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Summary

When random variables possessing arbitrary distribution functions must be combined via +,-,* /,;min(), max(), etc.,

Monte Carlo simulation is commonly employed. However, Monte Carlo simulation assumes either independence or
(less commonly) some other specific dependency relationship, among other limitations (Ferson 1996). Discretization
of the distribution function followed by a numerical method is an alternative. Numerical methods can relax the
requirement of Monte Carlo that the distributions have a known dependency relationship, in which case the results are
typically envelope curves within which the cumulative distribution of the result must lie regardless of the dependency
relationship between the operands. The operands themselves can also be expressed with envelopes in order to
bound the effects of discretization of the input distributions (Berleant 1993; Williamson and Downs 1990). This
paper describes Statool, a software tool that implements Distribution Envelope Determination (DEnv), a numerical
algorithm for performing arithmetic on distribution function operands (Berleant and Goodman-Strauss 1998). Our
previously reported tool was limited to independent random variables (Berleant and Cheng 1998), a significant
limitation. Improvements to Statool are currently being driven by the needs of applications in accordance with our
research strategy, which is to identify such applications and then to modify Statool as needed to support them.
However, identifying good applications is itself a research topic. We are currently exploring applications to the
electric power industry (Sheblé and Berleant 2002; Berleant et al. 2002), and have obtained recent results on time to
completion of multiple tasks and time to failure of two components [7,8].

1 Introduction

Random variables may be combined using standard operations such as +,-,*, /, min(), and max(). When the random

variable operands are assumed independent, results may be calculated using a discretized convolution approach
(Ingram et al. 1968; Colombo and Jaarsma 1980; Kaplan 1981). Discretization error may be bounded by an interval
based extension (Berleant 1993). We have described a tool implementing this (Berleant and Cheng 1998), however
it is desirable though non-trivial to extend that work by eliminating the assumption that the random variables are
independent, thereby handling the case where their dependency relationship is unknown and unspecified. In this
case of unspecified dependency, obtaining bounded results requires that the entire range of possible dependency
relationships be accounted for, including independence as one of the infinite number of possible dependencies. While
the traditional approach of Monte Carlo simulation does not bound the range of results that are possible when
dependency is unspecified (Ferson 1996), the desired bounds can be obtained with other techniques. A copula-
based approach (Frank et al. 1987) which was significantly extended by Williamson and Downs (1990) and termed
Probabilistic Arithmetic, has been implemented in a commercially available software system, RiskCalc (Ferson et
al. 1998). DEnv (Distribution Envelope Determination) is described by Berleant and Goodman-Strauss (1998). A
comparison of DEnv and Probabilistic Arithmetic reveals underlying similarities (Regan et al., submitted), as well
as differences (Berleant and Goodman-Strauss 1998) that motivate its software implementation as well as continued
development in other ways.

This paper reports a software implementation of DEnv (see Figures 1 and 2). This tool represents an advance
over our previously developed tool, as described next.

e Calculation of z = f(z,y) when z and y are not assumed independent (Berleant and Goodman-Strauss 1998)
is now supported. The previously described tool assumes random variables are independent. The current tool
bounds the range of results that are plausible when independence is not assumed. Figure 1 shows an example.



e Calculation of max(z,y) and min(z,y) for random variables z and y is now supported. This can be useful
in problems like determining the time to complete two concurrent tasks, because the completion time of both
is the same as the completion time of the task that finishes second, i.e., the maximum of the two individual
completion times.

e Calculation of z = f(z,y) in some instances where the interval expression for f(z,y) leads to excess width is now
supported. Although in DEnv z and y are probability distributions, DEnv reduces operations on distributions
to operations on intervals, and the net effect of excess width in the interval calculated for f(z,y),  and y
intervals, is excessively wide envelopes derived for f(z,y), where z and y are distributions. The tool handles
such expressions under the severe restriction that the function is monotonic over the box defined by the range
over which distributions x and y are non-zero. While it would be desirable to incorporate more advanced
techniques for reducing excess width for non-monotonic functions, even the current capability extends the state
of the art for performing operations on distributions of unknown dependency, allowing evaluation of expressions
such as that which produced Figure 2 without excess width in the envelopes because excess width is removed
from the underlying interval evaluations of the expression.

e Calculation of cascaded operations is now supported. These are cases in which the result of one operation is
used as an input to the next operation. The distributions used as inputs to an operation are discretized density
functions, while the output of an operation consists of bounding envelopes which are cumulative distributions.
Thus to use the output of an operation as the input to another operations requires converting a pair of
bounding CDF envelopes into a discretized density function. We have done this by generalizing the histogram
representation of an input to allow overlapping bars. This in turn enables conversion of the envelopes to the
generalized histogram form, as will be described in the full paper. The generalized histogram form can then be
used as an input to an operation the same way an ordinary histogram discretization of a density function can.

2 Algorithmic Issues

Calculation of results in the case of unspecified dependency between operands is based on a joint distribution tableau
in which discretizations of each operand into intervals and associated probability masses form the marginals, and
the interior cells are subject to constraints imposed by the marginals. Linear programming is called subject to these
constraints, as a subroutine to find each desired point on the left and right envelopes. Only a limited number of
points need to be found this way, because the discrete nature of the problem allows connecting the points safely to
produce staircase-like envelopes in which each point is a bend in the staircase. While many details were covered in
Berleant and Goodman-Strauss (1998), the linear programming aspects were not. Therefore we will review the DEnv
algorithm in the full paper, emphasizing the linear programming aspects. Details on the algorithm as it applies to
particular problems, including its linear programming aspects, may also be found in other works under review and
available from the authors.
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Figure 1: Two normal distributions each with ;=1 and o =1 were tail-trimmed to within [-3, 5] (be-
cause the tool is currently limited to numerically valued bounds). These distributions were used as
input variables. Given no assumptions about their dependency relationship, staircase-shaped left and
right envelopes were computed which enclose the space within which the distribution of (a sufficiently
large number of) products of samples of the inputs must travel regardless of their dependency rela-
tionship. There are also three smoother curves showing the product distributions for three particular
dependency relationships that allow the curves to be computed relatively easily. One of these is for
independent inputs, and was computed using the Monte Carlo-generated products of 100,000 samples
of the inputs. The other two are analytically derived distributions of the product assuming Pearson
correlations of 1 and -1.

Figure 2 follows on next page: X and Y are inputs. Z constitutes envelopes around the result when
the dependency relationship between X and Y is unspecified, and Z = (38%Y —8% X )/(0.08+Y 40.048 % X).
The cumulative forms of histogram discretizations of PDFs (X and Y) are pairs of CDF bounds that
each look like two staircases in which the top bends of the lower curve touch the bottom bends of the
upper curve. The cumulative form of the result does not in general obey that constraint, and hence
cannot in general be displayed correctly as a histogram. It can be displayed correctly in cumulative



form, as shown in the lower subwindow.
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