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Abstract – This paper explores a wide range of differ-

ent decision criteria for the bidding problem when severe 
uncertainty about inputs requires expressing them as 
bounded families of distributions. A GENCO maximizes 
its expected returns given its own risk profile and its per-
ception of market risks. This can be formulated as a multi-
criteria optimization problem. The set of different decision 
criteria examined illustrates the variety of different ap-
proaches possible, the different conclusions these ap-
proaches produce, and the bidder’s need to understand 
goals and information availability in order to rationally 
decide on a bid to best meet the goals of the organization. 
This paper highlights the different possible decision crite-
ria and uses Analytic Hierarchy Process to determine the 
highest priority bid based on qualitative and quantitative 
analyses.  

Keywords: Bidding Strategies, Information Gap 
Decision Theory, Decision Support Systems, Optimiza-
tion, Multi-Criteria Decision Making, Analytic Hier-
archy Process. 

1 INTRODUCTION 
The net gain for a GENCO is dependent on the vola-

tility of the Market Clearing Price (MCP) which in turn 
is determined by the strategies employed by other mar-
ket participants and by uncertain market conditions. 
Therefore, deciding what to bid in an electricity auction 
typifies the large class of problems requiring decisions 
despite the possibility of severe uncertainty about im-
portant problem parameters.  

New ideas for innovative solutions to such problems 
are arising from recent activity in uncertainty quantifi-
cation (also called 2nd-order uncertainty, epistemic un-
certainty, and other terms). Traditionally, models pro-
posed have represented uncertainty about continuous 
variables using probability distributions. This enables 
well-known techniques like Monte Carlo simulation. 
Other approaches to uncertainty have also been applied 
to electric energy industry and other problems, most 
notably fuzzy methods and intervals. Methods consis-
tent with the classical, mathematically well-founded 
framework of probability, however, have stood the test 
of time and are undoubtedly here to stay. Because 
knowledge that supports bidding decisions is often 
limited by what information is available, inference un-
der conditions of epistemic uncertainty is important to 
do in order to support optimized bidding. In this paper, 

such uncertainty is quantified as bounded families of 
probability distributions.  

Applying bounded families of distributions to elec-
tric power bidding problems exemplifies what may be 
expected in engineering from applying uncertainty 
quantification. The growth in interest in uncertainty 
quantification engendered by such expectations is illus-
trated, for example, by recent journal special issues [1-
2]. Applications to problems in electric power [3-4] 
follow naturally from the insights and investigations of 
other researchers, who have found that uncertainty 
quantification has applicability to power problems char-
acterized by severe uncertainty. Prominent techniques 
include intervals [5-6] and fuzzy methods [7-8]. The 
well-recognized need for decisions in the presence of 
severe uncertainty, coupled with the grounding of our 
approach in the mathematically well-founded theory of 
probability, support its use in addressing important 
problems in electric power. Guidance can then be ob-
tained regarding bidding decisions under conditions of 
uncertainty in which standard methods would require 
extra, unjustified assumptions.  

While one can obtain different bidding decisions 
based on different decision criteria, to obtain a single 
optimal bid decision is highly dependent on qualitative 
and quantitative analyses. This paper addresses this 
problem by using the Analytic Hierarchy Process 
(AHP) to guide decision maker in establishing the most 
significant bid decision.  

2 MODELING THE PROBLEM 
We wish to optimize bidding in the presence of un-

certainty about the applicable distribution. Figure 1 
shows an example. In a figure of this type, the left- and 
rightmost cumulative distribution functions (CDFs) 
could arise for at least three reasons: (1) as confidence 
limits [9]; (2) as bounds on the distribution of a function 
of two (or more) random variables whose dependency 
relationship(s) are unspecified, e.g. using the DEnv 
algorithm [10]; or (3) as bounds on the set of different 
distributions estimated by different experts. The stepped 
appearance in the figure could be due to the graininess 
of data in the Kolmogoroff case, or to discretization in 
the computations in the case of the DEnv algorithm. In 
the case of composition of expert estimates the curves 
would probably be smooth instead of stepped. However 



 

whether it is stepped or smooth does not impact the 
subsequent discussion.  

Consider an example incorporating Figure 1. We 
take the perspective of GENCO 1, which is bidding 
against GENCO 2 to sell electricity with the following 
problem parameters.   

- Demand XD=1000MWh 
- Cost to GENCO 1=$40/MWh 
- GENCO 2 has two generators, G2A and G2B 
- Capacity of G2A is X2A=300MWh 
- Capacity of G2B is X2B>700MWh 
 

 
Figure 1:  Bounds on the cumulative distribution for the bid 
that will be made by GENCO 2, for power from its generator 
G2B. Curve A is the horizontal average of the left- and 
rightmost curves, curve B is the vertical average, and curve C 
is the fixed-point average. 

Careful inspection shows that underbidding G2A with 
an offer of 1000MWh will result in selling the entire 
1000MWh, with GENCO 2 unable to sell from either 
G2A or G2B. However, this will have a lower expected 
monetary value (EMV) to GENCO 1 than attempting to 
underbid G2A with a block of 300MWh and G2B with a 
block of 700MWh. A still better strategy is to underbid 
G2B and sell 700MWh at a relatively high price while 
permitting GENCO 2 to sell 300MWh at the relatively 
low price [4]. However, this strategy is consistent with a 
range of different bid prices. Given this strategy, we 
wish to determine what price GENCO 1 should bid to 
its best advantage.  

2.1 Implications for Bidding 
If GENCO 1 bids below the left tail of the left 

bounding curve in Figure 1, it underbids GENCO 2’s 
G2B, therefore selling 700 MWh with probability 1. For 
bids between the left tail of the leftmost curve and the 
right (upper) tail of the rightmost curve, GENCO 1’s 
EMV for a bid is: 

EMV=pwin(b)*700*(b-40) 
where b is the bid amount and 40 is the per-MWh pro-
duction cost given above. The probability of winning 
the auction is pwin(b)=1-F2B(b), where F2B(.) is the cu-
mulative distribution for the bid predicted from com-
petitor GENCO 2 for power from G2B. The form of this 
distribution is uncertain, however it must fall between 
the left and right curves of Figure 1. Each possible 
curve for F2B(b) implies a different curve for EMV(b). 
Some of these are shown in Figure 2.  

If the correct EMV curve is known, then the horizon-
tal axis coordinate of its highest point defines the opti-
mum bid. Figure 2 shows that the optimum bid differs 
for different EMV curves. Example optimum bids 

shown in Figure 2 are the horizontal axis coordinates of 
triangular point A, x-shaped point B, and point C. Thus, 
although the best bid may be easily found for a particu-
lar EMV curve, the situation is less clear when the 
proper EMV curve is unknown. Some other points in 
Figure 2 also deserve mention. Point E (below the visi-
ble portion of the graph) is the point on the low curve 
with the same horizontal axis value as point C on the 
high curve. Point F is where the curves start to diverge. 
And finally, if the top and bottom EMV curves are 
vertically averaged, curve M is obtained. 

In order to address bidding when the right EMV 
curve to use is unknown, we start by observing that the 
family of possible EMV curves (i.e. those that are im-
plied by cumulative distributions within the bounds 
shown in Figure 2) is bounded from below by one such 
curve. We term this the pessimistic curve. Similarly the 
family is bounded from above by another EMV curve 
termed the optimistic curve. 

 

 
Figure 2:  Some possible curves for the EMV as a function of 
bid value. Each EMV curve corresponds to some distribution 
that predicts the competing bid of GENCO 2 for its  generator 
G2B (see Fig. 1). 

Suppose the best bid is chosen under the assumption 
that the pessimistic curve applies. The maximum point 
of that curve, whose coordinates state the best bid and 
its EMV, is triangular point A in Figure 2. If instead the 
optimistic curve applies, then the EMV of the same bid 
is higher (square point D). While this higher EMV is 
welcome, it is not as high as it would have been had we 
only known the optimistic curve applied. Then we could 
have chosen a different bid with an even higher EMV 
(point C). Hence the suboptimality of the bid is poten-
tially as great as the difference in the heights of points 
D and C.  

3 DECIDING ON A BID UNDER SEVERE 
UNCERTAINTY 

 When such bounded EMV curves arise, there are 
many different ways to generate the bidding decision 
such as the following ten decision criteria (DC1-DC10). 
They can be categorized by decision criteria based on 
extreme scenarios (DC1-DC3), decision criteria based 
on averaging scenarios (DC4-DC6), decision criteria 
based on risk (DC7-DC10). Each criterion has its own 
conditions of applicability – and its own answer.  

3.1 DC1: Minimize Potential Suboptimality 
The principle here is to minimize the maximum pos-

sible suboptimality. By suboptimality, it is meant the 



 

worst case amount by which the EMV of a bid might 
fall short of what it would be if the actual EMV curve 
were known. Figure 3 illustrates the bid resulting from 
such an analysis. In the figure, the length of a heavy 
vertical line segment indicates the worst case subopti-
mality of the corresponding bid, which is indicated by 
the placement of a vertical dotted line. Optimizing the 
EMV of the low EMV curve results in a bid whose 
worst case suboptimality is the length of line segment 
B. Bidding to optimize the EMV of the high EMV 
curve results in line segment C. Both B and C are longer 
than either of the two heavy line segments associated 
with bid A. For an EMV curve family like this, a 
graphical way to apply this decision criterion is to find 
the bid for which the suboptimality, if the low EMV 
curve applies, equals the suboptimality given that the 
high EMV curve applies. This decision criterion may be 
particularly appropriate in high-stakes scenarios in 
which it is desired to minimize risk.  

3.2 DC2: Maximize the Minimum Possible EMV 
If the EMV of a bid is estimated from the lowest 

(most pessimistic) curve in the family of plausible EMV 
curves, then the estimated best bid and its EMV is the 
maximum of that curve. In Figure 2 that is the bid of 
$143.92/MWh (point A). The actual EMV of that bid, 
which may be governed by a higher EMV curve, will 
then be at least as high. This is conservative in the sense 
that the actual EMV of the bid is at least as high. This 
strategy however is problematic for two reasons. First, 
the actual EMV curve is probably one of the infinitely 
numerous ones that are higher than the lowest one, and 
they have maxima at bids above $143.92/MWh. There-
fore, a bid of $143.92+ε/MWh probably will have a 
higher EMV than $143.92/MWh. Second, even a very 
risk averse bidder for whom winning has overriding 
importance would not bid $143.92/MWh. Such a player 
would instead place a bid just below the bottom tail of 
the leftmost curve in Figure 1. This is approximately 
$143.2/MWh. 

 

 
Figure 3:  A family of EMV curves (lowest and highest 
shown), and three bids represented by vertical dotted lines. 
The length of the longest solid line segment associated with a 
bid is that bid’s worst case suboptimality. 

3.3 DC3: Maximize the Maximum Possible EMV 
This approach is the conceptual opposite of the one 

just described. Here the bidder is guided by the optimis-
tic EMV curve instead of the pessimistic curve. In this 
strategy, the optimal bid is $146.30/MWh, the horizon-
tal axis coordinate of point C in Figure 3. However, the 
consequences if another EMV curve much below the 

top one applies could be serious. Many of the EMV 
curves in the family are dropping off precipitously at 
that bid value, leading to a serious risk of a very low 
EMV if one of the lower EMV curves is the correct one, 
such as the EMV of point E. Even a very risk-seeking 
bidder might not use this strategy because yet higher 
bids could still be successful (as long as they are below 
$155/MWh, the end of the upper tail of the rightmost 
curve in Figure 1).  

3.4 DC4: Use Horizontal Averaging 
This method computes a curve estimating the CDF of 

the competitor’s bid by connecting points that are calcu-
lated as follows. Any given value of F2B in Figure 1 
intersects the left- and rightmost curves at correspond-
ing bid values, call them bl and br. Specify a new value 
b=(bl+br)/2 as a coordinate of a new point (b, F2B). 
Done enough times, the result is curve A in Figure 1. 
This curve corresponds to EMV curve G in Figure 3, 
for which the best bid and its EMV are shown as point 
H. 

3.5 DC5: Use Vertical Averaging 
The horizontal averaging strategy just described has 

a vertical dual: for any given value of b on the horizon-
tal axis, the vertical axis values of the left- and right-
most curves are both identified. Their mean, and b, form 
the coordinates of a point on the vertically averaged 
curve. The result is curve B in Figure 1. This curve 
implies curve I in Figure 2, with a maximum at point J 
that defines its best bid and corresponding EMV. 

3.6 DC6: Use Fixed-Point Averaging 
The CDF curves predicting the competitor’s bid im-

plied by horizontal vs. vertical averaging of the left- and 
rightmost curves are different (Figure 1, curves A and 
B). These average curves have complementary desirable 
and undesirable features. The horizontally averaged 
curve has an S-shape but the vertically averaged curve 
has a wavy form that seems counter-intuitive (though, 
in principle, possible). On the other hand, the vertically 
averaged curve has tails that reflect the plausibility of 
competitor bids that are extreme but within the bound-
ing curves, while the horizontally averaged curve does 
not. Thus a third form of averaging was designed that 
has the advantages of both. 

This averaging method takes the horizontal and ver-
tical average curves as inputs, and averages those 
curves. However, if this new averaging step was done 
by vertical averaging, the result would be different than 
if it was done by horizontal averaging. Therefore, the 
average curves (A and B in Figure 1) are averaged both 
ways to obtain two new curves, these new curves are 
then again averaged both ways, and the process iterated 
until the two curves resulting from each iteration con-
verge. The result (curve C in Figure 1) is both S-shaped 
and has the desired tail property. This is termed the 
fixed-point average curve, and the procedure, fixed-
point averaging. 

The fixed-point average curve implies a correspond-
ing EMV curve (labeled K in Figure 2). This curve has 



 

a maximum point (labeled L in Figure 2) which gives 
the maximum EMV and its corresponding bid amount, 
as estimated through fixed-point averaging. 

3.7 DC7: Use Bid Utility Instead of Bid EMV 
The goal in choosing a bid price is ultimately to op-

timize its utility to the business. For bids to sell blocks 
of power this might mean maximizing the expected 
monetary value (EMV) of a bid. However, a full analy-
sis would need to recognize that the goal of maximizing 
EMV may be tempered by risk position. For example, 
individuals who make bids may wish to avoid jeopard-
izing their bidding records with risky bids. As another 
example, risk aversion may affect higher level decisions 
of sufficiently high value, such as those relevant to 
value at risk (VaR), profit at risk (PaR), capital budget-
ing, etc. To account for risk, the utility of bids rather 
than their EMV should be maximized. This may require 
transforming EMV curves (Figure 2) into utility curves 
based on risk profile. Then the solution approaches 
described earlier, which refers to EMV curves, can 
often instead be applied to the corresponding utility 
curves.  

EMV curves may be transformed into corresponding 
utility curves by transforming the points on those curves 
(the EMVs of bids) into utilities of bids. The first step 
in converting an EMV to a utility is specifying the risk 
profile of the player, GENCO 1 in this case, as a utility 
function. Figure 4 shows representative examples of 
utility functions. 

 

 
Figure 4:  Three risk profiles. Risk neutrality gives a constant 
slope utility function, risk aversion a concave-down one, and 
risk attraction a concave-up one.   

A utility function, u(x), describes utility as a function 
of monetary quantity. It expresses the player’s subjec-
tive perception of the value of objective monetary 
amounts. A utility function can model the fact that, for 
example, a risk averse player prefers getting $10,000 to 
a 50% chance of getting $20,000, even though both 
options have the same expected monetary value (EMV). 
Thus the utility of $10,000 to this player exceeds 50% 
of the utility of $20,000 + 50% of the utility of $0. In 
general, the utility of a gamble is the average of the 
utilities of the possible outcomes weighted by their 
probabilities. Thus for this player, 
u($10,000)>(½)u($20,000). This implies a utility func-
tion of decreasing slope and a risk averse player.  

For the example bidding problem, a given CDF in 
the family of CDFs (Figure 1) predicting competitor 
GENCO 2’s bid associates each bid amount b with a 
cumulative probability p=F2B(b). Thus if GENCO 1 

bids at b the probability is p that GENCO 2’s bid is 
lower. Therefore GENCO 1 will win the auction with 
probability 1-p. If GENCO 1 wins, the resulting sale 
will have a certain monetary value vb. If GENCO 1 
loses, the model assigns that result a value of 0. The 
utility of the bid, ub, is thus ub=(1-p)*u(vb)+p*u(0). Its 
monetary equivalent is then u-1(ub). If risk is an insig-
nificant consideration then risk-neutrality applies, so 
u(v)=v. Then the utility of a bid equals its EMV, that is, 
ub=(1-p)*u(vb)+p*u(0)=(1-p)*vb+p*0=EMVb. Taking 
risk into consideration then has no effect on the decision 
of what to bid. Risk neutrality might apply if the 
amount of money involved is small from the bidder’s 
standpoint, such as one auction out of many occurring 
over time. On the other hand, risk would be a considera-
tion for a large enough bid, for example, if it was for a 
significant capital investment like building a windmill 
farm. 

3.8  DC8: Use EMV Utility Instead of Bid Utility  
Given a bid amount b and the associated EMV(b), the 

monetary value of n such bids will be close enough to 
n*EMV(b) to within an acceptable probability for suffi-
cient n. Thus n*EMV(b) approaches not an EMV but an 
actual monetary value, as a statistical property of a large 
enough number of bids. The risk in this scenario is not 
losing a given auction. Rather, the risk is of choosing 
bids with relatively low EMVs due to basing them on 
the wrong CDF in the CDF family.  

Given plans for n auctions before a re-examination of 
bidding policy, an single-bid EMV of m has a utility of 
u(n*m)/n irrespective of the probability of winning. 
Since any EMV can thus be converted into a utility 
value, any EMV curve can be transformed into a utility 
curve. This enables transforming a family of EMV 
curves such as those in Figure 2 into utility curves. 
These utility curves might normally be expected to have 
some resemblance to their original EMV curves. For 
example, the maximum of each utility curve will be at 
the same bid value as the maximum of the EMV curve 
of which it is a transformation. Yet the utility curves 
will not be identical to the EMV curves (unless risk 
neutrality applies). Therefore various decision criteria 
described earlier, if given utility curves as inputs, will 
likely produce recommendations for bids that differ to 
some degree from the recommendations they make 
when applied to the corresponding EMV curves. 

3.9  DC9: Use Information Gap Theory  
Information Gap Theory [11] is useful for making 

decisions in cases where uncertainty is described with 
bounds, but the probabilistic structure within those 
bounds is not specified such as Figure 1. Rather than 
attempting a form of optimization as was done in earlier 
decision criteria, the appropriate goal in using informa-
tion gap analysis here is to ensure that the EMV of a bid 
meets or exceeds a given minimum value. An informa-
tion gap model for this results in a robustness function 
that helps identify bids meeting that requirement. An 
information gap model can also identify the additional 



 

information that would be needed to reduce the uncer-
tainty enough to ensure that other, more desirable bids, 
meet that requirement.  

For example, various bid amounts in Figure 2 have 
high EMVs for EMV curves near the highest EMV 
curve, making them potentially desirable bids. However 
some of these bids also lead to unacceptably low EMVs 
for EMV curves near the lowest EMV curve, making 
them too risky. If additional information was obtained 
that ruled out such low EMV curves, some overly risky 
bids would then become feasible. The cost of obtaining 
such information could be weighed against its potential 
benefit and a decision then made about whether to ob-
tain it. However such information, once obtained, might 
rule out high EMV curves instead, thereby also ruling 
out bids that it was hoped would become feasible. Re-
sults of an information gap analysis for the bidding 
problem are shown in Figure 5. 

More formally, an information gap model requires 
defining a number of items: decision variable (bid b), 
uncertain variable (CDF), nominal value of uncertain 
variable ( w~ =0.5), uncertainty parameter (α), uncer-
tainty model (u(α, w~ )), reward function (EMV), critical 
reward (rc), and robustness function ( )r,b(ˆ cα ). . For 
more detailed explanation on each item, please refer to 
[12]. 

 

 
Figure 5:  Bounding EMV curves (from Figure 2), a given 
minimum acceptable reward level rc, and two ranges of bids, 
X and Y. Bids in range X guarantee EMVs of at least rc, while 
bids in range Y might have EMVs of at least rc, but also might 
not. 

From Figure 5 some facts may be deduced about 
)r,b(ˆ cα  for a range of bid amounts, given a minimally 

acceptable reward rc. For bid amounts in region ‘X’ the 
EMV is above rc for all EMV curves corresponding to 
CDF L, R, or any average of  L & R, weighted or not. 
Therefore weight w could be from 0 to 1, meaning that 

)r,b(ˆ cα , the maximum allowable deviation α from 
nominal weight w~ , is w~  in the downward direction  (in 
which case 0≤w≤w~ ) and 1- w~  in the upward direction 
(in which case w~ ≤w≤1). Thus, rc will be safely met for 
any bid in region ‘X.’ However it may be desired to 
consider bidding higher (in range ‘Y’) in order to at-
tempt to reap the benefits of possibly greater EMVs. 
Bids in range ‘Y’ in Figure 5 would be guaranteed to 
have an EMV of at least rc if new information is ob-
tained which rules out values of w that are too close to 1 
(thereby moving the worst-case EMV curve upward). 

Thus, new information about w may be sought that 
would permit bids above region ‘X.’ This information, 
once obtained, might or might not do this, depending on 
what values of w the new information rules out. 

To summarize, the result of an information gap 
analysis is a description of what new information (if 
any) would be required, for any specified bid amount, to 
guarantee at least a given EMV. Thus guidance is pro-
vided about both acquiring new information and making 
bids.  

3.10  DC10: Apply VaR/PaR With Bernoulli Processes 
Bernoulli processes may be used to constrain accept-

able bid amounts based on Value at Risk (VaR) or 
Profit at Risk (PaR). Given a maximum loss (VaR) or 
minimum profit (PaR) v, a corresponding certainty 
factor p representing the minimum tolerable probability 
of meeting requirement v by a time t, and a function F 
relating a bid amount to the probability of winning the 
auction, an acceptable range for bids may be deduced. 
The outcome of a particular auction will change the 
parameters of the problem because there are fewer bids 
remaining until time t; also, winning an auction changes 
the amount of money that may be risked over the course 
of the remaining bids. Consequently, the range of ac-
ceptable bid amounts will tend to vary from one auction 
to the next. 

Under severe uncertainty, exact probabilities of ex-
ceeding specific values of loss (Value at Risk, or VaR), 
or failing to meet specific values of profit (Profit at 
Risk, or PaR) can be impossible to compute. Applying 
the Bernoulli process approach in the presence of 2nd-
order uncertainty about CDFs requires accounting for 
that uncertainty in deciding on bid values (Figures 1 & 
2). While uncertainty in the EMV of a given bid has 
been addressed using various decision criteria described 
earlier, the 2nd-order uncertainty in the problem descrip-
tion can alternatively play out as uncertainty in the 
probability of winning an auction for a given bid. View-
ing each auction as a Bernoulli trial, this uncertainty 
about the probability of winning leads to a range of 
possible probabilities of meeting VaR or PaR require-
ment v in the remaining Bernoulli trials.  

If every value in the range of probabilities is below 
the desired certainty factor p, then the bid is allowable. 
If no bid is allowable, acquiring more information 
might reveal a range of acceptable bids. If not, still 
more information might be sought. If it is possible to 
show that additional information could not lead to any 
acceptable bids, then the conclusion is that the VaR or 
PAR objective cannot be achieved with the desired 
certainty factor p, necessitating some form of damage 
control. If analysis does provide a range of acceptable 
bids for the next auction, acquiring more information 
might expand the range. The details of what information 
is required may be determined by an information gap 
analysis (one example of which was given earlier). 
Ultimately, a bid within the acceptable range must be 
chosen. This may be done using one of the other appli-
cable optimization methods described earlier. 



 

3.11  Decision Criteria Summary 
With ten decision criteria that include maximizing 

worst-case EMVs, maximizing expected EMVs, and 
converting EMVs to utilities using risk profiles, differ-
ent results can be obtained and each can be better or 
worst than the other in its own perspective. Even though 
ten decision criteria have been highlighted, the decision 
maker may only consider few that are most significant. 
For example, suppose GENCO 1 decides to utilize 
DC1-DC6. The resulting bids and expected profit can 
be summarized in Figure 6. While these bids may only 
differ in the order of $0.10/MWh, the expected profit 
may differ in a large range that impacts the profitability 
of GENCO 1.  

From the six decision criteria, one may decide to bid 
at $146.30/MWh to gain the maximum expected profit 
of 74315.50, however this correspond to the high bound 
of the EMV curves in Figure 2. Unless GENCO 1 is 
risk-seeking, it would not choose this as the optimal bid 
because the worst case scenario may cause a major loss.  
Similar explanations can be applied to other five differ-
ent decision criteria based on the discussion above. 
Therefore, a multi-criteria decision making approach is 
needed and will be discussed in the following section. 
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Figure 6:  EMV values for DC1-DC6 

4 USING ANALYTIC HIERARCHY PROCESS 
TO MAKE THE BEST BID DECISION 

Developed by Dr. Thomas Saaty in 1970 [13], the 
Analytic Hierarchy Process (AHP) is a powerful and 
flexible decision making process to help the decision 
maker set priorities and make the best decision when 
both qualitative and quantitative aspects of a decision 
need to be considered. AHP provides a clear optimal 
rationale by reducing complex decisions to a series of 
one-on-one comparisons.  

Suppose that a value function, v(y) is the weighted 
sum of the corresponding outcome yi, and the weight 
ratio is defined as:  
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two conditions hold, the matrix of weight ratios can 
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Notice that the rank of W is one since each row of W 
is a multiple of the first row and there is only one non-
zero eigenvalue q. This is due to the fact that  

1=iiw and the sum of all eigenvalues is equal to the 

trace of W, ∑
=

=
q

i
ii qw

1

. Since qwWw = , w must be the 

eigenvector of W corresponding to the maximum eigen-
value q.  

To overcome fixed weight problem, Saaty proposes 
to estimate the weight ratio by a constant aij. Let 
A=[aij]qxq be the matrix of components {aij}. Sincewij>0, 
we shall assume aij>0. Since 1−= jiij ww , then the only 

elements aij, where j>i need to be considered. Since A is 
found as an approximate for W, when the consistency 
conditions are almost satisfied for A, one would expect 
that the normalized eigenvector corresponding to the 
maximum eigenvector of A, denoted by maxλ , will also 
be closed to w. There are two theorems associated with 
these assumptions and conditions (when the matrix is 
consistent):  

Theorem 1: The maximum eigenvalue maxλ , of A is 
a positive real number. Let ŵ be the normalized eigen-
vector corresponding to maxλ of A. Then ŵ >0 for 
all qi ≤≤1 .  

Theorem 2. The maximum eigenvalue of A satisfies 
the inequality qmax ≥λ . 

Assuming that we have q objectives and we want to 
construct a scale, rating these objectives as to their im-
portance with respect to the decision, as seen by the 
analyst. The decision maker has to compare the objec-
tives in paired comparisons. If objective i is compared 
against objective j, the values of aij and aji are assigned 
as follows: 

- 1−= jiij aa  

-  If the objective i is more important than objective j 
then aij gets assigned a number as follows: 

 
Intensity of rela-
tive importance 

Verbal definition 

1 Equal importance 
2 Equal to moderate importance 
3 Moderate importance 
4 Moderate to strong importance 

5 Strong importance 
6 Strong to very strong importance 



 

7 Strong importance 
8 Strong to extreme importance 
9 Extreme importance 

Table 1:  Scale of relative importance. 

Assuming that we are deciding to bid high (DC4), 
medium (DC6) or bid low (DC5) based on the results 
obtained from the averaging methods (Table 2).  

 
Averaging 
methods 

Optimal 
Bid 
($/MWh) 

EMV 
($) 

Maximum 
possible 
loss ($) 

DC4: High 
(Horizontal)  

144.63 73238 2913.60 

DC6: Medium 
(Fixed-point)  

144.40 73080 1632.7 

DC5: Low  
(Vertical)  

144.10 72512 358.71 

Table 2:  Comparison of averaging methods. 

Suppose the decision factors to be considered are to 
maximize expected profit (EMV) and to minimize loss 
(LOSS), the priorities need to be assigned based on 
these two factors. The results are illustrated in Table 3. 
First, the intensity of relative importance needs to be 
assigned (Table 1) before normalizing them to calculate 
the relative priorities. We will illustrate on calculating 
the priority for bidding high. The normalized values are: 

[High, High] = 76270
91511

1 .
//

=
++

 

[High, Medium] = 81390
7115

1 .
/

=
++

 

[High, Low] = 52940
179

1 .=
++

 

[High, Priority] = 70200
3

529408139076270 ....
=

++  

EMV High Medium Low Prior-
ity 

High 1 5 9 0.7020 
Medium  1/5 1 7 0.2424 
Low  1/9 1/7 1 0.0556 
LOSS High Medium Low  Prior-

ity 
High 1 1/6 1/8 0.0633 
Medium 6 1 1/4 0.2584 
Low 8 4 1 0.6782 

Table 3:  The relative priorities for EMV and LOSS 

With that, another iteration of relative priorities cal-
culation will be performed on EMV and LOSS to de-
termine the single decision with highest priority. This is 
shown in Table 4.  

 
Relative priority EMV LOSS Importance 
High 0.7020 0.0633 0.5743 

Medium  0.2424 0.2584 0.2456 
Low  0.0556 0.6782 0.1801 

Table 4:  Final importance if EMV is 4 times preferred over 
LOSS according to the scale in table 1.  

Results also show that if EMV is preferred over 
LOSS for any scale in Table 1, bid high is preferred 
over bidding medium/low. If LOSS is more important 
than EMV, bid Low is preferred over the others. 
Medium is always not preferred in this method, which is 
intuitive because EMV and LOSS prefers the extremes 
than the median or averaged of bids. Other decision 
criteria can be added to determine the bid with the 
highest priority with similar calculations. 

5 CONCLUSION 
Quantification of uncertainty in electric energy bid-

ding problem is significant not only due to the volatility 
of the decision variables but multiple decision criteria 
can lead to multiple answers. As discussed in this paper, 
there are many ways for a decision maker to decide on 
the optimal bid depending on which decision criteria 
they employ. When the decision criteria can be as 
straightforward as the extreme scenarios and averaging 
methods (DC1-DC6), one can just bid based on the 
results obtained from the specific criteria one chooses. 
However, this may not exhaust the total revenue that 
could be obtained simply because there is a better solu-
tion if the actual curve is biased towards the high or low 
EMV curves.  

One way to justify how well the decision maker can 
perform is to quantify the uncertainty. This can be ac-
complished by applying different probabilistic methods 
or risk analysis methodologies based on decision crite-
ria. When these different decision criteria give different 
answers, a decision may still be necessary. One way to 
identify one is to examine the premises of the criteria 
and rule out those whose premises are not consistent 
with the goals and perspectives of the decision-maker. 
Utility-based criteria might be eliminated from consid-
eration in favor of EMV-based criteria, or vice versa. In 
general however, more than one criterion recommend-
ing different decisions may stubbornly remain plausible. 
This is in the nature of severe uncertainty. Yet a deci-
sion may nevertheless be required. Multi-criteria deci-
sion making approach such as AHP can be used to rank 
order the importance of each decision over the other and 
determine the decision that gives the highest priority. 
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