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Abstract�In the traditional statistical approach, we assume
that we know the exact cumulative distribution function (CDF)
F (x). In practice, we often only know the envelopes [F (x), F (x)]
bounding this CDF, i.e., we know the interval-valued �p-box�
which contains F (x). P-boxes have been successfully applied to
many practical applications. In the p-box approach, we assume
that the actual CDF can be any CDF F (x) ∈ [F (x), F (x)].
In many practical situations, however, we know that the actual
distribution is smooth. In such situations, we may wish our model
to further restrict the set of CDFs by requiring them to share
smoothness (and similar) properties with the bounding envelopes
F (x) and F (x). In previous work we used ideas from Info-
Gap Decision Theory to propose heuristic methods for selecting
such distributions. In this paper, we provide justi�cations for this
heuristic approach.

I. TRADITIONAL APPROACH: A BRIEF REMINDER

In the traditional statistical techniques typically used in
science and engineering applications, we assume that we know
the exact probability distributions of measurement errors, of
different population quantities, etc. (e.g. [11], [12]).

For each quantity ξ, this distribution can be described, e.g.,
by its cumulative distribution function (CDF)

F (x) def= Prob(ξ ≤ x).

Computationally, the CDF is often represented by its quan-
tiles, i.e., by the values x(α) for which F (x(α)) = α for some
pre-selected values α: e.g., α = 0, 0.1, 0.2, . . . , 1.0.

In mathematical terms, the representation means, crudely
speaking, that instead of discussing the original CDF function
F (x) directly, we discuss the inverse function x(α). (This is
exactly true when the CDF is strictly monotonic.)

II. P-BOX APPROACH

A. Main idea
In practice, we rarely know the exact values of the probabil-

ities of different events. In particular, for real-life quantities,
we rarely know the exact values F (x) of the probability
Prob(ξ ≤ x). Instead, we have approximate knowledge
of F (x).

In some situations, we know the bounding envelopes
[F (x), F (x)] for the unknown CDF F (x). In other situations,
we have expert estimates for values F (x) � which can be
naturally described as fuzzy numbers.

Comment. It is well known that a fuzzy number can be
represented as a nested family of its α-cuts (intervals), and that
processing these fuzzy numbers can be reduced to processing
the corresponding α-cuts. Moreover, this is usually how fuzzy
numbers are processed (see e.g. [3], [5], [7], [8], [10]).

In view of this fact, in the following text we will concentrate
on interval uncertainty.

B. Mathematical representation
For each dimension ξ, uncertainty about probability

F (x) = Prob(ξ ≤ x)

can be described by an interval

F(x) = [F (x), F (x)]

that is guaranteed to contain the unknown actual value
of F (x).

The function F that maps each real number x into the
interval F(x) is called a probability box, or, for short, p-
box [4].

C. Computer representation
As we have mentioned, in the traditional statistical approach

a probability distribution is usually represented in the com-
puter by its quantiles. In the p-box case, the fact that we do
not know the exact values of F (x) means that we do not know
the exact values of the quantiles either.

Instead of the actual value of a quantile x(α), we only know
the bounds on the quantile. Namely, from the fact that

F (x) ≤ F (x) ≤ F (x),

we can conclude that

x(α) ≤ x(α) ≤ x(α),



where x(α) are the quantiles corresponding to F (x), and x(α)
are the quantiles corresponding to F (x).

As a result, in the computer, a p-box is represented by its
interval-valued quantiles, i.e., by the intervals [x(α), x(α)]
which are guaranteed to contain the actual (unknown) values
x(α). These interval-valued quantiles are given for some pre-
selected values α: e.g., α = 0, 0.1, 0.2, . . . , 1.0 (see e.g. [4]).

III. NEED FOR A MORE REALISTIC REPRESENTATION
OF UNCERTAINTY

A. The meaning of p-boxes: reminder
In short, a p-box expresses the information that for every

x, the actual (unknown) value F (x) of the CDF is contained
in the interval [F (x), F (x)].

B. Limitations of a p-box interpretation
In many practical situations, the extreme-case bounds F (x)

and F (x) correspond to smooth distributions such as Gaussian,
uniform, etc. In such situations, it is often reasonable to expect
that the actual distribution F (x) is also smooth. However, in
the p-box approach, the only limitation on F (x) is that

F (x) ∈ [F (x), F (x)].

This limitation permits, in addition to smooth functions, very
non-smooth � and thus (for many problems) unrealistic � CDF
functions F (x).

To take such situations into account, it is desirable to be
able to limit ourselves to smooth bounds F (x) and F (x)
and to distributions F (x) which share the same smoothness
characteristics as the bounds.

IV. AN APPROACH MOTIVATED BY INFO-GAP DECISION
THEORY

A. Main idea
To solve this problem, in [2] we described a new approach

which is motivated by Info-Gap Decision Theory (see e.g. [1]).
Speci�cally, once we have two possible distributions F1(x)
and F2(x) which can be described using a set of quantiles
x1(α) and x2(α) for various values of α, we then assume that
for every value β ∈ [0, 1], the distribution corresponding to
the quantiles

x(α) = β · x1(α) + (1− β) · x2(α)

is also possible. Once we �x F1(x) and F2(x), we get a 1-
parameter class which is much sparser than the p-box of all
distributions between F1(x) and F2(x).

Let us show that this idea indeed allows us to avoid non-
smooth combinations of smooth distributions.

B. An approach motivated by Info-Gap Decision Theory
avoids non-smooth distributions

In many practical situations, the uncertainty is in the values
of the parameters: we know the shape of the distribution,
but we do not know the exact values of the corresponding
parameters. For example, we may know that the distribution

is Gaussian (or uniform), but not the exact values of the
corresponding parameters.

How can we describe this situation in precise terms? For
example, let F0(x) be the CDF of the �standard� normal
distribution, with 0 mean and standard deviation 1. Then,
the CDF of a general normal distribution, with mean a and
standard deviation σ, can be described as

F (x) = F0

(
x− a

σ

)
.

A similar expression describes a general uniform distribution,
etc.

For such distributions F (x), as one can easily check, the
corresponding quantiles x(α) are linearly related to the quan-
tiles x0(α) of the just-mentioned standard normal distribution
F0(x):

x(α) = a + σ · x0(α).

If we have two distributions with the same property, i.e., if we
have

x1(α) = a1 + σ1 · x0(α)

and
x2(α) = a2 + σ2 · x0(α),

then their convex combination

x(α) = β · x1(α) + (1− β) · x2(α)

also has the same form:

x(α) = a + σ · x0(α),

with a = β · a1 + (1− β) · a2 and σ = β · σ1 + (1− β) · σ2.
Thus, when applied to two distribution of the same shape,

the above procedure leads to the distribution of this same
shape: a combination of Gaussian distributions is Gaussian,
a combination of uniform distributions is uniform, etc.
C. Remaining open problem.

The above procedure seems to work well, but is too ad hoc,
requiring more justi�cation.
D. Objective of this paper

In this paper, we provide a justi�cation for this procedure.
Speci�cally, we want to describe an operation I(x1, x2) that

for every α, given two values x1(α) and x2(α), returns a
suitable intermediate value

x(α) = I(x1(α), x2(α)).

We will call such an operation an intermediate value opera-
tion.
Comment. The main ideas behind our justi�cation are based
on the natural notions of symmetry. Similar ideas have been
used, e.g., in [6], [9].

V. RELEVANT TYPES OF INVARIANCE

The three types of invariance described in this section
provide background for the de�nitions given in the following
section.



A. Scale invariance
The values x often come from measurements. In this case,

if we change the unit of measurement (e.g. from centimeters
to meters), numerical values will be multiplied by a constant
λ > 0. It is natural to require that the result of the intermediate
value operation not depend on the choice of unit.

How does replacing a unit change the intermediate value
operation function I(x1, x2)? If we replace a unit by a one
that is λ times smaller, then the quantity that was initially
described by the value x1 will be described by a new value
x′1 = λ · x1, and the quantity that was initially described by
the value x2 will be described by a new value x′2 = λ · x2.
When we combine these values by using the intermediate value
operation I , we get the resulting value

x′ = I(x′1, x
′
2) = I(λ · x1, λ · x2).

This is the expression of the combined quantile in the new
units. In the old units, its expression is

x = λ−1 · x′ = λ−1 · I(λ · x1, λ · x2).

We will denote the resulting �re-scaled� intermediate value
operation

x1, x2 → λ−1 · I(λ · x1, λ · x2)

by Sλ(I).
In these terms, the intermediate value operation I is scale

invariant if and only if Sλ(I) = I for all λ.

B. Reverse invariance
In addition to changing the units, there can also be changes

in sign. For example, when measuring a spatial coordinate,
we can change the direction and that will change the sign,
or when measuring an electric charge, we usually follow
the convention that an electron's charge is negative, but we
can also consider electron charges as positive numbers. This
possibility is equivalent to a re-scaling with λ = −1. Therefore
we wish to consider not only positive values λ, but in fact
arbitrary non-zero values λ.

C. Shift invariance
When measuring quantities like time or location, we can

also change the starting point. In this case, a constant will be
added to all numerical values: x → x + a.

Then the quantity that was initially described by the value
x1 will be described by a new value x′1 = x1 + a, and the
quantity that was initially described by the value x2 will be
described by a new value x′2 = x2 + a. When we combine
these values by using the intermediate value operation I , we
get the resulting value

x′ = I(x′1, x
′
2) = I(x1 + a, x2 + a).

This is the expression of the combined quantile in the new
units. In the old units, its expression is

x = x′ − a = I(x1 + a, x2 + a)− a.

We will denote the resulting �shifted� intermediate value
operation

x1, x2 → I(x1 + a, x2 + a)− a

by Ta(I).
It is natural to require that the intermediate value operation

is invariant w.r.t. these symmetries as well, i.e., that Ta(I) = I
for all possible real values a.

VI. INVARIANCE: DEFINITIONS AND THE MAIN RESULT

De�nition 1.
• By an intermediate value operation, we mean a function

I : R2 → R from the set of pairs of real numbers into real
numbers for which the value I(x1, x2) is always located
in between x1 and x2:

min(x1, x2) ≤ I(x1, x2) ≤ max(x1, x2).

The set of all possible intermediate value operations will
be denoted by A.

• For every intermediate value operation I , and for every
λ 6= 0, by a re-scaled intermediate value operation Sλ(I),
we mean an intermediate value operation

x1, x2 → λ−1 · I(λ · x1, λ · x2).

• For every intermediate value operation I , and for every
a, by a shifted intermediate value operation Ta(I), we
mean an operation

x1, x2 → I(x1 + a, x2 + a)− a.

• We say that the intermediate value operation I is scale-
invariant if for all λ, we have Sλ(I) = I .

• We say that the intermediate value operation I is shift-
invariant if for all a, we have Ta(I) = I .

Proposition 1. For an intermediate value operation I , the
following two conditions are equivalent to each other:
• I is scale-invariant and shift-invariant;
• I is described by the expression

I(x1, x2) = β · x1 + (1− β) · x2

for some β ∈ [0, 1].

Comment. As a consequence of Proposition 1, the naturalness
of scale- and shift-invariance implies the naturalness of the
equivalent intermediate value operation.

VII. PROOF OF PROPOSITION 1
It is easy to check that for every β ∈ [0, 1], the formula

I(x1, x2) = β ·x1 +(1−β) ·x2 indeed describes a scale- and
shift-invariant intermediate value operation.

Let us therefore move on to showing that every scale- and
shift-invariant intermediate value operation I(x1, x2) has the
above form. Indeed, let I be such an operation, and let us
de�ne β

def= I(1, 0).
For arbitrary x1 6= x2, we can apply shift-invariance with

a = −x2, and conclude that

I(x1, x2) = I(x1 − x2, 0) + x2.



Now, scale-invariance with λ = 1/(x1 − x2) implies that

I(x1 − x2, 0) = (x1 − x2) · I(1, 0).

By de�nition of β, we conclude that

I(x1 − x2, 0) = (x1 − x2) · β
and, because I was given as shift-invariant, that

I(x1, x2) = (x1 − x2) · β + x2.

One can easily see that this expression is exactly equal to
β · x1 + (1− β) · x2. So, we have proven that

I(x1, x2) = β · x1 + (1− β) · x2

for all x1 6= x2.
For x1 = x2, this equality follows from the fact that I is an

intermediate value operation and thus, T (x1, x1) = x1, just
like the convex combination β · x1 + (1− β) · x2 is equal to
x1. The proposition is proven.

VIII. TOWARDS AN ALTERNATIVE JUSTIFICATION
BASED ON OPTIMALITY

A. Main idea
Instead of requiring that the intermediate value operation be

invariant, it is reasonable to look for optimal operations, i.e.,
operations which are the best in the sense of some optimality
criterion.

B. What is an �optimality criterion�?
When we say that some optimality criterion is given, we

mean that, given two different intermediate value operations,
we can decide whether the �rst or the second one is better, or
if these operations are equivalent w.r.t. the given criterion. In
mathematical terms, this means that we have a pre-ordering
relation ¹ on the set of all possible intermediate value
operations.

C. The need to enumerate optimal intermediate value opera-
tions

One way to approach the problem of choosing the �best� in-
termediate value operation function is to select one optimality
criterion, and to �nd an intermediate value operation which is
the best with respect to this criterion. The main drawback of
this approach is that there can be different optimality criteria,
and they can lead to different optimal solutions. It is, therefore,
desirable not only to describe an intermediate value operation
that is optimal relative to some criterion, but to describe all
intermediate value operations that are optimal relative to any
member of a set of natural criteria.

Comment. The word �natural� is used informally. We merely
want to say that from the purely mathematical viewpoint,
there can be weird (�unnatural�) optimality criteria. We will
only consider criteria that satisfy some requirements that we
would, from a common sense viewpoint, consider reasonable
and natural.

D. Examples of optimality criteria
Pre-ordering is the general formulation of optimization

problems in general, not just of the problem of choosing an
intermediate value operation. In general optimization theory, in
which we are comparing arbitrary alternatives a, b, . . . , from a
given set A, the most frequent case of a pre-ordering is when
a numerical criterion is used, i.e., when a function J : A → R
is given for which a ¹ b if and only if J(a) ≤ J(b).

Various natural numerical criteria can be proposed for
choosing the intermediate value operations. For example, we
could consider cases in which we are given the class of all
distributions classi�ed as possible for the given problem, and
we have �weights� assigned to different distributions from this
class, so that these weights add up to 1. In this case, for some
pairs of distributions from this class � characterized by their
quantiles x1(α) and x2(α) � the distribution corresponding
to the quantiles x(α) = I(x1(α), x2(α)) also belongs to the
given class. For some other pairs of distributions x1(α) and
x2(α), the distribution corresponding to the x(α) does not
belong to the given class. We can then take, as J(I), the
�ratio� (total weight) of such pairs of distributions for which
x(α) also belongs to the given class.

Many other criteria can be proposed. What should be done
if there are several different alternatives that perform equally
well? In this case, it makes sense to choose the alternative
for which the computations are the fastest. This natural idea
leads to an optimality criterion that is not describable by
a single numerical optimality criterion J(a): in this case,
we need two functions: J1(a) describes the �ratio�, J2(a)
describes the computation time, and a ¹ b if and only if either
J1(a) < J1(b), or J1(a) = J1(b) and J2(a) ≥ J2(b).

We could further specify the described optimality criterion
so that it disambiguates cases where both J1(a) = J1(b)
and J2(a) = J2(b) with another function J3, etc. However,
as we have already mentioned, the goal of this paper is not
to �nd a single intermediate value operation that is optimal
relative to some criterion, but to describe all intermediate value
operations that are optimal relative to any of a set of natural
optimality criteria. In view of this goal, in the following, we
will not specify the criterion, but rather describe a general
class of natural optimality criteria.

So, let us formulate what �natural� means.

E. Which optimality criteria are natural?
We have already mentioned that the values x often come

from measurements, and that for such values, changing the unit
of measurement (e.g. from meters to centimeters) multiplies
the measured values by a constant λ. It is natural to require
the relative quality of two intermediate value operations not
depend on the choice of units. In other words, we require that
if I is better than I ′, then the �re-scaled� I (i.e., Sλ(I)) should
be better than the �re-scaled� I ′ (i.e., Sλ(I ′)).

It is also natural to require the optimality criterion to be
invariant w.r.t. shift transformations. In other words, if I is
better than I ′, then Ta(I) should be better than Ta(I ′).



There is one more reasonable requirement for a criterion,
based on the following idea. If the criterion does not select a
single optimal intermediate value operation, i.e., if it considers
more than one intermediate value operations equally good,
then we can always use some other criterion to help select
among them, thus designing a two-step criterion. If this new
criterion still does not select a unique intermediate value
operation, we can continue this process as many steps as
necessary to get only one optimal intermediate value operation.
Such a multi-step criterion can always be �nal in this sense.

IX. AN OPTIMIZATION APPROACH: DEFINITIONS
AND THE MAIN RESULT

De�nition 2. By an optimality criterion, we mean a pre-
ordering (i.e., a transitive, re�exive relation) ¹ on the set A.
• An optimality criterion ¹ is called scale-invariant if for

all I , I ′, and λ 6= 0, I ¹ I ′ implies Sλ(I) ¹ Sλ(I ′).
• An optimality criterion ¹ is called shift-invariant if for

all I , I ′, and a, I ¹ I ′ implies Ta(I) ¹ Ta(I ′).
• An optimality criterion ¹ is called �nal if there exists

one and only one intermediate value operation I that is
preferable to all the others, i.e., for which I ′ ¹ I for
all I ′ 6= I .

Proposition 2.
• If an intermediate value operation I is optimal w.r.t.

some scale-invariant, shift-invariant, and �nal optimality
criterion, then for some β ∈ [0, 1], the operation I is
described by a formula

I(x1, x2) = β · x1 + (1− β) · x2.

• For every β ∈ [0, 1], there exists a scale-invariant, shift-
invariant, and �nal optimality criterion for which the only
optimal intermediate value operation is the operation

I(x1, x2) = β · x1 + (1− β) · x2.

Comment. In other words, if the optimality criterion satis�es
the above-described natural properties, then the optimal inter-
mediate value operation coincides with one of β-operations.

A. Proof of Proposition 2
1. To prove the �rst part of Proposition 2, we will show that
the optimal intermediate value operation Iopt is scale-invariant
and shift-invariant, i.e., that Sλ(Iopt) = Ta(Iopt) = Iopt for all
λ 6= 0 and a. Then, the result will follow from Proposition 1.

Indeed, let X be either a scale or a shift transformation.
Let us �rst determine the invertibility of these transformations.
Indeed:
• if X = Sλ, then X−1 = S1/λ;
• if X = Ta, then X−1 = T−a.

Now, from the optimality of Iopt, we conclude that for every
I ′ ∈ A, X−1(I ′) ¹ Iopt. From the invariance of the optimality
criterion provided as a given in the proposition statement, we
next conclude that I ′ ¹ X(Iopt). This is true for all I ′ ∈ A
and, therefore, the intermediate value operation X(Iopt) is

optimal. But since the criterion is �nal (as given in the
proposition statement), there is only one optimal intermediate
value operation; hence, X(Iopt) = Iopt. So, the optimal
intermediate value operation is indeed invariant and hence, due
to Proposition 1, it coincides with one of the β-expressions.
The �rst part is proven.
2. Let us now prove the second part of Proposition 2. Let β ∈
[0, 1] be �xed, and let Iβ be the corresponding intermediate
value operation. We will then de�ne the optimality criterion
as follows: I ¹ I ′ if and only if I ′ = Iβ .

Since the intermediate value operation Iβ is scale-invariant
and shift-invariant, the just-de�ned optimality criterion is also
scale-invariant and shift-invariant. It is also by de�nition
�nal. The intermediate value operation Iβ is clearly optimal
w.r.t. this scale-invariant, shift-invariant, and �nal optimality
criterion. The proposition is proven.
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