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Abstract 

 
A cumulative distribution function (CDF) states the 

probability that a sample of a random variable will be no 
greater than a value x, where x is a real value. Closed 
form expressions for important CDFs have parameters, 
such as mean and variance. If these parameters are not 
point values but rather intervals, sharp or fuzzy, then a 
single CDF is not specified. Instead, a family of CDFs is 
specified. Sharp intervals lead to sharp boundaries 
(“envelopes”) around the family, while fuzzy intervals 
lead to fuzzy boundaries. Algorithms exist [12] that 
compute the family of CDFs possible for some function 
g(v) where v is a vector of distributions or bounded 
families of distribution. We investigate the bounds on 
families of CDFs implied by interval values for their 
parameters. These bounds can then be used as inputs to 
algorithms that manipulate distributions and bounded 
spaces defining families of distributions (sometimes 
called probability boxes or p-boxes). For example, 
problems defining inputs this way may be found in 
[10,12]. In this paper, we present the bounds for the 
families of a few common CDFs when parameters to 
those CDFs are intervals.  
 
1. Introduction 

Uncertainties are ubiquitous in realistic models. 
Handling such uncertainty is an important issue in reliable 
computing. A variety of methods have been developed to 
deal with this problem [11, 12]. Compared with the 
traditional method, Monte Carlo, these methods are not 
subject to noise effects due to randomness that can affect 
the results obtained from Monte Carlo methods (Ferson 
1996 [6]). Such methods offer principled approaches to 
manipulating uncertain quantities in the presence of 2nd-
order uncertainties such as uncertainties in parameters of 
distributions. 

Accurate modeling all too often requires handling the 
situation that exact distributions are not known, though 
some information about them is known. To handle this 
situation, Smith used limited information about 

distributions to get bounds on the expected value of an 
arbitrary objective function (1995 [14]). The method is 
based on moments of distributions. One way to express 
that information is with interval-valued parameters to 
standard distributions [10]. Ferson presented some initial 
results, including examples of envelopes for families of 
normal distributions defined by interval-valued means 
and variances, uniform distributions, and Weibull 
distributions (2003 [7]). The need to formalize and 
generalize such results helps motivate the present work. 

In general, simulation can be adopted to estimate 
envelopes for distributions with interval parameters. But 
having CDF envelopes available in closed form can save 
considerable computation over approximating them when 
needed using MC simulation. Thus we seek to obtain the 
left and right envelopes around the family of CDFs for a 
random variable whose distribution is expressed in closed 
form with interval parameters.  

Then these envelopes can be used to compute 
envelopes around derived distributions using our 
Distribution Envelope Determination (DEnv) algorithm 
or another algorithm [1-5, 8, 12]). 
 
2. Deriving Envelopes Analytically 

In order to determine CDF envelopes by analyzing the 
effect of parameters to the underlying CDF, the core idea 
is to find the minimum and maximum boundaries, 
expressed in closed form, for CDFs of random variables 
when parameter values are specified to be within 
particular intervals. Then, the curve for the CDF implied 
by any numerically valued parameters that fall within 
their respective intervals, will be wholly between those 
boundaries. 

Denote a parameterized CDF with 
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 is a vector of one or more parameters. 
Assume that each iθ  is not necessarily specified to be a 
specific numerical value, but instead can be an interval 
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xH  is monotonic function about each iθ , the 

results are derived as follows. Let iθ  be the minimum 

value of ψ , and iθ  be the maximum value of ψ . If 
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If ),( θ
r

xH  is not monotonic, the solution is to 
partition the domain into regions within which it is 
monotonic. Different portions of El and Er may derive 
from different regions and have different functions. In the 
next section we discuss envelopes which may be derived 
without partitioning the domain, and in the subsequent 
section we discuss envelopes for which partitioning is 
necessary. 

 
3. Envelopes derivable without partitioning 

This section gives envelopes for a few common 
distributions for which the values of the parameters that 
lead to envelopes whose functions do not depend on the 
value of the distribution’s argument x. We first discuss 
how to get the envelopes for exponential distributions. 
Then we give the results for uniform and triangular 
distributions.  
 
3.1 The exponential distribution  

The density function of an exponential distribution is  

β

β
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1)(  if 0≥x , parameterized with 0>β . 

From the density function, we can get the cumulative 
probability function by integrating the density function. 
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if 0≥x . 

Next we will show how this parameter affects the 
probability at given value. Consider the parameterized 
version of F(x), which is ),( βxG .  

β
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, 0>β . It is clear that 

),( βxG  is a decreasing function of β .  
For fixed x, if β  increases, ),( βxG will decrease, so 

we get a bigger probability if we use a smaller value of 
β . Assume β  belongs to interval [a,b]. Then 
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xexE a
x

l , and 0,1)( ≥−=
−

xexE b
x

r . 

For any other β  in [a,b], the CDF ),( βxG  must lie 
between envelopes El(x) and Er(x). The following figure 
shows the case when a=1 and b=3. 
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Figure 1. Exponential envelopes El(x)=Exp(1) and 
Er(x)=Exp(3) are shown; ]3,1[∈β . 

Now consider another parameter, the location parameter. 
Since decreasing the location parameter would move the 
CDF to the left, and increasing it would move it to the 
right, the left envelope function would use the minimum 
value of the location parameter and the right envelope 
function would use its maximum value. Thus if both the 
location parameter and parameter β  were given as 
intervals, the left envelope would be derived from the low 
values of both parameters and the right envelope would 
be derived from their high values. 
 
3.2 Uniform distribution. 

If a random variable X follows the uniform 
distribution, 2 parameters may be used to describe it: Xmin 
and Xmax. Xmin is the minimum value and Xmax is the 
maximum value possible for samples of X. The 
relationship between these two parameters is 

maxmin XX <  and the density function is 

minmax
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From the density function, we can get the cumulative 
distribution function: 

minmax
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Define a parameterized version of F(x) as 
G(x, Xmin, Xmax). Since G decreases as Xmin and Xmax 
increase, the smaller the parameters the higher the 
cumulative probability. In general, if we know 2 intervals 
[a,b] [c,d] for Xmin and Xmax respectively, then 
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For any other values of the parameters in those 
intervals, the CDFs will lie between the envelope CDFs 
El and Er. The following figure depicts the situation when 
a=1, b=2, c=5, and d=6. 
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Figure 2. Envelopes based on parameters of the 
uniform distribution. 

 
3.3 Triangular distribution 
Three parameters describe triangular probability density 
functions. They are Xmin, Xmod, and Xmax. Xmin is the 
minimum value of X, Xmax is the maximum value of X, 
and Xmod is the mode value of X. The relationship between 
these values is 

maxmodmin XXX ≤≤  and maxmin XX < . 
Its density function is 
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From the density function, we can derivate its 

cumulative probability function. 

))((
)()(

minmodminmax

2
min

XXXX
XxxF

−−
−

= , modmin XxX ≤≤  

))((
)(

1)(
modmaxminmax

2
max

XXXX
xX

xF
−−

−
−= , maxmod XxX ≤<  

Based on these CDFs, we can conclude that the 
smaller the parameter, the higher the cumulative 
probability F. Let us describe the parameters with three 
intervals [a,b], [c,d], and [e,f] for Xmin, Xmod and Xmax 
respectively, where a<b<c<d<e<f. then )(xEl  and )(xEr  
can be written as follows. 
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The space between this pair of envelopes will contain 
all other CDFs generating from parameters within those 
intervals. The following figure demonstrates this situation 
for a=1, b=2, c=3, d=4, e=5, and f=6. 
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Figure 3. Envelopes around the CDFs of triangular 
density functions, derived from interval constraints on 
its parameters. 

 
 



 
4. Envelopes requiring partitioning to derive 

In this section, we present envelopes for the Cauchy, 
normal, and lognormal distributions. 

 
4.1 Cauchy distribution 

Let us use two parameters to describe the Cauchy 
distribution, a location parameter µ , and a scale 
parameter σ . Here R∈µ  and 0>σ .   

The density function of Cauchy distribution is  
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From the density function, we can get its cumulative 
probability function by integrating its density function. 
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Let 
σ
µ−

=
xy  and consider the resulting function 

yyG 1tan1
2
1)( −+=

π
. Let us consider the interval for 

each parameter in turn. 
 
Location parameter µ  

σ
µ

π
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+= − xxH 1tan1
2
1),,(  is a decreasing 

function of µ  since it is given that 0>σ . Hence the 
smaller the value of µ , the higher the value of H and 
hence the higher the cumulative probability for a given 
value of x. 
Scale parameter σ  

The effect on 
σ
µ−

=
xy  of changing σ  depends on 

the sign of µ−x . If 0>− µx , then y decreases as σ  
increases, so G(y) also decreases. So 

σ
µ

π
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2
1),,(  is a decreasing function of  

σ  for 0>− µx . If 0<− µx , then increasing σ  

increases y, so G(y) also increases. So 

σ
µ

π
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2
1),,(  is an increasing function 

of σ  for 0<− µx .  
Combining the two situations just noted, we have to 

use different formulas for different regions of an 
envelope, with the regions meeting at x = µ . Consider 
intervals [a,b] and [c,d] for µ  and σ  respectively. Then 
we get the following envelope functions. 
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For any other values of the parameters consistent with 
their intervals, the CDF must lie between the region 
enclosed by the two envelope CDFs. When a= –5, b=5, 
c=9 and d=25, the following figure shows the envelopes. 

 

-200 -150 -100 -50 0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

C
um

ul
at

iv
e 

Pr
ob

.

CDF Envelopes for Cauchy([-5,5],[9,25])

Cauchy(-5,9)

Cauchy(-5,25)

Cauchy(5,25)

Cauchy(5,9)

 
Figure 4. Envelopes around the Cauchy distribution 
implied by intervals for its two parameters. Each 
envelope function has two regions which meet at a 
non-differentiable point, x=a for El and x=b for Er. 

4.2 Normal distribution 
There are two parameters sufficient to describe the 

normal distribution, the location parameter µ  and the 
scale parameter σ . Possible values for these parameters 
are R∈µ  and 0>σ .   

The density function of the normal distribution is  
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From the density function, we characterize the 
cumulative function as follows. 
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where 
σ
µ−

=
xw . H(w) is an increasing function of w 

since e to any power is positive. So by considering the 
direction of change in w caused by changing µ  or σ , we 
can conclude F(x) changes in the same direction.  

For w, and so for H(w), the smaller µ  is the bigger w 
and H are. The smallerσ  (and therefore 2σ  since σ is 
positive) is, the bigger w and H are for µ>x , and the 
smaller w and H are for µ<x .   

In general, consider 2 intervals [a,b], [c,d] for µ  and 
2σ  respectively. )(xEl  and )(xEr  are  
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where ),( 2σµNormal  is the CDF of the normal 

distribution with mean µ  and variance 2σ .  
For any other values of the parameters in their 

intervals, the CDF must be within the region enclosed by 
the two envelope CDFs El and Er. The figure below 
shows the CDF envelopes for a=1, b=2, c=9 and d=25. 

 
4.3 Lognormal distribution 

We parameterize the lognormal distribution as in 
Siegrist (2002 [13]), one of several alternatives [9]. This 
parameterization has two parameters, µ  and σ . Here 

R∈µ  and 0>σ .  The density function of the lognormal 
distribution then is 
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Let xz ln= . Then z is normally distribution. Thus we 
can apply the results from the case of the normal 
distribution here. Consequently for z, the smaller the 
value of µ  the higher the cumulative probability, and the 
lowerσ  the higher the cumulative probability is if µ≥z  
and the lower the cumulative probability is if µ<z .  To 

derive results for the original argument x from these 
inequalities for z=ln x, the term ln x may be substituted 
for z and the inequalities solved for x.  
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Figure 5. Envelopes around the normal distribution 
implied by intervals for its location and scale 
parameters. Each envelope function has two regions 
which meet at a non-differentiable point, x=a for El 
and x=b for Er. 

Applying those steps yields the following formulation. 
The smaller µ  is, the higher the cumulative probability. 
The smallerσ  is, the higher the cumulative probability is 
if µex ≥  and lower the cumulative probability is if 

µex < .  The same rules apply to 2σ  as for σ  since 
0>σ . 

We can now specify intervals for µ  and 2σ , the 
endpoints of which can be used to state the equations of 
the envelopes El and Er. Let µ  and 2σ  be values in [a,b] 
and [c,d] respectively. Then 
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where ),( 2σµLN  is the CDF of the lognormal 
distribution with parameters µ  and  σ .  

As an example, let a=3, b=4, c=0.1, and d=0.3. Then 
the envelopes are shown in the following figure. 
 
5. Discussion: fuzzy interval parameters 
The results given may be generalized to the case of 
parameters described with fuzzy intervals. If one 
parameter is a fuzzy interval, then each cut set of that 
interval yields a pair of envelopes. A nested series of 



envelopes results. A vertical slice through the graph then 
yields a fuzzy interval for the cumulative probability at a 
given value on the horizontal axis. A horizontal slice 
through the graph yields a fuzzy interval for the value on 
the horizontal axis for which the cumulative probability is 
a particular value.  
 
6. Conclusion 

We analytically derive envelopes for a variety of 
standard distributions with interval-valued parameters. 
For some distributions the envelopes have a non-
differentiable point. For other distributions, we have not 
yet been able to derive envelopes analytically. Since there 
are important distributions which are among those we 
have not discussed, further work is needed in this 
direction. 
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Figure 6. Envelopes around the lognormal distribution 
implied by intervals for its µ  and  σ  parameters. 

Values given are for µ  and 2σ . Each envelope 
function has two regions which meet at a non-
differentiable point, x=ea for El and x=eb for Er. 
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