the graph, the exact values are 
determined.  

∆B = $144.70/MWh - $144.40/MWh = $0.30/MWh 
∆EMV = $72268.80 - $71447.93 = $820.87 
Further work is needed to connect this kind of analysis to 

the amount that GENCO 1 should be willing to pay for 
information. 

 
Fig. 10.  A plot of the original info-gap reward curve versus the more 
informative info-gap reward curve that is found with additional 
information. 

VI. CONCLUSIONS 
This paper shows how Information Gap Decision Theory 

(IGDT) can serve as a decision support tool that assists in 
quantifying severe uncertainty when information is scarce and 
expensive. It can help decision makers to develop preferences, 
assess risks and opportunities, and seek information, given a 
minimum required level of reward.  This minimum level of 
reward could be determined by incorporating risk 
management methodologies such as value at risk or profit at 
risk. Understanding how to balance the cost of new 
information with its benefits is an important next step.  
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