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What is Portfolio Management
i (and why REC '08)?

= A portfolio in finance is

= A collection of assets
= Stocks, bonds, electric energy futures, etc.

= A big part of portfolio management is...
= Figuring out what % of each asset to hold
= Financial Engineering

= Using mathematics and computers to make
investment decisions




i Portfolio Basics

= Let projected return be a distribution

= The usual goal is to balance
= High expected return (mean, L)
= Low risk (variance, o)

= The problem is these often conflict:
(b)

Would you prefer (a) or (b)?




First Order Stochastic Dominance
...and portfolio selection

= (b) has FSD over (a)
= Which would you choose now?

(a) (b)

FSD is decisive for the rational investor



Second Order Stochastic Dominance
‘_L ...and portfolio selection

= SSD: integrals do not cross
= (b) has SSD over (a) ... which is better?

(b)

(a)

SSD is decisive for the risk-averse investor



i Choosing is not always easy

s Recall:

= If each curve models a different asset
= A portfolio can be a weighted average
=« N assets, pick some of each



Portfolio Selection Problem

+

m [ is the portfolio return distribution
= R is a “reference” return distribution

S

r :Zvviri -, R
1=1
1=1

The SSD constraint is not typical of current practice



i Portfolio Selection II

s The éfficient frontier

=« Contains the set of candidate portfolios
= Due to Markowitz (1952)
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desirability = (2, r) = mean (r) — z « risk (1)

Z is risk attitude (we assume risk aversion ... z> 0)



i Example

= 3 segment portfolio:

r, ~ Norma (1.1, 0.25) w, 102, 0.3]

r, ~ Exponent(1.0, 1.0)  w, ][04, 06]

r, ~Uniform (12, 048) w;0[0.2, 03]



. Two optimal portfolios
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i We're not Done Yet

= If z was known, we would be happier

s But Zz is unknown

»« Therefore, more work is required
= (if we are to find the right portfolio)

S S
- Bytheway, 0, =) Y WW,0;
i=1 j=1
» SO, in mean (r)—z *risk (r)
« Z is still a number.



Alternative Optimality Criteria

Quality

Metric

SSD

a (alpha)

P< ———0O0O0—0TO0O

1. Find the portfolio(s) with

aximize :
Robustness the highest |SSD! over the 3. Find a portfolio with SSD over the
) reference curve, i.e., move tp
(to achieve ) : Yeference curve, and has the highest
the right until further
secure : . possiblen.
erfor mance) movement vv_ould disqualify
P every portfolio
4a. Find a portfolio with the highest
mean returm from among those with
SSD over the reference curve &y
M ax!llmlze 2. Find a portfolioy with gggrenr;iigcy relationships among
(to achieve best return distributiom, and SSD 4b. Generalizeda by requiring SSD for
over the reference curve, . .
performance . : : only somedependencies. The precise
. . choosing one with the highest . b . .
within therisk . meaning of “some” is determined by tf
. possible mean retugn
limit) value ofa.

4c. Find the demand value of
Information about: in order to choose

what value otx to use idb.




1. Maximize robustness
Measure with |SSD|

Integral of the CDF
of a reference

portfolio \\J

R

Integral of the CDF of a
candidate portfolio with 35D
ower the reference

The tmrurmum honzontal
diztanice between them



Results

+

» Maximizes chances that SSD indeed holds
= Does not (necessarily) maximize mean

Z |ISSD J7;

0.2 0.2662 1.0800
1 0.2662 1.0800
2 0.2841 1.0740
3 0.2872 1.0717
4 0.2886 1.0705
5 0.2864 1.0700




2. Maximize mean

Demand

[

FSD/SSD over R

Mars sm;rzgemf, ~
R

FPartiolio return r with oD

aver bath R .:1?3.:;#’ R
j Partfolic

reluri 1
with Righer pi than 1y,

Byt without FSD over B!

Feliirn —




Results

+

= Maximizes expected return
= Can respond paradoxically to different R

. SSD |/ u O\

02| 0.2662 1.0800 |
0.2662 1.080

1

2 0.2841 1.0740
3 0.2872 1.0717
4 0.2886 1.0705
D 0.2864 1.0700




3. Maximize robustness
‘_L Measure with a (alpha)

= o IS an Info Gap Theory parameter
= it describes amount of uncertainty

r:cIIIE

Left ervelope,
dependencies unknowm

Best-guess return grven
cwaﬂaﬂce matri, etc.

Fight envelope,
dependencies unknowm

Statool can sum 3 segments
...giving envelopes

7




Example
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Results

Z |maxo u
0.20 | 1.33 1.0800
1.00 | 1.33 1.0800
2.00 | 1.3380 1.0740
3.0C |1.341( 1.071¢
3.90 | 1.3408 1.0717
3.96 | 1.371 1.0706
3.97 |1.373 1.0706
3.98 |1.373 1.0706
3.99 | 1.371 1.0706
4.00 | 1.3700 1.0715
4.01 | 1.3680 1.0705
4.10 | 1.362 1.0705
5.00 | 1.36 1.0700




4a. Maximize mean U
‘L Require a=1 (and FSD/SSD)

= Makes no assumption about dependency

Best-guess return given

Left envelope, Cwarlance matrix, etc.

dependencies
unknown

=1 Right envelope,
dependencies unknown




Results

Z maximum « L

z=10.2 1.3500 1.0800

7 =1 1.3500  portfolios | 1.0800

shov_vn

z=2 1.5300 A€ | 1.0740

z=3 1.5894 1.0717

z=4 1.5500 1.0705

z=5 1.4000

1.07OP




4b. Maximize mean y
i Require a= k (and FSD/SSD)

= Parametrizes deviation from best guess

a=0.5

Best-guess return given
covariance matrix, etc.
Left envelope,

dependencies J
R

—
unknown ight envelope,
dependencies unknown
R—> *




* Results (for a = 1.50 not 0.50)

o =1.50
7 ISSD| H
0.2 Negative 1.0¢
1 Negative 1.08
| 2| Postive | 1074 |
3 Positive 1.0717
4 Positive 1.0705
5 Negative 1.07




i 4c. Paying to reduce a

= Reducing a qualifies more portfolios
= More portfolios tends to raise maximum

= How much is it worth to reduce o?

Left envelope, o= III )

Best-guess return given
Segment dependencies, etc.

Left envelope,
dependencies

UNKNOWN — Right envelope,
dependencies unknoan




i Paying to reduce o (cont.)

= Information that reduces a...
« .from k=0, to k= .,...

= ...Is worth paying f(a,) — f(a,) for

—f(k)= sup u
T VEY Ly gop o R
=

0 values K of of —s=




i Conclusion

= SSD and Info Gap Theory give different results
= Of course — they generate different models

= But both apply when
= Correlations are imperfectly known
= Distribution shapes are imperfectly known

= In this domain as in others:
= Severe uncertainty may be rationally addressed



