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A growing body of works address automated mining of biochemical knowledge from digital 
repositories of scientific literature, such as MEDLINE. Some of these works use abstracts as 
the unit of text from which to extract facts. Others use sentences for this purpose, while still 
others use phrases. Here we compare abstracts, sentences, and phrases in MEDLINE using the 
standard information retrieval performance measures of recall, precision, and effectiveness, for 
the task of mining interactions among biochemical terms based on term co-occurrence. Results 
show statistically significant differences that can impact the choice of text unit. 

1   Introduction 

The rapid growth of digitally stored scientific literature provides increasingly 
attractive opportunities for text mining. Concurrently, text mining is becoming an 
increasingly well-understood alternative to manual information extraction. Most 
reports on text mining of scientific literature for biochemical interactions have used 
the MEDLINE repository. Such mining activities have great potential for tasks such 
as extracting networks of protein interactions as well as for benefiting researchers 
who need to efficiently sift through the literature to find work relating to small sets 
of biochemicals of interest. While deep, fully automated literature analysis via 
natural language understanding (NLU) is an intriguing long-term objective, 
shallower and human-assisted analysis is both achievable and valuable. 

 The text processing units from which facts are extracted in MEDLINE 
mining systems may be the full abstracts, constituent sentences, or phrases. The 
most basic way to “mine” MEDLINE is simply to use the PUBMED Web 
interface.8 The user can submit a query to the database consisting of the AND of 
two biochemical terms, and abstracts in MEDLINE containing both terms are 
returned. Such abstracts can be used as monolithic data items in systems that 
automatically search for interactions among genes based on term co-occurrence 
within an abstract, as in Stapley and Benoit 2000.16 A related approach by Shatkay 
et al.14 infers functional relationships among genes based on similarities among 
abstracts. Neither of those works identifies the type of interaction (e.g. inhibit, 
activate, etc.), which is desirable for applications such as automatic construction of 
networks of interactions. Because an abstract is a relatively large processing unit 
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which contains a great deal of material besides the query terms, it is relatively 
difficult to automatically determine the type of interaction between the terms 
without methods that are sensitive to smaller text units such as sentences or phrases. 

Easier inference of type of interaction might be expected if retrieval is limited 
to cases in which the query terms co-occur in the same sentence (Craven and 
Kumlien 1999,2 Dickerson et al. 2001,4 Ng and Wong 1999,6 Rindflesch et al. 1999 
& 2000,9,10 Sekimizu et al. 1998,12 Tanabe et al. 199917), or in the same phrase 
(Blaschke et al.,1 Humphreys et al.,5 Ono et al.7). But such systems will miss 
interactions that are described over a longer passage, such as this one: 

...in wild oat aleurone, two genes, alpha-Amy2/A 
and alpha-Amy2/D, were isolated. Both were shown 
to be positively regulated by gibberellin (GA) 
during germination...21 

The interactions in this example (gibberellin regulates alpha-Amy2/A and alpha-
Amy2/D) are described over two sentences, so to extract the interactions in this 
example a system needs to process text units longer than a sentence. Thus while 
smaller text units might make it easier to infer many interactions, they will miss 
others interactions that are expressed over longer passages. Consequently, 
information retrieval recall must decrease with decreasing text unit size. However a 
clean qualitative relationship between text unit size and information retrieval 
precision cannot be inferred from first principles.  

Considerations like these revolve around the issue of what the advantages and 
disadvantages are of different text units, from the standpoint of systems that 
automatically extract interactions among biochemical terms. This is important when 
a choice of text processing unit must be made for a text mining system design. Four 
text units are investigated here: abstracts, adjacent sentence pairs, sentences, and 
phrases, from the perspective of three standard information retrieval (IR) 
performance measures: recall, precision, and effectiveness. Recall is the fraction of 
the relevant items in a test set that are retrieved. Precision is the fraction of retrieved 
items that are also relevant. Effectiveness is a composite measure combining the 
recall and the precision. The benefit of the present investigation of the relationships 
between text unit type and information retrieval performance measures is better 
understanding of the ability of the different text units to support mining of scientific 
abstract repositories for interactions among biochemicals. 

2   Experimental Procedure: The Data 

To compare the merits of different text processing units, a corpus of slightly over 
three hundred abstracts, termed the Interaction Extraction Performance Assessment 
(IEPA) corpus, was manually analyzed. The corpus consists of abstracts retrieved 
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from MEDLINE using ten queries (Table 1) to its PUBMED interface.8 Each query 
was the AND of two biochemical nouns. The queries were suggested by colleagues 
who are actively performing research in diverse biological areas, to help make them 
representative of the kinds of queries users of text mining systems would be 
interested in. A suggested query was studied only if the number of abstracts 
retrieved by PUBMED was ten or more to facilitate statistical analysis of results. If 
more than 100 abstracts conforming to a given query were retrieved, only the most 
recent abstracts at the time the corpus was defined were studied, enough so that the 
studied set included approximately forty abstracts describing interaction(s) between 
the biochemicals in the query, plus those that contained the biochemicals but did not 
describe interactions between them that were also encountered. Thus the ten queries 
yielded ten sets of abstracts, with each abstract in a set containing both terms in the 
query corresponding to that set.  

Although each studied abstract contained both biochemical terms in a query, 
only some of them described interaction(s) between them. An interaction between 
two terms was defined as a direct or indirect influence of one on the quantity or 
activity of the other. Examples of interactions between terms A and B include the 
following.  

• A increased B. 
• A activated C, and C activated B. 
• A-induced increase in B is mediated through C. 
• Inhibition of C by A can be blocked by an 
inhibitor of B. 

The following examples do not indicate an interaction between A and B. 
• A increases C, and B also increases C. 
• C decreases A and B. 

Below are some examples taken from MEDLINE abstracts. Only the smallest text 
unit containing an interaction is noted, but the interaction is necessarily also present 
in any larger text unit as well. 

...whereas a combination of gibberellin plus 
cycloheximide treatment was required to increase alpha-
amylase mRNA levels to the same extent. (PMID is 10198105, 
query is gibberellin and amylase, interaction is described within a phrase.) 

...the regulation of hypothalamic NPY mRNA by leptin 
may be impaired with age. (PMID is 10868965, query is leptin and 
NPY, interaction is described within a phrase.) 

We investigated mechanisms underlying the control of 
this movement by acetylcholine using an insulinoma cell 
line, MIN6, in which acetylcholine increases both 
insulin secretion and granule movement. The peak 
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activation of movement was observed 3 min after an 
acetylcholine challenge. The effects were nullified by 
the muscarinic inhibitor atropine, phospholipase C (PLC) 
inhibitors (D 609 and compound 48/80), and pretreatment 
with the Ca2+ pump inhibitor, thapsigargin. (PMID is 
9792538, query is insulin and PLC, interaction is described within the 
abstract.) 
 An abstract was defined to consist of both title and body. A sentence pair was 
defined as two adjacent sentences. All but the first and last sentence in an abstract 
therefore appeared in two sentence pairs, once as the first of the pair and once as the 
second. The text between two successive periods was defined to be a sentence. In 
addition, the title was defined to be a sentence, as was the body up to the first 
period. The text between any two successive punctuation marks {. : , ;} was defined 
as a phrase. The title up to its first punctuation mark was also defined as a phrase, as 
was a complete title containing no punctuation mark, and also the body of the 
abstract up to the first punctuation mark. 

While both members of the query occurred in each abstract, in only some of the 
abstracts did both terms or their synonyms occur within adjacent sentences. In only 
some of these sentence pairs did both occur within just one sentence of the pair. 
Finally, in only some of those sentences did both occur in the same phrase.  

3  Experimental Procedure:  Measuring Information Retrieval Quality 

Recall and precision measure the completeness and correctness of information 
retrieval, respectively. Effectiveness assesses overall performance by combining 
both recall and precision,15 while a generalized form of effectiveness includes the 
relative weights of recall and precision as a parameter in the calculation.19  

In the present case, recall is the fraction of all those interactions between two 
biochemical terms in the corresponding set of abstracts that are stated within a 
sentence, phrase, or other text unit under consideration: 
 

abstracts within occurring BandAbetweennsinteractioof#
unittextof typea withinoccurringBandAbetweennsinteractio of#

 recall =  
 

where A and B are query terms or their synonyms. 
Intuitively, recall here measures the capacity of a given text unit to contain the 

interactions present in MEDLINE abstracts. Any interaction described within a 
particular text unit is also described within all larger text units. Therefore, since the 
largest unit considered here is the abstract the recall for abstracts is exactly 1.  
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Precision refers to the fraction of abstracts, sentences, phrases, etc. containing 
both biochemical terms that also describe an interaction between them: 

  

unit  text of pein that tyoccur -co BandAtimesof#
unit  textof typea withinoccurring BandAbetweennsinteractioof#precision =  

 
 
where A and B are query terms or their synonyms. Intuitively, precision here 
measures the richness of a given text unit as “ore” from which to mine biochemical 
interactions from term co-occurrences.  

Effectiveness combines recall and precision with the harmonic mean (the 
reciprocal of the arithmetic mean of the reciprocals, appropriate e.g. for calculating 
average travel speed for a trip):  
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Generalized effectiveness (G) parameterizes effectiveness with a weight coefficient 
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Generalized effectiveness can account for differences among applications and users 
in their needs for recall compared to precision. 

4   Data Analysis 

Information retrieval performances for abstracts, sentence pairs, sentences, and 
phrases were assessed by tabulating, for each query and each text unit, term co-
occurrences and the subset of co-occurrences describing interactions. The recall, 
precision, and effectiveness of each were then tabulated (Tables 1 and 2). Because 
preliminary study showed that often an interaction is described using a synonym of 
a query term rather than the query term itself, occurrences of synonyms were treated 
as occurrences of query terms. 
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Table 1. Queries and the recall, precision, and effectiveness for each, given abstracts (Ab), 
sentences (Se), and phrases (Ph) as text units from which to extract interactions between the 
query terms or their synonyms, in MEDLINE abstracts containing both query terms.  (The last 
query, an outlier, is discussed further in Appendix A.) 

Recall Precision Effectiveness Query terms 
Ab Se Ph Ab Se Ph Ab Se Ph 

insulin & PLC 1 .80 .54 .38 .58 .69 .55 .68 .61 
leptin & NPY 1 .88 .53 .52 .46 .53 .69 .60 .53 
AVP & PKC 1 .85 .60 .83 .65 .78 .91 .74 .68 
Beta-amyloid & PLC 1 .86 .71 .67 .83 .89 .80 .85 .79 
prion & kinase 1 .79 .71 .70 .79 .77 .82 .79 .74 
UCP & leptin 1 .96 .69 .53 .57 .73 .69 .71 .71 
insulin & oxytoxin 1 .89 .65 .45 .63 .73 .62 .74 .69 
gibberellin & amylase 1 .89 .71 .95 .94 .96 .97 .92 .82 
oxytoxin & IP 1 .98 .80 .68 .73 .77 .81 .83 .79 
flavonoid & cholesterol 1 .25 .10 .55 .50 .50 .71 .33 .17 

Table 2. Information retrieval measures for different types of text units. Recall and precision 
figures are means over the relevant figures for each query (shown in Table 1 for all text unit 
types except sentence pairs). Each figure was appropriately weighted, by the number of 
abstracts in the set associated with that query (in the case of precision of abstracts), the number 
of co-occurrences for that query within the text unit under consideration (in the case of 
precision of sentence pairs, sentences, and phrases), or by the number of interactions described 
for that query within the associated set of abstracts (for recall). 

TEXT UNIT → 
↓ IR MEASURE Abstracts 

Sentence 
pairs Sentences Phrases 

Recall      1 0.916 0.849 0.621 
Precision      0.571 0.345 0.638 0.743 
Effectiveness      0.727 0.501 0.729 0.677 

Table 2 suggests a trend of increasing precision for smaller text units, except for 
sentence pairs which rated poorly overall. Phrases, the smallest unit, had the highest 
precision. Precision differences were significant at the 0.05 level except in the case 
of abstracts vs. sentences (Appendix B). (Comment added 11/12/04: Wren and 
Garner23 (2004, p. 193 col. 2) corroborated the value we found for precision of 
abstracts with an independently derived figure of 0.58, but found a higher figure of 
0.83 for precision of sentences. The co-occurring words they examined included 
phenotypes and diseases (p. 193 col. 1) in addition to biomolecules of the type we 
studied.) 

With respect to effectiveness, sentences were significantly better than phrases 
at the 0.05 level, indicating that the advantage of phrases over sentences in precision 
is outweighed by the disadvantage in recall. Abstracts measured about equal to 
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sentences in effectiveness. The measured effectiveness advantage of abstracts over 
phrases did not reach significance (p=0.17 two-tailed). Abstracts, sentences, and 
phrases all rated significantly higher than sentence pairs. 

Application of the generalized effectiveness formula to the figures in Table 2 
rates abstracts as most effective when recall is of overriding concern, phrases as 
most effective when precision is of overriding concern, and sentences as most 
effective over an intermediate range of weightings (Table 3). 

Table 3. Ranges of weight parameter w for which each text unit measured as best in 
generalized effectiveness (w can range between 0 and 1).  

TEXT UNIT  → Abstract Sentence pair Sentence Phrase 
w → w>0.511 – 0.339<w<0.510 w<0.338 

5 Discussion and Conclusion 

In view of the results reported here it is not surprising that researchers have reported 
interesting results for text mining in MEDLINE based on abstracts, sentences, and 
phrases. Tables 2 and 3 and the statistical significance summary in the preceding 
section indicate that each of these units has advantages and disadvantages compared 
to the others.  

Sentence pairs fared so poorly in precision that an analysis was undertaken to 
understand why. Although considering pairs of sentences nearly doubled (99%) the 
number of distinct co-occurrences found compared to limiting consideration to 
sentences, the number of distinct interactions went up by only 8%. In fact, the 
dominant contributor to the already low precision of sentence pairs is interactions 
that are actually described in a single sentence within the pair. For the remaining 
interactions, those for which each term was in a different sentence, the precision 
was a mere 0.05. This in turn suggests that compared to the effort it would take to 
build a system to extract biochemical interactions from sentences, it might not be 
worth much additional effort to deal with sentence pairs as well. Even large 
expenditures of computation time or system development effort to achieve quality 
anaphora resolution across adjacent sentences would result in only modest benefit.   

Regardless of the text unit chosen for a system that extracts biochemical 
interactions from MEDLINE, interactions contained in an abstract were often 
described using a synonym of the query term. Thus we counted synonyms as query 
term instances in deriving the retrieval performance measures reported here. 

Increasing the sophistication of text processing can raise precision without 
degrading recall, thereby raising effectiveness, as suggested by Craven and 
Kumlein’s2 Figure 2 and accompanying discussion, and by Thomas et al.’s18 Table 
5. Sophisticated text processing techniques seem likely to benefit smaller text units 
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more than larger ones because their generally shorter lengths, simpler structures, 
and higher proximity of relevant verbs and biochemical nouns make their 
processing more tractable. For example, appropriate verbs (“bind,” “activate,” etc.) 
in close proximity to biochemical terms are likely to be better indicators of an 
interaction than more distant verbs. However, ease of analysis would not be an issue 
if complete automatic natural language understanding were available, which would 
in principle enable precisions of 1 for all text units. This would swing the advantage 
back to longer text units because the principle of decreasing recall for smaller text 
units, in conjunction with the theoretical possibility of the same precision, 1, for all 
text units implies potential superiority of longer text units. However, complete 
automatic natural language understanding is currently not possible nor is it likely to 
be for some time. Effectiveness figures for the current state of the art for 
biochemical interaction extraction using sophisticated text processing were 
derivable from two reports, summarized in table 4. 

Table 4. Effectiveness of sophisticated text processing techniques is higher than the baseline figures in 
Table 2 above for both the sentence and phrase text units. For phrases, sophisticated techniques led to an 
effectiveness higher than that of any entry in Table 1 above. (However comparisons across reports should 
be interpreted with caution.) 

Report Comment 
Text 
unit 

Best 
effectiveness 

Baseline 
average 

Baseline 
range 

Rindflesch 
et al.9 

“RESULTS” 
section 

Sentence 
0.75 0.72 0.33-0.92 

Ono et al.7 Their Table 3 Phrase 0.89 0.65 0.17-0.82 
 
Sophistication in text processing techniques can be important for reasons other 

than improving IR performance. For example, automatic construction of signal 
transduction pathways is an application that requires accounting for verbs.  

Another application that clearly favors small text units is the simultaneous 
display of targeted passages from the often unwieldy body of scientific literature. It 
is better for this purpose to display sets of relevant sentences or phrases taken from 
numerous abstracts on a screen than it is to display one or two entire abstracts with 
occasional embedded relevant passages, particularly if it is convenient to move from 
a short relevant passage to its containing abstract, such as by clicking.  

In summary, abstracts, sentences, and phrases are all competitive for automatic 
extraction of interactions among biochemicals from MEDLINE. Not surprisingly, 
sophisticated text processing appears to increase IR performance relative to more 
basic text processing. However, a very large range of choices is possible in 
designing systems with advanced text processing capabilities. For example, just 
defining a set of verbs that indicate interactions will be difficult to characterize 
definitively. To provide a relatively clean baseline we avoided verb analysis, 
although a suitable accounting of verbs might be expected to increase precision 
particularly for smaller text units. 
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 Appendix A: An Outlier Query 

It is interesting to consider an outlier from among our ten queries. For the query 
“cholesterol AND flavonoid,” smaller text units fared more poorly than for other 
queries (Table 1). Closer inspection of these abstracts showed that flavonoid is a 
large family of chemicals, and the name of a specific flavonoid is usually stated in 
the first sentence of an abstract. In the rest of the abstract, the name of the specific 
flavonoid is used instead of the general term “flavonoid.” Therefore the term 
“flavonoid” tends to be distant from the term “cholesterol” in the abstracts, leading 
to relatively low recall, precision, and hence effectiveness for sentence pairs, 
sentences, and phrases. This factor should be considered in the context of 
particularly general chemical terms. 

Appendix B: Statistical Procedure 

We conducted separate analyses for precision and effectiveness.  The structure of 
the data suggests an analysis based on the usual linear model for a block design, 
where each query serves as a block.  The model often used for such data is 

ijjiij eY +++= βαµ  
where Yij denotes a measure of information retrieval quality (recall, precision, or 
effectiveness) for the method using the ith processing unit (i=1, 2, 3, or 4 
corresponding to abstract, sentence pair, single sentence, or phrase, respectively) on 
the jth set of abstracts.  The eij represent independent random errors with mean zero 
and variance σ2/wj, where wj is a weight equal to the number of abstracts used in the 
determination of Yij.  We assume that the distribution of dii’j=eij - ei’j is symmetric for 
all i ≠ i' and j=1,…,10. The parameters α1,…,α4 represent the statistical effects 
associated with the processing units.  These are the quantities of interest.  The αi are 
typically constrained to sum to zero for easier interpretation, and the µ parameter is 
introduced as an intercept.  Thus αi greater (less) than zero implies above (below) 
average performance for the ith method relative to the others for any particular 
chemical pair.  The β1,…β10 quantities are the statistical effects associated with each 
of the 10 sets of abstracts corresponding to the 10 queries.   

For the IR performance measures of precision and effectiveness, we are 
interested in testing for differences among pairs of text units.  For two different text 
units indexed by i and i', we may formally write our null and alternative hypotheses 
as '' : iiiiH αα =  and '' : iiiiK αα ≠ , respectively.  To test 'iiH  against 'iiK  we will 
compute the usual weighted t-statistic using the differences jiijjii YYD '' −=  with 
weights )10,...,1( =jw j . The formula for the weighted t-statistic is  
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To assess the significance of an observed value of 'iit , we condition on the 
magnitudes of the observed differences and note that under the null hypothesis the 
probability of a positive difference is equal to the probability of a negative 
difference.  This follows from the fact that Dii’j=Yij -Yi’j=αi -ai’ +dii’j=dii’j when the 
null hypothesis is true. Now, under the null hypothesis, all 102  possible assignments 
of signs to |,| 1'iiD … || 10'iiD are equally likely assuming jiijjii eed '' −= are 
independent for '.ii ≠  Thus the conditional null distribution of 'iit  places 
probability mass 102/1  on each of the 102  values obtained by computing 'iit  for the 

102  possible assignments of signs to |,| 1'iiD … || 10'iiD .  The relevant two-tailed p-
value is obtained by counting the proportion of those 102  values whose magnitudes 
match or exceed the observed value of || 'iit .  This is essentially the randomization 
test for matched pairs described, for example, in Section 5.11 of Conover.3 We have 
augmented this slightly by using the number of abstracts as weights in our test 
statistic to account for variation in the number of abstracts used to compute the 
measures of performance. 

To illustrate the testing procedure we used, consider testing for a difference 
between the effectiveness of sentence pairs and single sentences.  The relevant 
differences (one for each query) are -0.19, -0.23, -0.28, -0.18, -0.17, -0.28, -0.24,  
-0.22, -0.25, and +0.14. The preponderance of negative signs immediately suggests 
greater effectiveness for the single sentence method. The weighted t-statistic is 

.97.523 −=t  If we were to randomly assign signs to the observed differences, the 
chance of getting a weighted t-statistic as far from zero as -5.97 is only 6/1024 ≈  
0.0059.  This is the p-value of the test, and it can be computed by calculating that 
there are only 6 sign configurations (among the 1024 possible configurations) that 
yield a t-statistic, weighted to reflect the number of examined abstracts associated 
with each query, as far from zero as -5.97. 

Because it is so unlikely (probability 0.0059) to see a value of the test statistic 
as extreme as -5.97 when the null hypothesis is true, we reject the null hypothesis 
and conclude that single sentences are significantly more effective than sentence 
pairs. Other results for effectiveness, and results for precision, are shown in Table 5.  

Two columns of Table 5 contain p-values that have been adjusted for multiple 
testing using the restricted step-down method,13 for which a clear description is 
provided in Section 2.7 of Westfall and Young.20 The use of adjusted p-values is 
conservative and reduces the chance of errantly rejecting a true null hypothesis 
simply because many hypotheses are being tested.  Motivation for the use of 
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adjusted p-values may be found in several statistical texts on the subject of 
simultaneous inference. 

 

 

Table 5. Tests of null hypotheses of no difference between text units. Sentences and phrases 
are significantly different. Precision of phrases is significantly different from that of abstracts, 
while other cells do not reach significance. (Ab=abstract, Se=sentence, and Ph=phrase.) 

Precision Effectiveness  
Comparison Weighted 

t-statistic 
P-value Adjusted 

 p-value 
Weighted 
t-statistic 

P-value Adjusted  
p-value 

Ab vs. Se -1.34 0.3516 0.3516 0.25 0.8398 0.8398 
Ab vs. Ph -3.00 0.0488 0.0488 1.36 0.1719 0.1719 
Se vs. Ph -5.14 0.0078 0.0234 5.26 0.0039 0.0117 
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