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ABSTRACTABSTRACTABSTRACTABSTRACT    

Recent research has suggested that progress in technological domains often improves in 

an exponential manner. The traditional method to model this increase in capability has been to  

fit a model with time or effort as an independent variable and then extrapolate the trend (Moore, 

1965; Wright, 1936; Magee et al., 2014). Although other methods have been used as well (Nagy 

et al, 2013). While effective, these methods are not the only way to forecast such trends and they 

have their own limitations. Recent research has indicated that a potentially useful approach for 

modeling technological improvement is time series analysis. 

I use this approach to build on previous research which suggests that space exploration 

technology displays an exponential trend. This trend can be measured with the metric of 

spacecraft lifespan. Time series models of this improvement will be shown along with forecasts 

for future improvement. Finally, further directions for future research will be explored. 
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Background 
 

It has long been recognized that technology is the primary driver of sustained economic 

progress. However, the recognition that technology progresses in a predictable way is a relatively 

recent phenomenon. Some of the earliest work in this area was conducted by the engineer 

Theodore Paul Wright (Wright, 1936). Wright described a phenomenon he observed while 

supervising the production of aircraft. As the batch size of a model of aircraft increased, the per-

unit cost to manufacture those aircraft decreased at a predictable rate. The approximate 

relationship was a 20% drop in cost for every doubling of production volume. This phenomenon 

has been attributed to “learning by doing” where productivity is improved through the 

accumulation of experience. Subsequent research indicated that this pattern holds for a variety 

of industries although the rate of cost decline varies (Hax & Majluf, 1982). This phenomenon has 

been referred to by various names such as learning curves, experience curves, and Henderson’s 

law (Wikipedia, 2019). Contemporary research into technology foresight uses the term Wright’s 

law, so in this paper we will be using this term.  

A much better-known trend is Moore’s law. Originally this phenomenon was described by 

one of the co-founders of Intel, Gordon Moore, in 1965. Moore noted a regular doubling of the 

number of components that could be built into an integrated circuit (Moore, 1965). This trend 

has continued since then with an approximate doubling occurring every 18 months to two years. 

While this is a well-known trend, what is often overlooked is that this applies to many other fields 

outside of computing. Figures 1-7 illustrate examples of exponential trends found in other fields. 

The purpose of these figures is to show evidence that exponential trends in technological 
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progress have existed, not necessarily to track those trends into the present. For this reason, 

some of these figures will be lacking data from recent years. As will be explained below, both 

Wright’s law and Moore’s law have their strengths, and the question of which to use is a subject 

of ongoing research.  

       

Figure1- Cost to sequence a human genome (Source: https://www.genome.gov/sites/default/files/media/files/2019-

06/Sequencing_Cost_Data_Table_Feb2019.xls) 
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Figure 2 - Nanotechnology related patents (Source: ETC Group, “From Genomes to Atoms: The Big Down,” p. 84, 

http://www.etcgroup.org/documents/TheBigDown.pdf.) 

 

 

Figure 3 - U.S. nanotechnology citations by year (Source: ETC Group, “From Genomes to Atoms: The Big Down,” p. 

83, http://www.etcgroup.org/documents/TheBigDown.pdf.) 
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Figure 4 - Brain Image Scanning Reconstruction Time (Seconds) Source: Manuel Trajtenberg, Economic Analysis of 

Product Innovation: The Case of CT Scanners (Cambridge,Mass.:Harvard University Press, 1990); Michael H. Friebe, 

Ph.D., president, CEO, NEUROMED GmbH; Philips Medical Systems www.medical.philips.com; Magnetic Resonance 

Technology Information Portal, http://www.mr-tip.com/serv1.php?type=db1&dbs=brain%20imaging&set=4. 
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Figure 5 - Photovoltaic cost per year (2005 USD/kWh). Source: Beyond the learning curve: factors influencing cost 

reductions in photovoltaics by Nemet, G.F. (2006) 

 

Figure 6 - U.S. Real GDP. Source: https://fred.stlouisfed.org/series/GDPC1 
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Figure 7 - U.S. private manufacturing output per hour. Source: Bureau of Labor Statistics,Major Sector Multifactor 

Productivity Index, Manufacturing Sector: Output per Hour All Persons (1996 = 100), 

http://data.bls.gov/PDQ/outside.jsp?survey=mp (requires JavaScript: select “Manufacturing,” “Output Per Hour All 

Persons,” and starting year 1949) 

Theoretical Framework 

Research into why technological capability progresses the way it does is ongoing, but 

several scholars have provided valuable insights. Traditionally, economists and management 

scientists assumed technological progress as exogenous variables (Solow, 1957). However, 

others have contested this view since it leaves technological progress itself unexplained. The 

work of (Arrow, 1962) and (Romer, 1990) have given rise to Endogenous Growth Theory which 

seeks to understand technological progress as a result of market forces. Romer contends that the 

economic properties of knowledge, namely nonrivalry and partial excludability, provide “spillover 

effects” and allow others to benefit from a firm’s private research.  
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This view that markets incentivize technological progress finds confirmation in the work 

of Sokoloff, (1988) who demonstrated evidence of an increase in patent activity in the early 

United States coinciding with business cycles, access to domestic markets, and disruptions in 

international markets. Presumably the disruption in international markets increased 

opportunities for domestic producers. This increase in patent activity seems to have been due to 

technical workers who became interested in innovation in response to economic incentives 

(Sokoloff & Khan, 1989). Besides these important economic factors, in order to understand why 

technology progresses the way it does we can also consider the invention process itself. The 

invention process is important because invention springs from scientific knowledge, but 

knowledge must be codified into specific designs in order to develop technologies. The noted 

polymath Herbert Simon in The Sciences of the Artificial argued that design had its own logic 

comparable to natural science and was worthy of independent study, even going so far as to lay 

out a potential theoretical foundation for a “science of design” (Simon, 1969).  

Research into design has generated many models of how invention occurs. Vannevar 

Bush, the head of the Office of Scientific Research and Development during WWII argued for the 

importance of basic, publicly financed, scientific research useful for technological development 

(Bush, 1945). The Function-Behavior-Structure (FBS) model conceptualizes design as consisting 

of transformations between what is required of an object (Function), what an object is 

(Structure), and what an object does (Behavior) (Gerro & Kannengiesser, 2014) . The C-K model 

contends that traditional design theories are too tied to a particular domain and cannot account 

for innovation. Therefore, it focuses more on describing the development of new knowledge and 

concepts (Hatchuel & Weil, 2003).  
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However, one theory that has had some noteworthy empirical validation and seems able 

to describe exponential technological change is Analogic Transfer (Basnet & Magee, 2016). This 

model views the recombination of existing scientific and engineering concepts as a primary driver 

of technological progress. In the context of this theory, we can think of a technological domain 

in terms of base domain and a target domain with a similar structure as the base. We can then 

think of progress occurring when the inventor applies ideas from the base to the target domain. 

Magee and Basnet describe these ideas as consisting of engineering principles known as 

Individual Operating Ideas (IOI) and scientific concepts known as Units of Understanding (UOU). 

  Intuitively, we begin to see how this may lead to accelerating progress. As more 

knowledge is acquired, more combinations of ideas become possible, and the stock of knowledge 

should grow faster. Of course, this process cannot continue forever since there are only so many 

applications for an individual idea. But it seems reasonable to think that many ideas have the 

potential for many applications. Magee further demonstrates that simulations conducted with 

these assumptions show an exponential growth in the number of concepts available for 

reapplication which is further consistent with observed exponential trends for a variety of 

technologies. Figure 8 shows the results of one of these simulations. 
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Figure 8- Simulation of idea recombination. Source: Modeling of technological performance trends using design 

theory by Magee, C.L. and Basnet, S. (2016) 

Returning to the subject of design, the notion of artifact interactions, introduced again by 

Herbert Simon, provides a possible explanation for the observed differences in rates of progress 

for various technologies. Before we consider artifact interactions, it is necessary to think more 

deeply about the economic and functional properties of designs. Using a framework developed 

by Baldwin and Clark (2006) we can begin to think of design in terms more fundamental than 

individual technologies. Designs create economic value by providing a stream of future benefits 

from the creation of a given solution which solves a particular problem. Therefore, we may think 

of designs as an asset class since they have no intrinsic value in themselves and only derive value 

from what we can do with them. Furthermore, since a design consists of an option and not a 

requirement to create the solution, we could potentially assign value to them using option 

valuation techniques. The chief method is the “Net Option Value” method which represents the 

value of the system as the sum of the value of the minimal system and the values of each module. 

It should be noted that  Robert Merton’s work on option valuation used widely in finance does 

not apply here since there is no underlying financial asset (Merton, 1973). Continuing with 
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Baldwin and Clark’s framework, we can think of design as consisting of decisions about how to 

manipulate artifact components as well as interdependencies among these decisions. These 

decisions may be categorized based on how a change in one component may require a change in 

one or more other components. These decisions may be grouped into three categories: 

1.) Independent – Components in one domain may be changed without affecting 

components in another domain. 

2.) Integral – Changes in one domain require changes in another domain. 

3.) Modular – Components are independent but operate on a similar set of design rules.  

These decisions can be visualized using a graph known as a “Design Structure Matrix” or DSM. 

A DSM simply consists of a 2-dimensional matrix of all the system components with an “x” placed 

in each cell that contains a dependency (Wikipedia, 2019).  
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Figure 9 - Example of Design Structure Matrix (DSM). Source: McCord, Kent R., and Steven D. Eppinger (1993). 

“Managing the Iteration Problem in Concurrent Engineering.” Working Paper 3594-93-MSA, MIT, Cambridge, MA 

(August). 

For technologies with a high degree of integral design interactions, improvements may 

be more difficult as more design time must be spent accommodating changes in the entire 

system instead of a single component as is the case with more modular designs(Basnet & Magee, 

2016). McNerny et al. (2011) has provided empirical evidence that this may explain the observed 

differing rates of technological progress in various domains.  
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Comparison of various models 

Wright’s law and Moore’s law both successfully model increases in technological 

performance. Therefore, it’s only natural to wonder how the two models compare. Besides the 

technologies we demonstrated earlier, Magee (2014) demonstrates the general applicability of 

Moore’s law in 28 technological domains while Nagy et al. (2013) demonstrates the relationship 

with 62 technologies. Yet despite the evidence of these trends, some may be skeptical of the use 

of time as an independent variable. To quote Kenneth Arrow (1962): 

 

” …trend projections, however necessary they may be in practice, are basically a confession of 

ignorance, and, what is worse from a practical viewpoint, are not policy variables”. 

 

  Common sense tells us that technological progress must have its root in human effort. 

We may observe an approximate doubling in processor capacity every 18 months, but if we were 

to stop all chip research and development, we know there would be no additional progress. As 

mentioned earlier, the consensus of modern economics is that technological progress is 

endogenous to economic activity.  These facts may make us hesitant to use time as an 

independent variable, but perhaps they shouldn’t. While time may not directly capture the 

impact of effort it may indirectly capture it by serving as a proxy if whatever is driving 

technological progress is occurring in a time dependent manner.  

 

Since it is effort that must drive technological progress, it would be natural to assume that 

Wright’s law would be the better model since this relates cumulative production to technical 
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performance. However, there are some important caveats to consider. Wright’s original paper 

studied cost reductions for a particular model of airplane in a particular factory, while 

contemporary research typically uses cumulative production in an entire industry. This may lead 

us to conclude that Wright’s law isn’t necessarily capturing the accumulation of tacit knowledge 

as indicated in Wright’s original paper but is serving as a proxy for general effort. An empirical 

study comparing the two models has shown that while there is evidence that Wright’s law does 

model technological progress very slightly better than Moore’s law, the differences are not great 

(Nagy et al., 2013). Viewing technological progress as an outcome of “learning by doing” also 

ignores the fact that technology advances primarily through experimentation and research and 

not just repeatedly producing the same design. In fact, there does seem to be some evidence 

that the use of research-based effort as an independent variable may be an effective way to 

predict technological improvement (Benson & Magee, 2015) (Foster, 1985). There is also the 

issue of correlations among effort variables since production is correlated with revenue and 

revenue is correlated with R&D expenditures and patents (Magee et al., 2014).  

If, however, learning-by-doing does play an important role in technological development, 

then learning curves also have an important predictive limitation due to product life cycles. 

Discoveries by Leontief (1953) demonstrated that the United States primarily exported labor 

intensive goods despite being the most capital rich country in the world – a phenomenon that 

defied current economic theory. This has been attributed to life cycles for manufactured 

products, and by extensions to other technologies. Ayers (1992) points out that the life cycle 

influences how learning can take place and thus could interfere with predicted improvements. In 

the early stages of a technology, there is not much standardization of production and therefore 
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learning is still important. However, in later stages much of the knowledge is now embodied in 

machines and processes. In this stage of the product life cycle, observed improvements have 

often been observed to plateau, as was the case with automobiles. One cannot predict 

beforehand when a product will reach a particular life cycle stage so production volume may not 

be as useful as time for making predictions. 

These two models may be equivalent under the right circumstances. Sahal (1979) has 

demonstrated that Wright’s law is identical to Moore’s law when production increases 

exponentially. Subsequent research has shown that this relationship holds for any effort variable 

and not just production (Magee et al., 2014). However, such a trend in production has been 

observed by Nagy (2013) for many technologies and seems reasonable for commercial 

technologies given that any improvement in technology should lead to an increase in demand if 

elasticity of demand is held constant. Because of this, many would assume that exponentially 

increasing production is the cause of exponential improvements in technology. As reasonable as 

this sounds, empirical evidence shows that exponential improvements often occur when 

production is not increasing exponentially (Magee et al., 2014). There are even scenarios when 

technologies improve significantly without much commercial production at all (Funk & Magee, 

2015). Based on all the available evidence, it would seem reasonable to conclude that Moore’s 

law may be a better description of how technology evolves.  

Implications of exponential change 

The exponential trend observable in so many technological domains has profound policy 

implications which seem to be largely unappreciated by society. A full discussion of these 
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implications is beyond the scope of this paper, but some examples may help to illustrate this 

point. For economics, Solow (1957) and Romer (1990) have pointed to the importance of 

scientific and technological development to economic growth. If one assumes that technological 

progress is exponential, then one should expect enormous economic growth in the near future. 

As of 2016, the World Bank gave the U.S. a Gini Coefficient of 41.5 which is quite high for the 

developed world (Wikipedia, 2019). If this value continues to hold then this would imply vast 

wealth inequalities which may serve to undermine democratic institutions. Furthermore, Kartik 

Gada, an investment banker specializing in AI companies, has argued that the existence of 

exponential technological change implies deflationary pressures in the economy similar to what 

occurs with computer technology (Gada, 2019). If true, this may imply the need for greater 

quantitative easing from central banks than is currently practiced.  

Risk assessment is an important area to consider as well. Nick Bostrom (2013) has argued 

that emerging technologies create new “existential risks” such as synthetic viruses, molecular 

nanotechnology, and uncontrolled artificial intelligence. Humanity has a long history of surviving 

natural risks but unlike most natural risks these may have the potential to eliminate humanity. A 

problem with these risks is that they are generally not taken very seriously, a fact which may have 

its roots in certain cognitive biases. Probability estimates of events are inevitably skewed by an 

individual’s ease of recalling similar events (Lichtenstein et al., 1978). Considering this bias and 

the fact that human extinction has never occurred, it is likely that humans underestimate its 

likelihood (Yudkowsky, 2008). Bostrom along with Anders Sandberg have suggested that 

increasingly sophisticated neuroscience and biotechnology could enable widespread cognitive 

enhancement. This has the potential to change the role of medicine and government regulation 
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of medicine (Bostrom & Sandberg, 2009). As for the environment, there is evidence which 

suggests that solar energy technology is likely to continue to drop in price by 10% per year, while 

the prices for coal and nuclear energy have remained largely unchanged (Farmer & Lafond, 2016).  

Wright’s law would suggest that aggressively subsidizing the installation of solar panels would 

improve their performance and impact climate change more quickly than most realize.  

It must be emphasized that we are not necessarily endorsing or criticizing any of these 

views. We list these scenarios only to illustrate the importance of technology foresight to society. 

Technology forms the basis for civilization, and by understanding how it may develop we can 

more effectively bring about futures we prefer.   

Exponential space travel 

While these exponential trends have been observed for several technologies, one area 

that it has not been sufficiently noticed for is space travel. In fact, there is a widespread 

perception that progress in space travel has mostly stalled (Hicks, 2015). We believe this view is 

mistaken and our currently ongoing research suggests such a trend exists (Berleant et al., 2017) 

(Berleant et al., 2019, Appendix C). 

Currently, the most popular method to model trends in technological progress is to use 

simple linear regression to extrapolate a trend with time as the independent variable. While this 

method has worked quite well in the past, it has a problem in this domain. This problem occurs 

when product lifespan is used as the attribute which is hypothesized to undergo an exponential 

increase over time.. 
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Problems with curve fitting 

If one assumes an exponential increase in spacecraft lifespan over time, then certain 

problems can be easily demonstrated with any regression models that are built. One way of 

measuring spacecraft lifespan is to subtract the time of launch from the time of mission 

termination, and look at average lifespan for craft launched in a given year. 

 This causes a problem with measuring mission durations of spacecraft launched in recent 

years. Since only short-lived spacecraft could be measured for recent years, data from those 

launch years will naturally be biased toward shorter lifespans since longer missions have not yet 

ended. Another approach is to measure lifespans in terms of the year the spacecraft “died”. 

While this avoids the bias problem, it creates certain points where the model breaks down. The 

problem comes from the fact that time increases linearly with time  whereas lifespan increases 

exponentially. At a certain year, mission lifespan will be growing faster than time passes. 

Eventually this problem gets so bad that the average lifespan predicted for craft whose lifespans 

end in a given year will be greater than the entire period that space technology has existed 

(Appendix B, Howell et al., 2019).  

However, there are ways around these problems. All of the deep space mission data are 

indexed by time, and therefore we should be able to use existing time series methods to make 

predictions for future values of spacecraft lifespan.  

This approach has several advantages. First, we need to consider the issue of how limited 

the data are. Because the data are limited it is difficult to build casual models relating an 

independent variable (i.e. cost, R&D funding, etc.) to technological progress. Even if the data 
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weren’t limited there are the previously mentioned problems of how to properly define the 

appropriate independent variable to model causality. With time series modeling we do not have 

to make any guesses about what variable might be causing the technological progress.  

Second, if one models lifespan increase this way, this should overcome the previously 

mentioned bias problem since current values for the time series are defined in terms of previous 

values as will be explained below. We can build predictive models based on the data that we can 

be sure are free of that type of bias. 

The third advantage is more subtle and one not often appreciated by futurists. Time series 

analysis allows us to define a distribution of forecast probabilities and decide how confident we 

should be in our predictions. All forecasts are wrong, but if we can define the way that they will 

be wrong we can make more intelligent predictions.  As Farmer and Lafond (2016) write: 

 

“Point forecasts are of limited value unless they are very accurate, and when uncertainties are 

large they can even be dangerous if they are taken too seriously. At the very least one needs error 

bars, or better yet, a distributional forecast, estimating the likelihood of different future 

outcomes.” 

Box Jenkins Method 

Fortunately, there is a well-defined way to make distributional forecasts that can be 

applied to this problem. The Box-Jenkins method is a method for modeling a time series 

developed by the statisticians George Box and Gwilym Jenkins in 1970 (Box & Jenkins, 1970). The 
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method models a stochastic process by fitting a model to a dataset using the following stages: 

model specification, parameter estimation, and model checking (Wikipedia, 2019).  

Model Specification 

 

Autoregressive and Moving Average Models 

 

The Box Jenkins methods uses two categories of models which together can describe 

many time series. The first are Autoregressive models, which consist of a linear combination of 

previous values of the time series (Pankratz, 1983, 47-50). As the name implies, the forecast for 

the time series is a regression on itself. Autoregressive models take the form: 

 �� =  � + ����	� +  �
��	
 … + ����	� � ~ �(�, �
) (1) 

 

Where �� is the current value of the time series, C is a constant, and � is an i.i.d. process 

with a mean of zero and a constant variance (Ibid.). The subscript p signifies the number of 

previous values of the time series that is considered (Ibid.). For this reason, an autoregressive 

model can be identified as AR(p). Each previous period is weighted with a corresponding 

parameter ��. 

The second categories of models are the Moving Average models. Rather than describing 

the current value of the time series as a linear combination of previous values, Moving Average 

models describe the series in terms of previous residuals. Much like the Autoregressive model, 

the Moving Average model is identified as MA(q) where q is the number of previous residuals 

considered (Ibid.). If ��  is the residual associated with period t  then a Moving Average model of 

order q is defined as: 
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 �� =  μ + ����	� +  �
���	
 … + ����	� �� ~ �(�, �
) (2) 

 

These two models may be combined to expand the behavior that can be modeled. Such 

models are denoted as ARIMA(p,d,q). Where p signifies the autoregressive portion, q represents 

moving average portion, and d represents the number of differencing operations. The 

differencing operation is sometimes referred to as integrating and represents the “I” in the 

ARIMA specification (Ibid..,95-96). Differencing will be described in more detail below.  

The constant C in equation (1) is closely related to the average change in the time series 

from one observation to the next. For any stationary ARIMA(p,d,q) this is equal to: 

 

� =  μ(1 − � ��)
�

���
 

(3) 

 

It should be noted that in the case of a pure MA model  the constant C reduces to the 

mean of the differenced series μ. This is because there are no autoregressive parameters 

��(Ibid..,101-102).  

Stationarity and Differencing  

 

Before the statistical properties of any time variant data are analyzed, it must be 

confirmed that those properties are stable. This is determined in the model identification stage. 

More specifically, we want to determine if the data has a stable mean and variance. If these 

properties are stable, then the series is said to be stationary (Vandaele, 1983., 12-16).  

But what if these properties do change over time? A series with a nonstationary mean 

can usually be identified by a visible trend in a particular direction, either upward or downward. 
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Unfortunately, it is not easy to tell if the trend is the result of an underlying deterministic process 

or if the trend is due to chance. If the trend is a function of time (i.e. deterministic) it is said to be 

trend stationary, since once the trend is accounted for we are left with a stationary process 

(Nielsen, 2005). An important property of trend stationary processes is that they display mean 

reversion and thus all random shocks are transitory (Ibid.).  

A difference stationary process is different in that random shocks affect the process 

permanently and no mean reversion occurs (Ibid.). Sometimes deviations from the trend are due 

to chance but there is an underlying deterministic trend. From (4), μ would be the underlying 

trend.. Such a process is modeled by a random walk taking the form: 

 �� =  ��	� +  � ~ �(�, �
) (4) 

 

 where �� is a time series and � is an i.i.d. stochastic process with a mean of zero and a constant 

variance (Hurvich, 2019). The future values of a random walk are completely determined by their 

current position plus a noise term and are examples of Markovian processes i.e. processes 

without any memory (Weisstein, 2019). A real world example of such a process would be the 

stock market since the current price of the stock is unaffected by its previous values (Malkiel, 

1973).  A difference stationary process can be identified informally by examining a plot of the 

autocorrelation of the series at various lags. If the autocorrelation decreases very slowly then 

this is a sign of a stochastic trend (Vandaele, 1983, 66-72).  A difference stationary process can 

also be identified by the autocorrelation function of the first differences of the series. Recall that 

(4) identifies a nonstationary process as a random walk. Since the change from one period to the 
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next is random then the autocorrelation function of the first differences should be uncorrelated 

white noise (Hyndman & Athanasopoulos, 2019).  

Another, more formal, way is to use a Dickey-Fuller test. Equation (4) defines a 

nonstationary process as a random walk. These processes are a special case of an AR(1) process 

where � =1. Therefore, determining if an autoregressive process is a random walk amounts to 

determining if � =1. To see how we can determine if a process is a random walk, we start with 

an AR(1) process: 

 �� =  ���	� +  �   (5) 

 

If we were to describe the change in one period to the next, we can subtract the previous values 

of the time series to get: 

 �� −  ��	� =  ���	� +  � − ��	�   (6) 

 

Which can also be written as: 

 �� −  ��	� = (� − 1)��	� +  �   (7) 

 

If we replace (� − 1) with    and �� −  ��	� with Δ�� ,we are left with: 

 Δ�� =  ��	� +  �   (8) 

 

It is easy to see that (8) is simply a linear regression equation. The hypothesis of a unit root (i.e. 

� = 1) is equivalent to saying  = 0. Therefore, we can create the following hypothesis test for 

a unit root with: 

 #$:  = 0   
#&:  < 0 

 

(9) 

 

The p-value of our estimate of   can be compared with the null hypothesis of 

nonstationarity which we can then accept or reject (Dickey & Fuller, 1979). This model can be 
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extended using multiple regression coefficients to accommodate AR processes greater than 1 

(Zainotz, 2019).   

So, by examining the plots of the autocorrelation and partial autocorrelation coefficients 

as well as the use of a Dickey Fuller test we can reasonably conclude if the data is nonstationary 

to the desired p-value.. If the data is nonstationary, then the model can be rendered stationary 

by subtracting each time series value from the one preceding it, a process known as differencing 

(Pankratz, 1983, 24-28).  It must be emphasized that only data with evidence of a stochastic trend 

should be differenced. Differencing a series with deterministic trend can introduce spurious 

patterns into the data and complicate analysis (Ibid., 166). In the case of deterministic trend, the 

data can be made stationary by explicitly including the trend in the model. 

Determining Model Type 

After the stationarity of the data is confirmed, the next step is to determine if it is an 

Autoregressive or Moving Average process.  This is done by again examining plots of the 

autocorrelation and partial autocorrelation of the data. Autoregressive processes are 

characterized by a gradual decline of the autocorrelation function and Moving Averages are 

characterized by a sudden cut off of the autocorrelation function (Ibid.., 121-124).  

Once it is decided if the process is a Moving Average or Autoregressive it is now time to 

determine how many terms to include. For autoregressive processes, the number of terms to use 

is equal to the number of lags with a partial autocorrelation statistically different from zero. For 

Moving Average processes, the number of terms to use is equal to the number of lags of the 

autocorrelation function statistically different from zero (Ibid.).  
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Parameter Estimation 

In the parameter estimation stage, maximum likelihood estimation is used to determine 

the appropriate value of the parameters to use. Maximum likelihood estimation (MLE) finds the 

values of the parameters which maximize the probability of obtaining the observed data and was 

the method preferred by Box and Jenkins (Ibid.., 193). However, another method that can be 

used is least squares estimation. Least squares estimation finds the value of the parameters that 

minimizes the sum of the squared residuals. It can be shown that if the residuals are normally 

distributed, then this method is equivalent to MLE (Ibid.). For this reason, it is most often used 

by contemporary practitioners for estimating ARIMA models. 

 

Model Checking 

Finally, In the model checking stage, the model is tested to confirm its integrity. Parsimony 

is emphasized in order to avoid overfitting. This is usually measured by the Akaike Information 

Criterion (AIC) (Akaike, 1974) or the Bayesian Information Criterion (BIC) (Schwartz, 1978). In 

both cases, models having lower values of each are preferred. The residuals of the model are 

then checked to ensure that they are uncorrelated and have a constant mean and variance 

(Pankratz, 1983, 224-225).  

ARIMA Error Models 

ARIMA models are based on the assumption of uncorrelated error terms. However, 

sometimes it may be useful to allow correlation in the error terms. The method is relatively 

straightforward. A simple linear regression is created using an exogenous variable and an ARIMA 

model is fitted to the resulting errors. They can be expressed as:  

 �� =   (� +  )�  (10) 
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where   is a parameter, (� is a exogenous variable, and )�  is an ARIMA error process. An 

important consideration for these models is the future value of (� . When the exogenous variable 

is time then the future values are straightforward. However if (� is some other variable then it 

must be forecast and the resulting predictions combined with the ARIMA error forecast 

(Hyndman & Athanasopoulos, 2019).  

Forecast Distribution 

Forecasts for the future of a time series have important properties, so studying them will 

be useful in understanding the range of possibilities for the future of the series and how confident 

we can be in our predictions. Let t be the current time point and �� equal the current value of a 

stochastic process y which we will refer to as the origin. Next, let all previous observations of our 

process be denoted by I.  Furthermore, let f equal our forecast horizon where f > 0 . Therefore, 

our forecast for an ARIMA (p,d,q) process will be denoted by the conditional expectation: 

               ��(*) = +,�-./)  

                           = μ(1 −  ∑ �1) + �
1�� ����	� + ����	� + �
��	
         

                          + �
��	
 … + ����	� + ����	�                      

 

 

 

                                                                   

(11) 

Each random shock ��	� is estimated from the residual of that period and the expectation of this 

shock is zero for * > 3 since it is a random variable (Pankratz, 1983, 240-250). 

According to Hyndman (2014), all time series predictions are affected by four sources of 

uncertainty. These sources are the assumption of the continuation of past trends, the quality of 

the model, parameter uncertainty, and random shocks.  
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The assumption of continuation of past trends is required for making any forecast so it 

must just be accepted. Model quality can be optimized by considering model fit and distribution 

of the residuals. Parameter uncertainty can theoretically be minimized using simulations, but this 

vastly increases the complexity of making predictions(Hyndman, 2014). For these reasons, the 

only source of uncertainty that will be considered for making prediction intervals will be the error 

term. Starting with (1) and assuming a normally distributed error term with constant variance, 

the prediction interval can be specified as: 

 ��(*)  ± 5�- (12) 

 

where ��(*) is the point forecast,  �-is the standard deviation of the forecast and 5 is the 

coverage probability (Hyndman & Athanasopoulos, 2019). In practice, �-is the estimate of the 

standard deviation of the residuals and 5 depends on the desired significance level of the 

prediction. Most ARIMA practitioners use 80% and 95% prediction intervals which correspond to 

values of c equal to 1.44 and 1.96 respectively (Hyndman, 2014). So if we were to use these values 

then we could be reasonably confident of where 80% and 95% of the actual values would fall.  

 

If parameter uncertainty is to be considered, then there are certain points worth keeping 

in mind. Sampson (1991) has argued that with parameter uncertainty forecast variances grow 

with the square of the forecast horizon but only linearly with no parameter uncertainty.  

Therefore, according to Sampson, parameter uncertainty might be a greater source of forecast 

variation than random errors. Doyne Farmer and Francois LaFond both agree with this view in 

their own studies on the use of time series analysis for forecasting technological change. (Farmer 
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& Lafond, 2016)(LaFond et al., 2018). While Clements (2001) agrees that parameter uncertainty 

can be great, he also points out that this assumes that the sample size remains constant as the 

forecast horizon expands. If the sample size is allowed to increase, then the result is similar to 

that of a forecast without parameter uncertainty.  

These are important points to keep in mind. However, to simplify matters we have 

decided to use the more orthodox approach originally recommended by Box and Jenkins. Farmer 

and Lafond’s studies provide an important resource for showing how technological progress can 

be modeled using time series analysis, so it may be worthwhile to show how this method differs 

from theirs. They assume that the technologies follow a random walk pattern and thus have unit 

roots. Many of their time series that were studied were too small for unit root tests to be effective 

but nevertheless their forecasts were consistent with the hypothesis of a unit root. The 

spacecraft lifespan data studied in this paper show no signs of a unit root and in fact show signs 

of trend stationarity as will be explained below. 

A great deal of their analysis was also focused around the nature of their data, which 

consisted of numerous technology time series of different lengths and different rates of progress, 

many of which were too short to form proper ARIMA models.  The data often consisted of 

averages taken over time. When data is averaged like this it can cause spurious correlations that 

can distort statistical analysis (Working, 1960). This false correlation  had to be accommodated 

in the prediction intervals. The spacecraft lifespan data do not contain the same issues as the 

data studied by Farmer and Lafond so their exact method may not be necessary for forming 

predictions, although it may still be effective.  Finally, their method directly incorporates 



28 

 

parameter uncertainty and experimentally derives prediction intervals whereas the Box-Jenkins 

method derives prediction intervals through the estimate of the variance of the residuals.  

 

Data 

The data were manually curated from various Wikipedia sources. In many cases the 

relevant Wikipedia articles were edited to contain the data points so that automated harvesting 

of data points from Wikipedia would work (Berleant, 2019).. The values of interest are the launch 

date, death date, name of mission, order of launch, and the country of origin. At the time of this 

writing the data are stored in a publicly accessible google spreadsheet located at 

https://docs.google.com/spreadsheets/d/1ZtfkjbcTOoZTbETUkOY5Hlq5SY5GREvFYjgzmKZQww

4/edit#gid=1036188494. 

Methods and Results 

All analysis was conducted using various R statistical packages. To begin, we can examine 

whether or not the data may be stationary. Figure 11 displays a plot of the Autocorrelation of the 

data which decays very slowly and may be an indication of stochastic trend. After taking first 

differences a plot of the ACF is shown in Figure 12. The ACF plot of the differences displays 

significant autocorrelation and, as explained earlier, is inconsistent with nonstationary data. 

There is an autocorrelation of -0.5 at lag 1 which drops off immediately to almost zero, which is 

a classic sign of over differencing and a further indication that the original data may be trend 

stationary (Nau, 2019). Finally, Figure 10 shows an Augmented Dickey Fuller test with a null 

hypothesis of nonstationarity demonstrates statistical significance and is again consistent with 

stationarity. The model in this test incorporates a constant and a linear trend, so subsequently 
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generated models should incorporate both of these parameters as will be demonstrated below.  

Considering all of this evidence, we can conclude that this data is stationary and doesn’t require 

differencing.  

A plot of the Partial Autocorrelation Function of the data is shown in Figure 13. The series 

displays significant correlations at lags 1,2, and 5. The gradual decay of the ACF combined with 

the significant partial correlations at lags 1 & 2 that cut off abruptly seem to indicate that an 

AR(2) model may be most appropriate. This makes intuitive sense, since it would seem that if a 

technology is improving then its current capability must be correlated with its previous capability. 

The significance at lag 5 cannot be readily explained from the data. One possibility is that NASA 

must take the position of planets into account for longer missions. Therefore, longer missions 

appear semi-regularly.  

 

Figure 10 - R Output of Augmented Dickey-Fuller Test 
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Figure 11- Autocorrelation of Spacecraft Lifespan 

 

Figure 12- Autocorrelation of First Differences 
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Figure 13- Plot of Partial Autocorrelation Function 

As stated earlier, it is usually desirable to choose a model with the lowest AIC and BIC 

values since these values measure the parsimony of the model. However, several models were 

discovered which were largely consistent with autocorrelation trends observed in the data. In 

addition, these models all had negligibly different AIC and BIC values. Therefore, each of these 

models will be examined, forecasts will be produced, and the residuals examined to determine 

model quality.  

The accuracy of the forecasts will be checked by Hindcasting, that is comparing forecasts 

with actual values. The forecasts will also be evaluated by computing the mean squared error of 

the forecasts. This will be done by forming models based on 85 percent of the data and the 

remaining 15 percent will be compared with the model’s predictions.  As was mentioned earlier, 

the Dickey Fuller test performed earlier provided evidence that the data demonstrated trend 
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stationary behavior. For this reason, a linear trend component identified as “drift” will be added.  

Finally, because a visual examination of the ACF plots indicates a seasonal pattern at lag 5, a 

seasonal term of period 5 will be added to see if it can improve the fit. Because the time series is 

irregular the period in this case is the ordinality of the launch in terms of launch date. Table 1 

lists several that were generated.  

Conclusion 

 There are a few conclusions about these models that are worth noting that can be seen 

in Appendix A. First, if we examine the coefficients for the seasonal and non-seasonal versions of 

ARIMA(2,0,2) we find that they are all equal to or greater than one. Since this would introduce a 

unit root into the predictions these models will not be considered further. The second is that all 

will produce fairly similar predictions. However, the seasonal versions of each model produce 

noticeably better results according to every measurement such as AIC, BIC, and Mean Square 

Error. As measured by AIC and BIC the best performing non-seasonal model, ARIMA (1,0,0) is still 

worst than the worst performing seasonal model, ARIMA(1,0,1)(1,0,0)[5]. The diagnostics for 

each of the seasonal models also show more uncorrelated and normally shaped residuals which 

again gives us a reason to prefer them.  

 Choosing a model based on diagnostic plots seems to subjective since all the plots are so 

similar. This leaves us with AIC, BIC, and Mean Squared Error as quantitative measures of model 

quality.  
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 ARIMA(1,0,0)(1,0,0)[5] ARIMA(2,0,0)(1,0,0)[5] ARIMA(1,0,1)(1,0,0)[5] 

AIC 538.32 540.21 540.33 

BIC 551.96 556.58 556.69 

Mean Squared 

Error 

2.64727 2.667236 2.641737 

Table 1 - Comparison of Seasonal Models 

 As can be seen from the above table, the seasonal versions of ARIMA(1,0,0) and 

ARIMA(1,0,1) have the best scores. However, ARIMA(1,0,1) has a slightly better Mean Squared 

Error while ARIMA(1,0,0) has better AIC and BIC scores. So it may be reasonable to conclude that 

either one of these models could be used for making predictions.  

Discussion 

The previously generated models are not standard ARIMA models but instead utilize a 

linear trend and an ARIMA noise process.  I think it would be useful to explain why these 

nonstandard methods were chosen. It should be acknowledged that these models have more 

skewed residuals and higher AIC and BIC scores than models which eliminated trend using 

differencing. An example of this can be shown in Figure 14 and Figure 15 for an ARIMA (1,1,0) 

model and an ARIMA (1,0,0) model. First, it was previously shown that the original series was 

already stationary, and any differencing operations would overcomplicate the model. Second, an 

Augmented Dickey Fuller test which incorporated a trend and a constant successfully rendered 

the series trend stationary. Therefore, I felt differencing the series was not justified.  

Modeling the data this way also has the benefit of producing accurate predictions with 

narrower error boundaries. As shown below, both a differenced model and an ARIMA error 

model produce successful predictions. But the ARIMA error model does so with narrower 

boundaries. Theoretically, the more bell-shaped residuals in Figure 14 would indicate a model 
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that incorporates more relevant information. Nevertheless, since this model produces less 

reliable forecasts due to the wide prediction intervals I felt it was not as useful. The reason for 

this difference in the residuals is not entirely clear. It may be that the differenced model “casts 

too wide a net” and the ARIMA error model “casts too narrow a net” since the residuals for the 

error model show significant skewing.  This may indicate that future research could build 

improved models which would eliminate this skewing.  

 

 

Figure 14 - Histogram of residuals for ARIMA (1,1,0) 

 



35 

 

 

Figure 15 - Histogram of residuals for ARIMA (1,0,0) 
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Figure 16 - Predicted vs actual for differenced model with 15% withheld for validation. The prediction interval, indicated by the 

blue shaded area, is much larger than that of Figure 17. This indicates that forecasts from this model are less reliable than those 

in Figure 17.  
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Figure 17 - Predicted vs actual for non-differenced model and 15% withheld for validation. The prediction interval, indicated by 

the blue shaded area, is much narrower than that of Figure 16. This indicates that forecasts from this model are more reliable 

than that of Figure 16.  

 

 

 

 

 

 

 

  



38 

 

References 
Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic 

Control, 716-723. 

Arrow, K. J. (1962). The economic implications of learning by doing. The Review of Economic 

Studies, 155-173. 

Arthur, W. B., & Polak, W. (2006). The evolution of technology with a simple computer model. 

Complexity. 

Axtell, R., Casstevens, R., Hendrey, M., Kennedy, W., & Litsch, W. (2019, March 08). Competitive 

Innovation and the Emergence of Technological Epochs. Retrieved from 

http://css1.gmu.edu/~axtell/Rob/Research/Pages/Technology_files/Tech%20Epochs.pdf 

Ayers, R. U., & Màrtinas, K. (1992). Experience and the life cycle: Some analytic implications. 

Technovation, 465-486. 

Baldwin, C. Y., & Clark, K. B. (2006). Between "Knowlege" and "the Economy" : Notes on the 

Scientific Study of Designs. In B. Kahin, & D. Foray, Advancing Knowledge and the 

Knowlege Economy (pp. 298-328). Cambridge: MIT Press. 

Basnet, S., & Magee, C. (2016). Modeling of technological performance trends using design 

theory. Design Science. 

Basnet, S., & Magee, C. (2017, August 4). Artifact Interactions retard technological 

improvement: An empirical study. PLOS ONE. 

Benson, C. L., & Magee, C. L. (2015). Quantitative Determination of Technological Improvement 

from Patent Data. PLoS ONE. 

Berleant, D., Hall, C., Segall, R., & Lu, S. (2017). Steps toward Quantifying Advancement in Space 

Exploration. Proceedings of WMSCI. 

Berleant, D., Kodali, V., Segall, R., Aboudja, H., & Howell, M. (2019, January 07). Moore's Law, 

Wright's Law, and the countdown to exponential space. Retrieved from The Space 

Review: http://www.thespacereview.com/article/3632/1 

Bostrom, N. (2013). Existential Risk Prevention as Global Priority. Global Policy, 15 - 31. 

Bostrom, N., & Sandberg, A. (2009). Cognitive Enhancement: Methods, Ethics, Regulatory 

Challenges. Science and Engineering Ethics, 311-341. 

Box, G. E., & Jenkins, G. (1970). Time series analysis, forecasting and control. Hoboken: John 

Wiley & Sons, Inc. 

Bush, V. (1945). Science: The Endless Frontier. Transactions of the Kansas Academy of Science, 

231-264. 



39 

 

Clements, M. P., & Henry, D. F. (2001). Forecasting with Difference-stationary and Trend-

Stationary Models. Econometrics Journal, 1-19. 

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time 

Series With a Unit Root. Journal of the American Statistical Association, 427-431. 

Farmer, D., & Lafond, F. (2016). How predictable is technological progress? Research and Policy, 

647-665. 

Foster, R. N. (1985). Timing Technological Transitions. Technology in Society, 127-141. 

Gada, K. (2019, August 9). The Overlooked Economics of Technology. Retrieved from The 

Accelerating Technonomic Medium: https://www.atom.singularity2050.com 

Gerro, J. S., & Kannengiesser, U. (2014). The Function-Behaviour-Structure Ontology of Design. 

In A. Chakrabarti, & L. T. Blessing, An Anthology of Theories and Models of Design (pp. 

263-283). London: Springer. 

Hatchuel, A., & Weil, B. (2003). A New Approach of Innovative Design: An Introduction to CK 

Theory. Proceedings of the International Conference On Engineering Design, 109-124. 

Hax, A. C., & Majluf, N. S. (1982). Competitive Cost Dynamics: The Experience Curve. Interfaces, 

50-61. 

Hicks, K. (2015, November 6). It's sad that human space exploration has stalled. Retrieved from 

The Columbus Dispatch: 

https://www.dispatch.com/content/stories/science/2015/11/08/01-its-sad-that-

human-space-exploration-has-stalled.html 

Howell, M., Kodali, V., Segall, R., Aboudja, H., & Berleant, D. (In Press). Moore's law and space 

exploration: new insights and next steps. Journal of the Arkansas Academy of Science. 

Hurvich, C. (2019, November 16). Differencing and unit root tests. Retrieved from NYU Stern: 

http://pages.stern.nyu.edu/~churvich/Forecasting/Handouts/UnitRoot.pdf 

Hyndman, R. (2014, October 22). Prediction intervals too narrow. Retrieved from Hynndsight: 

https://robjhyndman.com/hyndsight/narrow-pi/ 

Hyndman, R. J., & Athanasopoulos, G. (2019, November 16). Forecasting: principles and 

practice, 2nd edition. Melbourne, Australia. 

LaFond, F., Bailey, A. G., Bakker, J. D., Rebois, D., Zadourian, R., McSharry, P., & Farmer, D. 

(2018). How well do experience curves predict technological progress? A method for 

making distributional forecasts. Technological Forecasting and Social Change, 104-117. 

Leontief, W. W. (1953). Domestic Production and Foreign Trade; The American Capital Position 

Re-Examined. Proceedings of the American Philosophical Society, 332-349. 



40 

 

Lichtenstein, S., Slovic, P., Fischoff, B., Layman, M., & Combs, B. (1978). Judged Frequency of 

Lethal Events. Journal of Experimental Psychology: Human Learning and Memory, 551-

578. 

Magee, C., & Funk, J. L. (2015). Rapid Improvements with No Commercial Production: How do 

the Improvements Occur? Research Policy, 777-788. 

Magee, C., Basnet, S., Funk, J., & Benson, C. (2014). Quantitative empirical trends in technical 

performance. Technological Forecasting and Social Change. 

Malkiel, B. (1973). A Random Walk Down Wall Street. New York: W.W. Norton & Company. 

McNerney, J., Farmer, D., Redner, S., & Trancik, J. E. (2011). Role of design complexity in 

technology improvement. Proceedings of the National Academy of Sciences of the 

United States of America, 9008-9013. 

Merton, R. (1973). Theory of Rational Option Pricing. The Bell Journal of Economics and 

Management Science, 141-183. 

Moore, G. (1965, Aprin). Cramming more components onto integrated circuits. Electronics, pp. 

114-117. 

Nagy, B., Farmer, J. D., Bui, Q. M., & Trancik, J. E. (2013). Statistical Basis for Predicting 

Technological Progress. PLOS One. 

Nau, B. (2019, December 26). Identifying the order of differencing in an ARIMA model. 

Retrieved from Statistical forecasting: notes on regression and time series analysis: 

https://people.duke.edu/~rnau/411arim2.htm 

Nielsen, H. B. (2005). Non-Stationary Time Series and Unit Root Tests. Retrieved from University 

of Copenhagen: 

http://web.econ.ku.dk/metrics/Econometrics2_05_II/Slides/08_unitroottests_2pp.pdf 

Pankratz, A. (1983). Forecasting with univariate and box-jenkins models. 1983: John Wiley & 

Sons, Inc. 

Roberts, L. D. (2011, June 25). Quora. Retrieved from Has the pace of progress in space 

exploration slowed since the 'Space Race'?: https://www.quora.com/Has-the-pace-of-

progress-in-space-exploration-slowed-since-the-Space-Race 

Romer, P. M. (1990). Endogenous Technological Change. Journal of Political Economy, 71-102. 

Sahal, D. (1979). A Theory of Progress Functions. American Institute of Industrial Engineers. 

Sampson, M. (1991). The Effect of Parameter Uncertainity on Forecast Variances and 

Confidence Intervals for Unit Root and Trend Stationary Time-Series Models. Journal of 

Applied Econometrics, 67-76. 



41 

 

Schwartz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 461-464. 

Simon, H. A. (1969). The Sciences of the Artifical. Cambridge: MIT Press. 

Sokoloff, K. L. (1988). Inventive Activity in Early Industrial America: Evidence from Patent 

Records, 1790-1846. Journal of Econonmic History, 813-850. 

Sokoloff, K. L., & Khan, Z. (1989). The Democritization of Invention during Early Industrialization: 

Evidence from the United States, 1790-1846. Working paper. 

Solow, R. M. (1957). Technical Change and the Aggregate Production Function. The Review of 

Economics and Statistics, 312-320. 

Vandaele, W. (1983). Applied Time Series and Box-Jenkins Models. New York: Academic Press, 

Inc. 

Weisstein, E. W. (2019, November 16). Markov Process. Retrieved from Mathworld-A Wolfram 

Web Resource: http://mathworld.wolfram.com/MarkovProcess.html 

Wikipedia. (2019, November 11). Box-Jenkins method. Retrieved from Wikipedia: 

https://en.wikipedia.org/wiki/Box–Jenkins_method 

Wikipedia. (2019, November 3). Design Structure Matrix. Retrieved from Wikipedia: 

https://en.wikipedia.org/wiki/Design_structure_matrix 

Wikipedia. (2019, July 18). Experience curve effects. Retrieved from Wikipedia: 

https://en.wikipedia.org/wiki/Experience_curve_effects 

Wikipedia. (2019, January 11). ISO/IEC 9126. Retrieved from Wikipedia: 

https://en.wikipedia.org/wiki/ISO/IEC_9126 

Wikipedia. (2019, August 6). List of countries by income inequality. Retrieved from Wikipedia: 

https://en.wikipedia.org/wiki/List_of_countries_by_income_equality 

Wikipedia. (2019, November 16). Trend stationary. Retrieved from Wikipedia: 

https://en.wikipedia.org/wiki/Trend_stationary 

Working, H. (1960). Note on the correlation of first differences in a random chain. 

Econometrica, 916-918. 

Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of Aerospace Science, 122-

138. 

Yudkowsky, E. (2008). Cognitive Biases Potentially Affecting Judgement of Global Risks. In N. 

Bostrom, & M. M. Circovic, Global Catastrophic Risks (pp. 91-119). New York: Oxford 

University Press. 



42 

 

Zainotz, C. (2019, November 16). Augmented Dickey-Fuller Test. Retrieved from Real statistics 

using Excel: http://www.real-statistics.com/time-series-analysis/autoregressive-

processes/augmented-dickey-fuller-test/ 

 

Appendix A: Results of Candidate Models 
This appendix describes each model in detail along with predictions and diagnostics to evaluate 

model quality. The results contained in this appendix are summarized in the conclusion section. 

The models are grouped according to whether or not they include a seasonal term. It should be 

emphasized that the following models are ARIMA error models and take the form given in (10). 

Each prediction is based on ordinality and not on a particular date. As shown below, it was 

discovered that both the seasonal and non-seasonal versions of ARIMA(2,0,2) produced a unit 

root. Therefore, they are not considered further.  

Model Diagnostics 

Recall that the error term in an ARIMA model is independent and identically distributed. 

Therefore, the degree to which the residuals fit this description helps us to determine model 

quality. The first way of doing this is to measure the autocorrelation of the residuals since this 

measure’s independence. The second way is by plotting a histogram of the residuals. In doing 

this we are seeing how well the residuals fit a hypothetical bell curve, with a more bell-shaped 

plot preferred. Finally, we examine the residuals with a Q-Q plot. A Q-Q plot is a visual way of 

checking if a data set came from a hypothetical distribution. In this case we are checking how 

likely the residuals came from a normal distribution. Residuals which line up more closely in a 

straight line are more likely to come from a normal distribution and therefore those models are 

to be preferred. The results from these diagnostics are considered in the conclusion. 

 

 

 

 

 

 

 

 

 

 

 



43 

 

ARIMA MODELS 

 

 AR(1) AR(2) ARMA(1, 1) ARMA(2,2) 

L1.ar -0.0410 -0.0393 -0.3392 -1.1184 

L2.ar NA 0.0441 NA -0.8897 

Intercept -5.8386 -5.8415 -5.8386 -5.8436 

L1.ma NA NA 0.2909 1.1131 

L2.ma NA NA NA 1.0000 

Drift 0.0728 0.0729 0.0728 0.0730 

AIC 544.11 545.89 546 543.62 

BIC 555.02 559.52 559.64 562.71 

 AR(1)SAR(1) AR(2)SAR(1) ARMA(1,1)SAR(1) ARMA(2,2)SAR(1) 

L1.ar 0.0069 0.0062 -0.6521 -1.4184 

L2.ar NA 0.0316 NA -0.9551 

Intercept -5.8280 -5.8315 -5.8276 -5.8357 

L1.ma NA NA 0.6523 1.4141 

L2.ma NA NA NA 1.0000 

L1.sar 0.2615 0.2598 0.2604 0.2086 

Drift 0.0724 0.0724 0.0724 0.0727 

AIC 538.32 540.21 540.33 540.79 

BIC 551.96 556.58 556.69 562.61 
Table 2 - Candidate ARIMA Models. The terms AR(n), MA(n), and SAR(n) describe the number of Autoregressive, Moving 

Average, and Seasonal Autoregressive terms used. The value of each coefficient is described in the corresponding cell marked L1, 

L2, etc. The intercept is the estimated mean of the data while the Drift is the estimated linear trend. AIC and BIC signify Akaike’s 

Information Criterion and Bayesian Information Criterion respectively.  

 

Non-Seasonal Models: 
Each of the following models does not include a seasonal term. As will be shown below these 

models perform worse on every measure as compared to the seasonal models. Nevertheless, 

they still perform reasonably well.  

ARIMA (1,0,0) 

ARIMA (1,0,0) has a moderately low AIC and BIC, although there are values which are 

significantly lower. This model would likely perform adequately but would not really be the first 

choice. The residuals are skewed negatively which indicates that this model tends to 

underestimate the data. 
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Forecast: 

 

Figure 18 - Forecasts from ARIMA(1,0,0) with drift – This graph shows predictions for lifespan values of future launches. The 

predictions show a clear increasing trend. The x-axis shows the order of launch and the y-axis shows the logarithm of mission 

lifespan. The dark blue shaded area shows where 80 percent of possible future values lie. The light blue shaded area shows 

where 95 percent of possible values lie.  A linear regression is fitted and an ARIMA model is built on the residuals. The ARIMA 

portion uses a lag of one value to predict future values. The formula for the 1-step ahead forecast is: Forecast =  (Current 

Value)*-0.0410 + (Ordinality * 0.0728) – 5.8386. 
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23 point forecast from ARIMA(1,0,0) with drift 

 Point Forecast Lo.80 Hi.80 Lo.95 Hi.95 

114 2.414020084 -0.95539 5.783431 -2.73905 7.567089 

115 2.538528578 -0.83372 5.910775 -2.61888 7.695935 

116 2.609234384 -0.76302 5.981486 -2.54818 7.766648 

117 2.682148196 -0.6901 6.0544 -2.47527 7.839562 

118 2.754971393 -0.61728 6.127223 -2.40244 7.912385 

119 2.827798309 -0.54445 6.20005 -2.32962 7.985212 

120 2.900625073 -0.47163 6.272877 -2.25679 8.058039 

121 2.973451843 -0.3988 6.345703 -2.18396 8.130866 

122 3.046278613 -0.32597 6.41853 -2.11114 8.203692 

123 3.119105382 -0.25315 6.491357 -2.03831 8.276519 

124 3.191932152 -0.18032 6.564184 -1.96548 8.349346 

125 3.264758921 -0.10749 6.637011 -1.89265 8.422173 

126 3.337585691 -0.03467 6.709837 -1.81983 8.494999 

127 3.410412461 0.038161 6.782664 -1.747 8.567826 

128 3.48323923 0.110988 6.855491 -1.67417 8.640653 

129 3.556066 0.183814 6.928318 -1.60135 8.71348 

130 3.62889277 0.256641 7.001144 -1.52852 8.786307 

131 3.701719539 0.329468 7.073971 -1.45569 8.859133 

132 3.774546309 0.402295 7.146798 -1.38287 8.93196 

133 3.847373079 0.475121 7.219625 -1.31004 9.004787 

134 3.920199848 0.547948 7.292451 -1.23721 9.077614 

135 3.993026618 0.620775 7.365278 -1.16439 9.15044 

136 4.065853388 0.693602 7.438105 -1.09156 9.223267 

Table 3 - Predictions from ARIMA(1,0,0) with drift – This table contains the detailed predictions plotted in Figure 18 along with 

their 80 percent and 95 percent prediction intervals that were shown in the dark blue and light blue areas respectively. 
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Predicted vs Actual: 

 

Figure 19 - ARIMA(1,0,0) with drift - Predicted vs Actual – 15 percent of the original data is withheld and tested against a model 

generated with the remaining 85 percent. All withheld values fall within the dark blue area indicating that the model predicts 

the actual values reasonably well. The x-axis shows the order of launch and the y-axis shows the logarithm of mission lifespan. 

The withheld data is shown in red and the forecast generated with the model is shown in blue. 80 percent of projected values fall 

within the dark blue shaded area and 95 percent of all projected values fall within the light blue shaded area. 
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Diagnostics: 

 

Figure 20 - Autocorrelation of ARIMA(1,0,0) residuals – Residuals are the difference between the predictions of the model and 

the actual value. Here is a plot of the correlation of each residual between itself and those of previous lags. Every correlation 

beyond 0.2 signifies statistical significance. The spike above the dotted line at lag 5 shows significant correlation every 5 lags 

which indicates possible seasonality.  
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ARIMA(1,0,0)    

Predicted Actual Error 

Squared 

Error 

1.164189414 -0.49989 1.664079 2.76916 

1.282807079 2.44369 1.160883 1.34765 

1.353962 3.799628 2.445666 5.981281 

1.426707387 1.683646 0.256939 0.066017 

1.499399478 4.227464 2.728064 7.442335 

1.572093355 0.369321 1.202772 1.446662 

1.644787173 2.330355 0.685568 0.470004 

1.717480992 3.319869 1.602388 2.567649 

1.790174811 -0.29803 2.088209 4.360615 

1.86286863 4.315931 2.453062 6.017514 

1.93556245 2.188834 0.253272 0.064147 

2.008256269 0.647592 1.360664 1.851407 

2.080950088 2.441586 0.360636 0.130058 

2.153643907 1.655872 0.497771 0.247776 

2.226337726 -0.3545 2.580841 6.660741 

2.299031546 -0.12559 2.424626 5.87881 

2.371725365 3.600527 1.228801 1.509953 

Mean Squared 

Error   2.871281 
Table 4 - ARIMA(1,0,0) Mean Square Error – This table shows how  prediction generated by the model in Figure 19 is compared 

to the actual value. Each error is then squared, and the arithmetic mean of each of the squared errors is computed. The result 

shows an average squared error of 2.871281. The result shows that this model was significantly worse at generating predictions 

than the version that assumes seasonality.  
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Figure 21 - QQ Plot for ARIMA(1,0,0) – Residuals in an ARIMA model are theoretically normally distributed. The more diagonal 

the points are on a QQ plot, the more normally distributed they are. This plot shows that the residuals are not normally 

distributed along certain points where they do not line up very well with the blue line. This shows that some information is not 

being captured by the model.  
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Figure 22 - Histogram of Residuals for ARIMA(1,0,0) – Another way to measure normality of residuals is by examining a 

histogram of the residuals to see how much it resembles a bell curve. Again, we see skewing in the -2 to -4 bin. Just like Figure 

21, this shows that some information is not being captured by the model.  
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ARIMA (2,0,0) 

ARIMA(2,0,0) has a higher AIC,BIC, and Mean Square Error than ARIMA(1,0,0). However, these 

differences aren’t significant so both of these models should be equally effective. 

 

Forecast: 

 

Figure 23 - Forecasts from ARIMA(2,0,0) with drift – This graph shows predictions for lifespan values of future launches. The 

predictions show a clear increasing trend. The x-axis shows the order of launch and the y-axis shows the logarithm of mission 

lifespan. The dark blue shaded area shows where 80 percent of possible future values lie. The light blue shaded area shows 

where 95 percent of possible values lie.  A linear regression is fitted and an ARIMA model is built using the residuals. The ARIMA 

portion of the model uses two previous lags to predict future values. The formula for each 1-step ahead forecast is: Forecast =  

(Current Value) * -0.0393 + (Lag 1 Value) * 0.0441 + (Ordinality * 0.0729) – 5.8415. 
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23 point forecast from ARIMA (2,0,0) with drift 

 Point Forecast Lo.80 Hi.80 Lo.95 Hi.95 

114 2.308364985 -1.0731 5.689829 -2.86314 7.479868 

115 2.59602078 -0.78805 5.980092 -2.57947 7.771512 

116 2.600210208 -0.78738 5.987803 -2.58067 7.781086 

117 2.685237011 -0.70238 6.07285 -2.49567 7.866145 

118 2.754581737 -0.63304 6.142203 -2.42634 7.935501 

119 2.828109066 -0.55951 6.21573 -2.35281 8.009029 

120 2.900780196 -0.48684 6.288402 -2.28014 8.0817 

121 2.973669497 -0.41395 6.361291 -2.20725 8.154589 

122 3.046512451 -0.34111 6.434134 -2.13441 8.227432 

123 3.119366853 -0.26825 6.506988 -2.06155 8.300287 

124 3.19221876 -0.1954 6.57984 -1.9887 8.373139 

125 3.265071269 -0.12255 6.652693 -1.91585 8.445991 

126 3.337923645 -0.0497 6.725545 -1.843 8.518843 

127 3.410776053 0.023155 6.798397 -1.77014 8.591696 

128 3.483628454 0.096007 6.87125 -1.69729 8.664548 

129 3.556480857 0.168859 6.944102 -1.62444 8.737401 

130 3.629333259 0.241712 7.016955 -1.55159 8.810253 

131 3.702185661 0.314564 7.089807 -1.47873 8.883105 

132 3.775038063 0.387417 7.162659 -1.40588 8.955958 

133 3.847890465 0.460269 7.235512 -1.33303 9.02881 

134 3.920742867 0.533121 7.308364 -1.26018 9.101663 

135 3.99359527 0.605974 7.381217 -1.18732 9.174515 

136 4.066447672 0.678826 7.454069 -1.11447 9.247368 
Table 5 - Predictions from ARIMA(2,0,0) with drift - This table contains the detailed predictions plotted in Figure 23 along with 

their 80 percent and 95 percent prediction intervals that were shown in the dark blue and light blue areas respectively. 
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Predicted vs Actual: 

 

Figure 24 - ARIMA(2,0,0) with drift - Predicted vs Actual – 15 percent of the original data is withheld and tested against a model 

generated with the remaining 85 percent. All withheld values fall within the dark blue area indicating that the model predicts 

the actual values reasonably well. The x-axis shows the order of launch and the y-axis shows the logarithm of mission lifespan. 

The withheld data is shown in red and the forecast generated with the model is shown in blue. 80 percent of projected values fall 

within the dark blue shaded are and 95 percent of all projected values fall within the light blue shaded area. 
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Diagnostics: 

 

Figure 25 - Autocorrelation of ARIMA(2,0,0) residuals -  Here is a plot of the correlation of each residual between itself and those 

of previous lags as in Figure 20. Again, there is a spike at lag 5 indicating possible seasonality and showing that some 

information is being missed by the model. 
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ARIMA(2,0,0)    

Predicted Actual Error 

Squared 

Error 

1.265720931 -0.49989 1.765611 3.117381 

1.35663382 2.44369 1.087056 1.181691 

1.364302771 3.799628 2.435325 5.930807 

1.440156674 1.683646 0.243489 0.059287 

1.509624538 4.227464 2.717839 7.38665 

1.5827666 0.369321 1.213446 1.472451 

1.655467743 2.330355 0.674888 0.455473 

1.728369919 3.319869 1.591499 2.532871 

1.801243309 -0.29803 2.099277 4.406965 

1.874127846 4.315931 2.441803 5.962402 

1.947010565 2.188834 0.241824 0.058479 

2.01989391 0.647592 1.372302 1.883213 

2.092777142 2.441586 0.348809 0.121668 

2.165660409 1.655872 0.509788 0.259884 

2.23854367 -0.3545 2.593047 6.723893 

2.311426932 -0.12559 2.437021 5.939072 

2.384310195 3.600527 1.216216 1.479182 

Mean Squared 

Error   2.880669 
Table 6 - ARIMA(2,0,0) Mean Square Error - Each prediction generated by the model in Figure 24 is compared to the actual 

value. Each error is then squared, and the arithmetic mean of each of the squared errors is computed. The result shows an 

average squared error of 2.8880669. The result shows that this model was significantly worse at generating predictions than the 

version that assumes seasonality.  
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Figure 26 - Histogram of Residuals for ARIMA(2,0,0) – The normality of the model’s residuals is measured as in Figure 22. The 

two histogram’s are extremely similar and show that some information is not being captured by this model.  
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Figure 27 - QQ Plot for ARIMA(2,0,0) – Residuals in an ARIMA model are theoretically normally distributed. The more diagonal 

the points are on a QQ plot, the more normally distributed they are. This plot shows that the residuals are not normally 

distributed along certain points where they do not line up very well with the blue line. This shows that some information is not 

being captured by the model.  
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ARIMA (1,0,1) 

ARIMA(1,0,1) has the highest AIC and BIC of any of the non-seasonal models. While it would be 

adequate it would not be an ideal choice. In addition, the residuals are the most negatively 

skewed which further reduces its effectiveness.  

Forecast: 

 

Figure 28 - Forecasts from ARIMA(1,0,1) with drift – This graph shows predictions for lifespan values of future launches. The 

predictions show a clear increasing trend. The x-axis shows the order of launch and the y-axis shows the logarithm of mission 

lifespan. The dark blue shaded area shows where 80 percent of possible future values lie. The light blue shaded area shows 

where 95 percent of possible values lie.  A linear regression is fitted and an ARIMA model is applied to the residuals. The ARIMA 

portion of the model uses one previous lag and one previous residual to predict future values. The 1-step ahead forecast is: 

Forecast = (Current Value) * -0.3392 + (Current Residual) * 0.2909 + (Ordinality * 0.0728) – 5.8386. 
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23 point forecast from ARIMA(1,0,1) with drift 

 Point Forecast Lo.80 Hi.80 Lo.95 Hi.95 

114 2.380243 -1.00293 5.763414 -2.79387 7.554357 

115 2.564318 -0.8228 5.95144 -2.61584 7.744475 

116 2.599402 -0.78817 5.986979 -2.58145 7.780253 

117 2.685029 -0.7026 6.072658 -2.4959 7.86596 

118 2.75351 -0.63412 6.141145 -2.42743 7.934451 

119 2.827808 -0.55983 6.215443 -2.35313 8.008749 

120 2.900132 -0.4875 6.287768 -2.28081 8.081074 

121 2.973126 -0.41451 6.360761 -2.20782 8.154067 

122 3.045892 -0.34174 6.433528 -2.13505 8.226834 

123 3.118736 -0.2689 6.506372 -2.06221 8.299678 

124 3.191554 -0.19608 6.579189 -1.98939 8.372495 

125 3.26438 -0.12326 6.652016 -1.91656 8.445322 

126 3.337203 -0.05043 6.724839 -1.84374 8.518145 

127 3.410028 0.022392 6.797664 -1.77091 8.59097 

128 3.482852 0.095216 6.870488 -1.69809 8.663794 

129 3.555676 0.16804 6.943312 -1.62527 8.736618 

130 3.6285 0.240865 7.016136 -1.55244 8.809442 

131 3.701324 0.313689 7.08896 -1.47962 8.882266 

132 3.774149 0.386513 7.161784 -1.40679 8.95509 

133 3.846973 0.459337 7.234609 -1.33397 9.027915 

134 3.919797 0.532161 7.307433 -1.26114 9.100739 

135 3.992621 0.604985 7.380257 -1.18832 9.173563 

136 4.065445 0.67781 7.453081 -1.1155 9.246387 
Table 7 - Predictions from ARIMA(1,0,1) with drift - This table contains the detailed predictions plotted in Figure 28 along with 

their 80 percent and 95 percent prediction intervals that were shown in the dark blue and light blue areas respectively. 
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Predicted vs Actual: 

 

Figure 29 - ARIMA(1,0,1) with drift - Predicted vs Actual - 15 percent of the original data is withheld and tested against a model 

generated with the remaining 85 percent. All withheld values fall within the dark blue area indicating that the model predicts 

the actual values reasonably well. The x-axis shows the order of launch and the y-axis shows the logarithm of mission lifespan. 

The withheld data is shown in red and the forecast generated with the model is shown in blue. 80 percent of projected values fall 

within the dark blue shaded are and 95 percent of all projected values fall within the light blue shaded area. 
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Diagnostics: 

 

Figure 30 - Autocorrelation of ARIMA(1,0,1) residuals – This autocorrelation plot has no significant differences from those in 

Figure 20 and Figure 25. Again, there is a significant correlation at lag 5 which indicates that a seasonal term may improve the 

model. 
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ARIMA(1,0,1)    

Predicted Actual Error 

Squared 

Error 

1.141511981 -0.49989 1.641402 2.6942 

1.251842559 2.44369 1.191848 1.420501 

1.339777922 3.799628 2.45985 6.050861 

1.418619241 1.683646 0.265027 0.070239 

1.493767734 4.227464 2.733696 7.473094 

1.567416678 0.369321 1.198096 1.435434 

1.640456699 2.330355 0.689899 0.47596 

1.713249455 3.319869 1.60662 2.581228 

1.785941802 -0.29803 2.083976 4.342955 

1.858593377 4.315931 2.457337 6.038507 

1.931228396 2.188834 0.257606 0.066361 

2.003856691 0.647592 1.356265 1.839454 

2.076482256 2.441586 0.365104 0.133301 

2.149106713 1.655872 0.493234 0.24328 

2.221730719 -0.3545 2.576234 6.636982 

2.294354543 -0.12559 2.419949 5.856152 

2.366978293 3.600527 1.233548 1.521641 

Mean Squared Error  2.875303 
Table 8 - ARIMA(1,0,1) Mean Square Error - Each prediction generated by the model in Figure 29 is compared to the actual 

value. Each error is then squared, and the arithmetic mean of each of the squared errors is computed. The result shows an 

average squared error of 2.875303. The result shows that this model was significantly worse at generating predictions than the 

version that assumes seasonality.  

 



63 

 

 

Figure 31 - QQ Plot for ARIMA(1,0,1) – Visually this QQ Plot displays the least normality of any of those generated. This plot 

shows that the residuals are not normally distributed along certain points where they do not line up very well with the blue line. 

This shows that some information is not being captured by the model.  

 



64 

 

 

Figure 32 - Histogram of Residuals for ARIMA(1,0,1) – The histogram of the residuals shows the strongest skewing of any model 

generated, especially in the -2 to -4 bin with a frequency of 25. This indicates that it is missing the most significant information 

of any model and thus is the worst of any model generated. 
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Seasonal Models 
In general, the seasonal models perform better than the non-seasonal models by every 

measure. This provides strong evidence that there is a real seasonal component to this data, 

possibly due to NASA waiting for favorable astronomical conditions for longer missions. A visual 

examination of the Predicted vs Actual graphs show that seasonal models do a better job of 

predicting positive or negative logarithmic values of lifespan.  

ARIMA (1,0,0)(1,0,0)[5] 

ARIMA(1,0,0) with a 5 period seasonal term has the lowest AIC and BIC scores of any of the 

models. So, in terms of parsimony, this model is the ideal choice.  

Forecast: 

 

Figure 33 - Forecasts from ARIMA(1,0,0)(1,0,0)[5] with drift - This graph shows predictions for lifespan values of future launches. 

The predictions show a clear increasing trend. The x-axis shows the order of launch and the y-axis shows the logarithm of 

mission lifespan. The dark blue shaded area shows where 80 percent of possible future values lie. The light blue shaded area 

shows where 95 percent of possible values lie. A linear regression is fitted and an ARIMA model is applied to the residuals. The 

non-seasonal portion is Current Value = (Lag 1 Value) * 0.0069. The seasonal portion is �6778)9 :�;68< = (=�><) * 0.2615, the 

subscript signifying the seasonal period. The 1-step ahead forecast is: Forecast = (Non – Seasonal Forecast) * (Seasonal Forecast) 

+ (Ordinality * 0.0724) – 5.8280. 
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23 point forecast from ARIMA(1,0,0)(1,0,0)[5] with drift 

 Point Forecast Lo.80 Hi.80 Lo.95 Hi.95 

114 2.534172 -0.73097 5.79931 -2.45943 7.527769 

115 2.371187 -0.89403 5.636402 -2.62253 7.364903 

116 1.898794 -1.36642 5.164009 -3.09492 6.89251 

117 2.012113 -1.2531 5.277329 -2.9816 7.005829 

118 3.040056 -0.22516 6.305271 -1.95366 8.033772 

119 2.814627 -0.5604 6.189657 -2.34704 7.976289 

120 2.825455 -0.54958 6.20049 -2.33621 7.987126 

121 2.755365 -0.61967 6.1304 -2.40631 7.917035 

122 2.838455 -0.53658 6.21349 -2.32322 8.000125 

123 3.160746 -0.21429 6.53578 -2.00092 8.322416 

124 3.155243 -0.22717 6.537659 -2.01772 8.328201 

125 3.211529 -0.17089 6.593945 -1.96143 8.384488 

126 3.246652 -0.13576 6.629068 -1.92631 8.419611 

127 3.321836 -0.06058 6.704252 -1.85112 8.494795 

128 3.459578 0.077162 6.841994 -1.71338 8.632537 

129 3.511593 0.128673 6.894513 -1.66214 8.685323 

130 3.579767 0.196847 6.962687 -1.59396 8.753497 

131 3.642407 0.259487 7.025327 -1.53132 8.816137 

132 3.715523 0.332603 7.098444 -1.45821 8.889253 

133 3.805001 0.422081 7.187921 -1.36873 8.978731 

134 3.872058 0.489103 7.255013 -1.30172 9.045841 

135 3.943341 0.560387 7.326296 -1.23044 9.117124 

136 4.013177 0.630222 7.396132 -1.16061 9.18696 
Table 9 - Predictions from ARIMA(1,0,0)(1,0,0)[5] with drift - This table contains the detailed predictions plotted in Figure 33 

along with their 80 percent and 95 percent prediction intervals that were shown in the dark blue and light blue areas 

respectively. 
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Predicted vs Actual: 

 

Figure 34 - ARIMA(1,0,0)(1,0,0) with drift - Predicted vs Actual - 15 percent of the original data is withheld and tested against a 

model generated with the remaining 85 percent. All withheld values fall within the dark blue area indicating that the model 

predicts the actual values reasonably well. The x-axis shows the order of launch and the y-axis shows the logarithm of mission 

lifespan. The withheld data is shown in red and the forecast generated with the model is shown in blue. 80 percent of projected 

values fall within the dark blue shaded are and 95 percent of all projected values fall within the light blue shaded area. 

 

 

 



68 

 

Diagnostics: 

 

Figure 35 - Autocorrelation of ARIMA(1,0,0)(1,0,0)[5] Residuals – Unlike the ACF plot in Figure 20, this plot lacks significant 

autocorrelation and lag 5 which indicates better model quality. This also indicates seasonality since the model incorporates a 5-

period seasonal term. 
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ARIMA(1,0,0)(1,0,0)[5]   

Predicted Actual Error 

Squared 

Error 

1.366264 -0.49989 1.866153 3.482528 

1.42482 2.44369 1.01887 1.038097 

2.065741 3.799628 1.733887 3.006363 

1.960117 1.683646 0.276471 0.076436 

1.922775 4.227464 2.304689 5.311592 

1.694314 0.369321 1.324993 1.755608 

1.764574 2.330355 0.565782 0.320109 

1.985549 3.319869 1.33432 1.78041 

2.013319 -0.29803 2.311353 5.342351 

2.05876 4.315931 2.257171 5.094821 

2.054739 2.188834 0.134095 0.017981 

2.128027 0.647592 1.480435 2.191689 

2.240321 2.441586 0.201265 0.040508 

2.302613 1.655872 0.64674 0.418273 

2.369478 -0.3545 2.723981 7.420075 

2.423543 -0.12559 2.549137 6.498099 

2.497615 3.600527 1.102912 1.216415 

Mean Squared Error  2.647727 
Table 10 - ARIMA(1,0,0)(1,0,0)[5] Mean Square Error - Each prediction generated by the model in Figure 29 is compared to the 

actual value. Each error is then squared, and the arithmetic mean of each of the squared errors is computed. The result shows 

an average squared error of 2.647727. The result indicates that the addition of a seasonal term significantly improves forecast 

accuracy.  
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Figure 36 - QQ Plot for ARIMA(1,0,0)(1,0,0)[5] – Compare to Figure 21. The QQ Plot for the seasonal version of the ARIMA(1,0,0) 

model is noticeably straighter which indicates more normally distributed residuals and better model quality. 
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Figure 37 - Histogram of ARIMA(1,0,0)(1,0,0)[5] Residuals – Like the non-seasonal counterpart of this mode, the histogram of 

the residuals displays a significant skew in the negative bins, peaking at approximately -2.  This shows that while this model is 

better than its non-seasonal version it is still missing significant information.  
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ARIMA(2,0,0)(1,0,0)[5] 

The seasonal version of ARIMA(2,0,0) has slightly worse AIC and BIC scores than the seasonal 

version of ARIMA(1,0,0). However, it does have the worst Mean Square Error.  

Forecast: 

 

Figure 38 - Forecasts from ARIMA(2,0,0)(1,0,0)[5] with drift -  This graph shows predictions for lifespan values of future launches. 

The predictions show a clear increasing trend. The x-axis shows the order of launch and the y-axis shows the logarithm of 

mission lifespan. The dark blue shaded area shows where 80 percent of possible future values lie. The light blue shaded area 

shows where 95 percent of possible values lie. A linear regression is fitted and an ARIMA model is applied to the residuals. The 

non-seasonal portion is Current Value = (Lag 1 Value) * 0.0062 + (Lag 2 Value) * 0.0316. The seasonal portion is 

�6778)9 :�;68< = (=�><) * 0.2598, the subscript signifying the seasonal period. The 1-step ahead forecast is: Forecast = (Non – 

Seasonal Forecast) * (Seasonal Forecast) + (Ordinality * 0.0724) – 5.8315. 
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23 point forecast for ARIMA(2,0,0)(1,0,0)[5] with drift 

 Point Forecast Lo.80 Hi.80 Lo.95 Hi.95 

114 2.455046829 -0.823584274 5.733678 -2.559186739 7.46928 

115 2.422817015 -0.855877894 5.701512 -2.591514137 7.437148 

116 1.902292317 -1.378042199 5.182627 -3.114546398 6.919131 

117 2.018782666 -1.261552105 5.299117 -2.998056438 7.035622 

118 3.038772039 -0.241564376 6.319108 -1.97806958 8.055614 

119 2.794899163 -0.594227678 6.184026 -2.388323055 7.978121 

120 2.840085645 -0.549045527 6.229217 -2.343143196 8.023314 

121 2.758472851 -0.630765416 6.147711 -2.424919778 7.941865 

122 2.842343758 -0.546894526 6.231582 -2.341048897 8.025736 

123 3.160933371 -0.228305021 6.550172 -2.022459449 8.344326 

124 3.151188225 -0.245266584 6.547643 -2.043241153 8.345618 

125 3.216536914 -0.179918187 6.612992 -1.97789291 8.410967 

126 3.248944831 -0.147517483 6.645407 -1.945496024 8.443386 

127 3.324343218 -0.072119097 6.720806 -1.870097638 8.518784 

128 3.460718407 0.064256086 6.857181 -1.73372246 8.655159 

129 3.511796587 0.114847788 6.908745 -1.683388282 8.706981 

130 3.582383147 0.185434329 6.979332 -1.612801752 8.777568 

131 3.644412132 0.247462828 7.041361 -1.550773511 8.839598 

132 3.717609471 0.320660166 7.114559 -1.477576173 8.912795 

133 3.806647773 0.409698468 7.203597 -1.388537871 9.001833 

134 3.873527044 0.47654491 7.270509 -1.321708808 9.068763 

135 3.945474334 0.548492198 7.342456 -1.24976152 9.14071 

136 4.015198479 0.618216311 7.412181 -1.180037425 9.210434 
Table 11 - Predictions from ARIIMA(2,0,0)(1,0,0)[5] with drift - This table contains the detailed predictions plotted in Figure 38 

along with their 80 percent and 95 percent prediction intervals that were shown in the dark blue and light blue areas 

respectively. 
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Predicted vs Actual: 

 

Figure 39 - ARIMA(2,0,0)(1,0,0)[5] - Predicted vs Actual - 15 percent of the original data is withheld and tested against a model 

generated with the remaining 85 percent. All withheld values fall within the dark blue area indicating that the model predicts 

the actual values reasonably well. The x-axis shows the order of launch and the y-axis shows the logarithm of mission lifespan. 

The withheld data is shown in red and the forecast generated with the model is shown in blue. 80 percent of projected values fall 

within the dark blue shaded are and 95 percent of all projected values fall within the light blue shaded area. 
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Diagnostics: 

 

 

Figure 40 - Autocorrelation of ARIIMA(2,0,0)(1,0,0)[5] residuals – The ACF plot shows a lack of autocorrelation among the 

residuals, which was also seen in Figure 35. There is also no significant correlation at lag 5 which indicates that this model 

performs better than its non-seasonal version.  
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ARIMA(2,0,0)(1,0,0)[5]   

Predicted Actual Error 

Squared 

Error 

1.451732 -0.49989 1.951622 3.808829 

1.489324 2.44369 0.954366 0.910815 

2.076553 3.799628 1.723075 2.968987 

1.969291 1.683646 0.285645 0.081593 

1.930222 4.227464 2.297241 5.277318 

1.725275 0.369321 1.355954 1.83861 

1.7902 2.330355 0.540156 0.291768 

1.996771 3.319869 1.323099 1.75059 

2.024505 -0.29803 2.322539 5.394189 

2.069806 4.315931 2.246125 5.045076 

2.072391 2.188834 0.116443 0.013559 

2.144472 0.647592 1.49688 2.240649 

2.253028 2.441586 0.188558 0.035554 

2.315532 1.655872 0.659659 0.435151 

2.382559 -0.3545 2.737063 7.491512 

2.438587 -0.12559 2.564181 6.575023 

2.51251 3.600527 1.088017 1.18378 

Mean Squared Error  2.667236 
Table 12 - ARIMA(2,0,0)(1,0,0) Mean Square Error - Each prediction generated by the model in Figure 29 is compared to the 

actual value. Each error is then squared, and the arithmetic mean of each of the squared errors is computed. The result shows 

an average squared error of 2.667236. The result indicates that the addition of a seasonal term significantly improves forecast 

accuracy.  
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Figure 41 - QQ Plot for  ARIMA(2,0,0)(1,0,0)[5] – This QQ Plot is not noticeably different from Figure 36 but is significantly 

straighter than those of non-seasonal models which indicates better model quality. 
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Figure 42 - Histogram of Residuals ARIMA(2,0,0)(1,0,0)[5] – The histogram of residuals displays significant skewing at -2 as with 

Figure 37. This skewing indicates that significant information is being missed in the model.  
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ARIMA (1,0,1)(1,0,0): 

The seasonal version of ARIMA(1,0,1) has the best Mean Square Error of any model, seasonal or 

non-seasonal. This model has the worst AIC and BIC of any of the seasonal models, making it 

the least parsimonious.  

Forecast: 

 

Figure 43 - Forecasts from ARIMA(1,0,1)(1,0,0)[5] with drift - This graph shows predictions for lifespan values of future launches. 

The predictions show a clear increasing trend. The x-axis shows the order of launch and the y-axis shows the logarithm of 

mission lifespan. The dark blue shaded area shows where 80 percent of possible future values lie. The light blue shaded area 

shows where 95 percent of possible values lie.A linear regression is fitted and an ARIMA model is applied to the residuals. The 

non-seasonal portion is Current Value = (Lag 1 Value) * - 0.6521 + (Lag 1 Residual) * (0.6523). The seasonal portion is 

�6778)9 :�;68< = (=�><) *  -0.2604, the subscript signifying the seasonal period. The 1-step ahead forecast is: Forecast = (Non 

– Seasonal Forecast) * (Seasonal Forecast) + (Ordinality * 0.0724) – 5.8276. 
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23 point forecast from ARIMA(1,0,1)(1,0,0)[5] with drift 

 Point Forecast Lo.80 Hi.80 Lo.95 Hi.95 

114 2.522765 -0.75758 5.803107 -2.49409 7.539615 

115 2.37113 -0.90921 5.651472 -2.64572 7.38798 

116 1.901644 -1.3787 5.181987 -3.11521 6.918495 

117 2.014519 -1.26582 5.294861 -3.00233 7.03137 

118 3.038336 -0.24201 6.318678 -1.97851 8.055187 

119 2.811159 -0.57857 6.200887 -2.37298 7.9953 

120 2.825285 -0.56444 6.215012 -2.35886 8.009426 

121 2.756539 -0.63319 6.146266 -2.4276 7.94068 

122 2.839491 -0.55024 6.229218 -2.34465 8.023631 

123 3.159561 -0.23017 6.549288 -2.02458 8.343701 

124 3.15396 -0.24305 6.550974 -2.04132 8.349244 

125 3.211163 -0.18585 6.608177 -1.98412 8.406447 

126 3.246804 -0.15021 6.643817 -1.94848 8.442088 

127 3.321931 -0.07508 6.718944 -1.87335 8.517215 

128 3.458799 0.061785 6.855812 -1.73649 8.654083 

129 3.510873 0.113366 6.90838 -1.68517 8.706911 

130 3.5793 0.181793 6.976807 -1.61674 8.775339 

131 3.642112 0.244606 7.039619 -1.55393 8.838151 

132 3.715206 0.317699 7.112713 -1.48083 8.911244 

133 3.804374 0.406867 7.201881 -1.39166 9.000412 

134 3.871465 0.473925 7.269005 -1.32462 9.067555 

135 3.942814 0.545274 7.340354 -1.25328 9.138904 

136 4.012701 0.615161 7.410242 -1.18339 9.208791 
Table 13 - Predictions from ARIMA(1,0,1)(1,0,0)[5] with drift - This table contains the detailed predictions plotted in Figure 43 

along with their 80 percent and 95 percent prediction intervals that were shown in the dark blue and light blue areas 

respectively. 
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Predicted vs Actual: 

 

Figure 44 - ARIMA(1,0,1)(1,0,0) with drift - Predicted vs Actual - 15 percent of the data is withheld and a model is generated with 

the remaining 85 percent. The withheld data is plotted in red and the predictions are plotted in blue. The dark blue area 

represents where 80 percent of all projected values lie and the light blue area represents where 95 percent of all projected 

values lie.  
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Diagnostics: 

 

Figure 45 - Autocorrelation of ARIMA(1,0,1)(1,0,0)[5] Residuals – Like every other autocorrelation plot for seasonal models, this 

lacks a significant correlation at lag 5 
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ARIMA(1,0,1)(1,0,0)[5]   

Predicted Actual Error 

Squared 

Error 

1.332928 -0.49989 1.832817 3.35922 

1.426359 2.44369 1.017331 1.034963 

2.050443 3.799628 1.749185 3.059647 

1.951961 1.683646 0.268315 0.071993 

1.913999 4.227464 2.313465 5.35212 

1.682948 0.369321 1.313627 1.725617 

1.761461 2.330355 0.568894 0.32364 

1.976157 3.319869 1.343712 1.805562 

2.006245 -0.29803 2.304279 5.309701 

2.052029 4.315931 2.263902 5.125252 

2.048474 2.188834 0.140361 0.019701 

2.123862 0.647592 1.47627 2.179373 

2.233903 2.441586 0.207683 0.043132 

2.296935 1.655872 0.641062 0.410961 

2.363954 -0.3545 2.718457 7.39001 

2.418409 -0.12559 2.544003 6.471954 

2.492973 3.600527 1.107553 1.226675 

Mean Squared Error  2.641737 
Table 14 - ARIMA(1,0,1)(1,0,0)[5] Mean Square Error - Each prediction generated by the model in Figure 44 is compared to the 

actual value. Each error is then squared, and the arithmetic mean of each of the squared errors is computed. The result shows 

an average squared error of 2.641737. 
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Figure 46 - QQ Plot for ARIMA(1,0,1)(1,0,0)[5] – This QQ Plot appears largely identical to the QQ Plots generated for 

ARIMA(1,0,0)(1,0,0)[5] and ARIMA(2,0,0)(1,0,0)[5]. 
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Figure 47 - Histogram of Residuals for ARIMA(1,0,1)(1,0,0)[5] – This histogram appears largely identical to the plot generated in 

Figure 42.  
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Abstract 

 

Understanding how technology changes over time is important for industry, science, and 

government policy. Empirical examination of the capability of technologies across various 

domains reveals that they often progress at an exponential rate. In addition, mathematical models 

of technological development have proven successful in deepening our understanding.  One area 

that has not been shown to demonstrate exponential trends, until recently, has been space travel.  

This paper will present plots illustrating trends in the mean lifespan of satellites whose 

lifespans ended in a given year. Our study identifies both Wright’s law and Moore’s law 

regressions. For the Moore’s law regression, we found a doubling time of approximately 15 years. 

For Wright’s law we can see an approximate doubling of lifespan with every doubling of 

accumulated launches. We conclude by presenting a conundrum generated by the use of Moore’s 

law that is the subject of ongoing research. 

 

Introduction 

 

It has been observed that the rates of increase of technological capability in a variety of 

domains often follow exponential trends. For such domains there is a fairly predictable time 
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constant at which the capability of the technology doubles although the time constants themselves 

vary quite a bit across domains (Magee et al. 2014). These trends are exponential and often 

described as conforming to “Moore’s law,” which originally described how the number of 

components that can be built into an integrated circuit doubles approximately every 18 months 

(Moore 1965).  

But what causes these exponential patterns? Some noteworthy research done in this area 

suggests that this exponential progress is due to innovators applying lessons and principles from 

one domain to another domain (Basnet and Magee 2016; Arthur and Polak 2006; Axtell et al. 

2013). The newly generated ideas will then be available for use in another domain and so on. The 

complexity of the technological system itself as well as functional requirements of the system 

influence how quickly the technology can be improved and leads to differing rates of progress 

(McNerny et al. 2011; Basnet and Magee 2016; Basnet and Magee 2017).   

Another important description of technological progress was discovered by the engineer 

Theodore Paul Wright. This principle, known as “Wright’s law,” describes how as the volume 

produced of a manufactured good increases, the per-unit cost of the good falls at a predictable rate 

(Wright 1936). While Wright’s law has important implications for operations management and 

business strategy it has also proven useful for technology foresight. An influential report indicates 

an equivalence between Wright’s law and Moore’s law when volume produced increases 

exponentially over time (Sahal 1979). A study in 2013 further compared Moore’s law and Wright’s 

law (Nagy et al. 2013).  

While such patterns have been observed for fields as diverse as genome sequencing, LEDs, 

and 3D printing, they have not been observed for space travel. In fact, it is widely held that progress 

in space travel “has stalled” (Hicks 2015). A primary focus of our research program has been to 
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determine if we are in a “space winter” or if there are in fact exponential trends to be found 

(Berleant et al. 2017).  

The question of how to measure progress is not an easy one to answer. In fact, the wrong choice 

of metric may obscure the fact that space travel is improving (Roberts 2011). Cost may show an 

improvement trend, but collecting and analyzing the required data has proven non-trivial. As an 

alternative approach, evidence has been found suggesting an exponential trend with regards to 

spacecraft lifespan (Berleant et al. 2019). A key question (Nagy et al. 2013) has been whether this 

trend best fits a Moore’s law-like pattern (improvement with respect to time) or a Wright’s law-

like pattern (improvement with respect to accumulated production volume).  

One reason given for the apparent lackluster progress of space technology is the lack of 

commercialization. Matt Ridley in his book The Rational Optimist and others make the case that 

financial incentives play an important role in the development of any technology. From British 

capital markets during the industrial revolution to venture capitalists on Sandhill Road in Silicon 

Valley, history gives us good reason to believe that the expectation of profit is a strong driver of 

technological progress. Satellite technology represents the most commercialized aspect of space 

technology today. For this reason, we hypothesized that a data analysis of satellite technology may 

provide indications of exponential trending.  

 

Analysis of Satellite Data 

 

Figure 1 shows the mean lifespan of all satellites whose lifespans ended in a given year. A 

more detailed discussion of the data appears in Berleant et al. (2019), while here we emphasize 

those aspects most salient to (1) the focus of the present article, and (2) those elements of Figure 

1 that represent an advance on the analogous figure in Berleant et al. (2019). The Moore’s law 

regression is provided in equation (1) and the Wright’s law regression is provided in equation (8). 
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The top curve, Annual Count, shows the number of satellites whose lifespans ended (not launched) 

in the year given on the x-axis.   

Both the Wright’s law and Moore’s law regressions show a general upward trajectory. Wright’s 

law displays some irregular variations when plotted with respect to time, which is to be expected 

since Wright’s law defines volume produced as the independent variable and not the x-axis 

variable, passage of time. If the x-axis showed volume instead, the regression curve would be free 

of such variations (but the Moore regression would then have them).  For the Moore’s law 

regression we have a doubling time of approximately 15 years. For Wright’s law we can see an 

approximate doubling of lifespan with every doubling of accumulated launches. 

Some of the earliest years were discarded from both regressions due to their inclusion leading 

to a poor fit to the regression curves. While this may seem contrary to the point of doing a 

regression it is useful for maintaining the ability of the model to predict, when early data is outlying 

or seemingly anomalous, and the primary interest is in extrapolating to the future. In this case, 

early launches were not representative of satellite technology as a whole and later data is more 

relevant than earlier data for the purpose of making predictions.  
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Figure 48. Annual count (top curve) and average age of satellites ending their lifespans each year. 

An important question for measuring spacecraft lifespans is the correct unit of time to use. 

Lifespans were measured in days, months, and years (and then normalized so they could be directly 

compared) to examine how much using years and months distorted the graphs compared to more 

precise measurements in days.  From Figure 1 it appears that years is not as good as months or 

days which are nearly identical. This occurs because measuring lifespan using years consists of 

subtracting the launch year from the end year. For example, suppose that a satellite was launched 

in December of 2016 and stopped functioning in March of 2017. Using years to measure this 

satellite’s lifespan would give us a value of one year when in fact it had a lifespan of only three 

months.  

End year was chosen rather than launch year because recently launched satellites would often 

still be in orbit, with only the shortest lived of them therefore contributing lifespan data for recent 

years, skewing the results and preventing a meaningful analysis.  
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Figure 2 illustrates an example of this phenomenon with lifespan data for spacecraft sent on 

deep space missions. When measured with respect to launch year we see that average lifespan 

increases until approximately 2000 and then decreases afterward, as significant numbers of craft 

launched in post-2000 years are still operational. This is because only short-lived spacecraft from 

this period are measured because these shorter-lived are the ones whose lifespans are available, 

leading to the noticeable decline in average lifespan due to the biased data, beginning in 

approximately 2000 and continuing to the present. 

 

 

Figure 49. Lifespan vs. launch year for deep space craft. 

 

 

The Moore’s law conundrums 

When comparing the RMS error of the Moore and Wright regressions it initially appears that 

Wright’s law has a slightly better fit (Berleant et al. 2019). However, Wright’s law may be more 

useful for another reason as well which isn’t so obvious. While choosing the end year rather than 

start year made the analysis more feasible by removing the bias problem mentioned earlier, it also 

introduced another problem. If the observed doubling in satellite lifespan continues to hold then 

we must eventually reach a point where lifespan is increasing faster than the passage of time. This 

would require satellites dying in later years to be launched before satellites dying in earlier years, 

a seeming contradiction. Eventually we would reach a year for which satellite lifespans ending in 

that year would be predicted to be longer than the entire history of satellite technology. Since this 
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scenario clearly makes no sense it remains an open problem of how it should be handled. Some 

progress is explained next.  

If we still wish to associate lifespans with end year, when will Moore’s law lose its predictive 

power? For this analysis let Moore’s law be defined as: 

� =  � ∗ 2(A	�B<C)
D  (1) 

 

where a and b are function parameters and x represents time and is used to model the current end 

year. Parameters a and b are set to 0.549 and 12.17 respectively since this minimizes RMS error 

(Berleant et al. 2019). The input value x represents end year and the value y is expected lifespan. 

The first year against which lifespans can be measured is 1957 since that is the year the first 

satellite was launched, this value is subtracted from x and only positive values are considered. For 

this reason, the historical time span y of satellite technology at year x is: 

 

 � = ( − 1957 (2) 

 

In order to determine when Moore’s law breaks down, we need to determine when the rate that 

lifespan increases with respect to time equals (immediately following which it will exceed) the 

rate that time increases with respect to time. In order to do this, we can solve (1) and (2) 

simultaneously, take the first order derivative and determine the year the two expressions are equal 

to one another.  

 0.549 ∗ 2(A	�B<C)
�
.�C = ( − 1957 (3) 

Moving both expressions to one side: 

 0.549 ∗ 2(A	�B<C)
�
.�C − ( + 1957 = 0.  (4) 

 

Taking the derivative of the expression: 

 J
J( 0.549 ∗ 2(A	�B<C)

�
.�C − J
J( ( + J

J( 1957 = 0 

 

(5) 
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 0.549 K 1
12.17 ∗ ln(2) ∗ 2(A	�B<C)

�
.�C N − 1 = 0. 
 

(6) 

If we simplify and solve for x we obtain: 

 

( = 12.17 ∗ ;�>
 O 12.17
0.549 ∗ ln(2)P

+ 1957 = 2017.84. 
 (7) 

 

Thus 2017 was the year that lifespans of satellites dying in a given year are predicted to begin 

increasing faster than the passage of time, a conundrum. What about the point where satellite 

lifespan is predicted to be greater than the length of the history of satellite technology? If we graph 

both equations (1) and (2), we can visually observe the points at which they intersect and thus the 

year that this predicted event might occur. Doing this shows that this point is reached in the year 

2046 when average satellite lifespan is predicted to be approximately 89 years, and thus launched 

prior to 1957, when Sputnik became the first artificial satellite (Figure 3). 

So, returning to the earlier point on which law is better for predicting future satellite lifespans 

based on year of death, Wright’s law seems superior simply because (1) Moore’s law based on 

lifespan as a function of end year began failing in principle in 2017 and will reach an even greater 

level of impossibility in 2046; and (2) launch year cannot work for recent years for which longer-

lived craft are still operational. 

 

Discussion 

 

The Moore’s law regression was described earlier in equation (1). The simple regression 

equation for Wright’s law is as follows: 

 

y = 0.0002446*ordinality1.04 
 

(8) 
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Where y is the average lifespan for satellites ending in that year and ordinality is determined by 

the number of satellites ending in that year and previous years. Our preliminary research suggests 

that the conundrum associated with Moore’s law that was described previously may also apply to 

the Wright’s law regression, although at a much later year, in which case a Wright’s law model 

would not form a principled alternative to a Moore’s law model in the case of lifespan as a function 

of end year. This however remains to be fully investigated.  

 
Conclusions 

 

It may appear that satellite technology has been progressing in an approximately exponential 

way, perhaps a little less vigorously than a Moore’s law 

 

 

 
  

Figure 50. Satellite lifespan vs. passage of time, showing a Moore's law crossover 

model, but a little more vigorously than a Wright’s law model (Figure 1). However, we can 

confidently predict based on the mathematical deduction presented earlier that the data in coming 

years must soon break decisively from the Moore’s law trend line of Figure 1 and show that 

lifespan will soon not fit an exponential function of satellite year of death. Importantly however, 
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we have certainly not ruled out the possibility of an exponential trend for some characteristic other 

than lifespan as a function of year of satellite death.  

We plan to empirically verify the analysis we have introduced here against future satellites. 

Future research is needed to circumvent this mathematical problem and accurately identifying the 

degree to which space travel is an accelerating technology.  

Finally, we close by pointing out that key results presented here should also apply to lifespans 

of other engineered artifacts besides satellites 
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Appendix C: Submission to The Space Review 

The following article was published in the space review on December 2, 

2019 

Trends in technology development in the  

US and USSR during the Space Race 

 
By Michael Howell, Venkat Kodali, Vladik Kreinovich, Hyacinthe Aboudja,  

Venkata Jaipal Reddy Batthula, Richard Segall, and Daniel Berleant* 

 

The “space race” ushered in the era of space exploration with an extraordinary 

government-led rivalry between the United States and the Soviet Union, and their competing 

political ideologies. This rivalry is rightly regarded as a primary impetus to the early development 

of space exploration technology.  Among the populace, leaving aside politics and even more in 

the USSR than the US, the inherent appeal of exploring this vast and mysterious “outer space” 

generated excitement.  

The variety of technologies contributing to the space race is immense, but we argue that 

a useful way to summarize and quantify the data is through the popularly termed Moore’s law, 

or the fitting of an exponential curve to a technology to show its rate of advancement over time. 

There is a large body of work involving modeling improvement in technological capabilities as 

exponentially increasing trends, as any search using such queries as “Moore’s law” readily 

reveals. One focus of our research group has been to see if improvements in spacecraft sent on 

deep space missions can be modeled this way. We have achieved some intriguing results. For 

example, tuning various parameters of deep space exploration missions to form a composite 

score for each mission yielded an exponential trajectory for advances in space travel (Hall et al. 

2017 [1]). However, a caution in such work is that multi-parameter tuning of the data to maximize 
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goodness of fit to a curve comes with the risk of overfitting. Focusing instead on a single 

parameter, spacecraft lifespan, reduces this problem and we investigated it in Berleant et al. 

(2019 [2]). Yet, lifespan as a metric for advancement of a technology leads to intrinsic problems 

with proper interpretation of relatively recent data (Howell et al. 2019 [3]). In this article, 

however, we use lifespan on non-recent historical data to gain insight into the space race. 

We define spacecraft lifespan as the length of time between launch and the end of a 

craft’s (or all of its major components’ including orbiters, rovers, landers, etc.) scientific 

observations. It turns out that spacecraft lifespan has been showing a marked trend of 

improvement starting from the earliest days of deep space exploration, and thus appears to be 

a useful metric for the rate of technology improvement. However, technologies do not advance 

of their own accord. Scientific, economic, and cultural factors are inherent contributors to the 

overall picture.  

Russian Cultural Precursors 

Cultural factors in particular seem to illuminate Russian interest in space exploration and 

hence the Soviet head start with their famous launch of the first satellite, Sputnik 1.  Obviously, 

economic factors in their space exploration efforts also were important. Despite the brutalities 

of the Soviet regime, the Soviet Union (USSR) was one of the most rapidly developing economies 

of the 20th century (Davies 1998 [4]). While this rapid pace of economic growth ended with 

stagnation in the Brezhnev regime beginning in the 1970s (Service 2009 [5]), the Soviet Union 

still held the 2nd highest nominal GDP in the world [6]. However cultural factors, while often 

overlooked, were critical. 
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There was considerable early interest in space exploration even prior to the formal 

beginnings of the Soviet space program in a movement that has come to be known as cosmism. 

Cosmism was a mixture of the occult, religious philosophy, and serious science driven by a 

utopian vision of what space travel could ultimately mean for humanity. One of the most 

influential cosmists was Russian philosopher Nikolai Fedorov (or Fyodorov, 1829-1903) whose 

ideas were published posthumously in The Philosophy of the Common Task (Fedorov [7]). A 

devout Russian Orthodox Christian, he advocated strongly for the use of science to bring about 

immortality, resurrection of the dead, human enhancement, and colonization of the galaxy 

(Tandy & Perry [8]). Many of his ideas for achieving these goals bear a striking resemblance in 

motivation to today’s interests in cloning, genetic engineering, and nanotechnology. Fedorov had 

a profound impact on many Russian intellectuals including Tolstoy and Dostoevsky although he 

and Tolstoy would eventually become estranged due to religious differences (Zhilyaev et al. [9]; 

Koutaissoff 1984 [10]).  

One of the most important cosmist thinkers was rocket scientist Konstantin Tsiolkovsky. 

He is famously quoted as saying that Earth is the cradle of humanity, but one cannot live in a 

cradle forever. Despite little formal education, Tsiolkovsky was responsible for much initial 

theoretical work in space travel which later laid the foundations for the Soviet space program 

(Fedorov [7]). In 1897 he carried out early experimental work on aerodynamics in his apartment. 

In 1929 he developed the concept of the multistage rocket. His other designs included airlocks, 

space stations, and rocket fuel. His mathematical model of rocket propulsion, derived from 

earlier work on motion of bodies whose mass varies over time (since using fuel changes vehicle 

mass), is known as the Tsiolkovsky Rocket Equation (NASA [11]; [12]). Tsiolkovsky had met 
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Fedorov at the age of 16 and was deeply impressed (Zhilyaev et al. [9]). Like Fedorov, Tsiolkovsky 

had a philosophical bent and believed his work was laying the foundation for an immortal galactic 

civilization [13]. 

Cosmism later found its way into the “Proletkult” movement in Soviet Russia. The goal of 

Proletkult was to establish a new kind of culture for the Russian working class (Parkinson 2019 

[14]). Proletkult was full of aesthetic appeals made to labor, industry, and — space travel (Seifrid 

2009 [15]). It remained independent from the Soviet state until 1920 when it was officially 

adopted by the Ministry of Education. There was a tremendous popular interest in space travel 

with the Russian media publishing over 250 articles and 30 nonfiction books on the subject 

between 1921 and 1932 (Parkinson 2019 [14]). 1924 saw the release of the first Russian science 

fiction film, Aelita: Queen of Mars, which depicts a young man traveling to Mars to begin a 

proletarian revolution (IMDb [16]). The burst of public enthusiasm for space travel tapered off in 

the 1930s in conjunction with governmental actions that discouraged it including the end of the 

private publishing industry and promotion of the related but much more practical growing field 

of aviation, and yet enthusiasts coming of age in the 1920s later became key contributors to the 

launch of the Soviet space program in the 1950s (Siddiqi 2015 [17]). The new ability to really 

explore space for the first time found ready support among the people, with songs like “14 

Minutes to Start” (e.g. [18]) which achieved greatest popularity in 1962 [19].  

As a result of the early success of the Soviet space effort, in particular the launch of the 

first artificial satellite, Sputnik 1, an interesting phenomenon emerged in the form of competition 

between the United States and the Soviet Union during a period of rivalry in space exploration 

termed the “space race.” We investigated this from a Moore’s law (exponential advancement) 
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standpoint below. Our data points were restricted to deep space missions with an extraterrestrial 

body as the destination. Thus, Earth satellites are not included in our data analysis. Therefore we 

begin with the launch of Luna 1 by the Soviet Union in 1959 and end with Phobos 2, again 

launched by the Soviet Union, in 1989. Certainly many missions were launched after this date but 

Phobos 2 was the Soviet Union’s last deep space flight so at that point the space race was 

effectively over.  

Analysis and results 

Lifespans of spacecraft in years were taken from [20] and their logs plotted vs. the date 

of the end of craft lifespan.  With logarithmic scaling of the y-axis, an exponential trendline is 

linear in appearance and thus a linear regression can be fitted for spacecraft lifespan. The x-axis 

shows date of end of lifespan rather than date of launch because launch date introduces the 

problem of handling missions that are still in operation, for which the lifespans are therefore not 

yet known, thus biasing lifespan analyses (Howell et al. 2019 [3]). For example for the space race 

period, Voyager 1 and 2 are both still operating. Figure 1 shows the resulting regression curves, 

one for the United States and one for the Soviet Union.   
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Figure 51. Plots of log2 of lifespan in years (y-axis) vs. time point of lifespan end (x-axis) for the United States (blue) and the 

Soviet Union (red). Regression equations are log2(Lifespan) = -6.9130 + 0.3873*(Year-1959) for the US, and log2(Lifespan) = -

6.1794 + 0.2704*(Year-1959) for the USSR.    

We can see from the lower left portion of Figure 1 that the USSR possessed an early lead 

over the US in spacecraft lifespans. Despite this head start, however, the United States 

experienced a faster rate of progress with spacecraft lifespans increasing by an average 30.8% 

each year [21],  for a doubling time of 2.6 years [22], compared to the USSR which showed a 

lower 20.6% yearly increase (a doubling time of 3.7 years).  

Viewing changes in lifespan over time as a measure of spacecraft technological progress, 

this quantitatively illustrates the higher rate of improvement based on which the US is generally 

viewed as having in some sense “won” the space race. Viewing space exploration as a grand 

activity of the human race, the small steps and giant leaps of both nations back then, and a 
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growing number of nations today, were sparked first by Russian cosmism and then by the space 

race rivalry which helped form the technological foundations of the space exploration of today 

and tomorrow.  
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