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Abstract

Given two random variables whose dependency relationship is unknown, if a new random
variable is defined whose samples are some function of samples of the given random variables,
the distribution of this function is not fully determined. However, envelopes can be computed
that bound the space through which its cumulative distribution function must pass. If those
envelopes could be made to bound a smaller space, the cumulative distribution, while still not
fully determined, would at least be more constrained. We show how information about the
correlation between values of given random variables can lead to better envelopes around the
cumulative distribution of a function of their values.

1 Introduction and Background

A random variable whose samples are a function of samples of other random variables is often
called a derived random variable and its distribution a derived distribution. Given two random
variables with samples u and v, probability density functions f,(.) and f,(.), and cumulative
distribution functions F,(.) and F,(.), a sample = of a derived distribution can be defined in
various ways, such as:

e © =u+v (Frank et al. 1987);

e = = maz(u,v), which models the time to complete two concurrent tasks; and

—_ 38u—8v :
® Ty = 508470.0480" where v and v are the fuel cost rates of two electric generators and z,

is the optimal power output of the generator with rate v (Wood and Wollenberg 1996).

We wish to describe the distribution F,(.) of .

Derived distributions may be determined analytically or numerically. Analytical methods
tend either to assume distributions are of particular forms or, in the case of moment propagation,
to ignore other information about the distributions. Springer (1979 [18]) gives a reasonably com-
prehensive account up to its time of publication. We pursue the numerical strategy here. Our
strategy represents each input probability density function (PDF) discretely using a histogram-
like set of intervals with associated probabilities [2]. The discretized inputs form the marginals of
a discretized joint distribution termed a joint distribution tableau. Each cell in a joint distribu-
tion tableau contains an interval and a probability, and is termed a marginal cell if it contains an
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Table 1: a joint distribution tableau. Independent random variables with PDFs f,(.) and f,(.)
are shown in discretized form, using intervals u;, us, and us and their associated probabilities to
represent f,(.) in the bottom row, and intervals vy, vo, and v3 and their associated probabilities to
represent f,(.) in the left column. Values v and v are drawn from f,(.) and f,(.). The discretization
is coarse for illustration. We have discretized f,(.) and f,(.) without overlaps, so some intervals
have open endpoint(s). These are shown with a parenthesis instead of a square bracket.

interval u; or v; in the discretization of marginal f,(.) or f,(.), and an interior cell if contains an
interval and a probability p;; (Table 1). For each i,7, p;; = p(u € u; and v € v;). If the inputs
are statistically independent in the usual sense then p(u € u; and v € v;) = p(u € w;)-p(v € vj).

If each probability p;; is assumed to be distributed uniformly over its corresponding interval
v;/u;, a not unreasonable approximation if the discretization is sufficiently fine, then the cu-
mulative distribution function (CDF) of z, call it F(zo), could be plotted by taking values zg
and performing the following steps for each (Moore 1984).

1. Integrate each interior cell from —oo to zg.
2. Sum the integrals computed for the interior cells.

The PDF f,(.) instead of the CDF Fj(.) can also be obtained (Ingram et al. 1968; Colombo and
Jaarsma 1980). If no assumption is made about the distribution of the p;;’s over their respec-
tive domains, then Fj(.) cannot be determined precisely, but can be bounded with envelopes
(Figure 1) which bound the effects of discretization [2].

A problem with such methods is the need to know the dependency relationship between the
input distributions. Independence is a common assumption in practice though not always justi-
fied. Independence as well as other dependency relationships (as in Table 2) can be represented
in a joint distribution tableau by appropriate choice of interior cell probabilities. However,
sometimes no specification of dependency is justified by what is known about the problem.

There are a number of approaches to the problem of numerically computing derived distri-
butions without specifying a dependency relationship between the operands (Figure 2 shows an
example). One is Monte Carlo simulation (MC), as in Red-Horse and Benjamin [16]. However
the randomness inherent in MC can lead to complications in the results and their interpretation
(Ferson 1996). Another approach is based on copulas (Frank et al. 1987; Nelsen 1999), and
a tool implementing the Probabilistic Arithmetic (Williamson and Downs 1990) extension of
Frank et al. is available commercially (Ferson 2002). A third approach, clouds, was recently
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Figure 1: envelopes F(z) around CDF F,(z), where z = v/u and f,(.) and f,(.) are discretized
as shown in Table 1.
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Table 2: a joint distribution tableau like that of Table 1 except with different values for the p;;’s,
indicating that the joint distribution is different. Hence the dependency relationship between values
u and v of the marginals is also different.



proposed by Neumaier [15]. A fourth approach is discrete convolution of the actual distribu-
tions. Various techniques based on this approach have existed since at least as early as 1968 [12]
for the case of independence. More recently, the technique described here, called Distribution
Envelope Determination (DEnv), extended the discrete convolution technique to the case of
unknown dependency (Berleant and Goodman-Strauss 1998 [3]). DEnv is reviewed in the next
section. It is implemented in a downloadable tool called Statool [19].

Finally, the intermediate situation of partial information about the dependency may occur.
There is a need for ways to use partial information about dependency between inputs when de-
termining envelopes around the CDF's of derived distributions [10]. A common and important
way to express partial information about dependency is correlation. Correlation constitutes par-
tial information because it does not fully characterize a dependency relationship (different joint
distributions can have exactly the same correlation). We have extended DEnv to incorporate
information about correlation. We use Pearson correlation, the most common kind and the kind
normally implied by uses of the otherwise ambiguous term “correlation.” (In copula-based ap-
proaches, handling Pearson correlation is problematic [20] because converting joint distributions
into copulas involves stretching the marginals into a normalized form, and Pearson correlation
depends on the un-normalized forms.) The purpose of this paper is to report on an extension
of DEnv that uses Pearson correlation as a problem input.

We review the DEnv algorithm next (a more detailed account appears in [5]). Then we
explain how to extend DEnv to use correlation to provide constraints that can often decrease
the separation of the envelopes.

2 Distribution Envelope Determination (DEnv): a Re-
view

The goal. DEnv obtains boundaries around the space through which a derived CDF may
travel (Figure 2). More specifically, let F,(.) be the cumulative distribution for z, where z is
a function of u and v. The density function f,(.) of u is discretized with a set of intervals
u;, each associated with a probability such that the sum of these probabilities is 1. Density
function f,(.) of v is similarly discretized with a set of intervals v;. Because the discretizations
lose information that is present in the undiscretized f,(.) and f,(.), there will typically not be
a single CDF that is implied for z = g(u,v) even when the dependency relationship is fully
specified [2]. Our objective then is to obtain left and right envelopes around the family of CDFs
that are possible for . These envelopes may be expressed symbolically as the interval-valued
function F,(.). The left (top) envelope then is F,(.) and the right (bottom) envelope is Fy(.)

The givens. Envelope computation takes as input the correlation between the marginals,
when that is available, and a joint distribution tableau. A joint distribution tableau discretely
represents a family of joint distributions containing all joint distributions that are consistent with
that discretization. For example, recall the joint distribution tableau of Table 1. This tableau
states that p(v € [0,4]) = 0.1, p(u € [1,2]) = 0.2, and p(v € [0,4] and u € [1,2]) = 0.02. Each
cell in the tableau contains an interval-valued bin in which u or v (for a marginal cell), or z = v/u
(for an interior cell) might fall, and a probability that it falls in that bin. The probabilities of
interior cells are specified if the dependency relationship of the marginals is known, and not
specified if the dependency is not known. There are many variations in how values v and v of
the marginals can be distributed, and in how they can be jointly distributed, that are consistent
with these bin specifications. Put another way, Table 1 gives a correct discretization of any pair
of marginal distributions and their joint distribution for which the statements in all of the cells
are correct. Table 1 also contains a discretization of the distribution of x. This is the set of
interior cells, each of which specifies an interval-valued bin for © = v/u and a probability p;;.
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Figure 2: (top and middle) histogram-like discretizations of input PDFs f,(u) and f,(v). Each
bar is labeled at the top with its probability. (Bottom) two pairs of envelopes around F),.,(.), the
CDF of derived value £ = u - v. The two exterior envelopes bound the CDF when the dependency
relationship between u and v is unknown. The two interior envelopes bound the CDF when 4 and v
are independent. In the independent case, the envelopes are non-identical because they bound the

effects of information loss due to discretization. The rougher appearance of both pairs of envelopes
near u - v = 0 is because 0 - anything = 0.



In the following subsections we first assume independence in the traditional sense (Sec-
tion 2.1), then extend that to arbitrary dependency relationships (Section 2.2), then further
the algorithm to the case of an unknown dependency relationship (Section 2.3). With that as
background the case of a dependency relationship constrained by correlation is finally addressed
(Section 3). That case constitutes the new contribution of this report.

2.1 Solution for Independent Marginals

Equations (1)-(2) summarize the solution for the general case of x = g(u,v), with interval
extension x;; = g(u;,v;) where u; and v; are intervals in discretizations of the distributions
fu(.) and f,(.) from which values v and v are drawn.

F.z)= Y plucw) poev) 1)

i,5:8(u;,v;)<zo

Fo(wo)= )  plucw) poevy (2)

i,j:g(ui,vi)<zo

The summations are over all pairs 4, j such that g(u;,v;) < o in Equation (1), or g(u;, v;) < zg
in Equation (2).

We first explain why Equation (1) computes the left bounding envelope F,(z), using an
example. Then the differences for the right envelope are noted. Bolding will indicate an interval
and overlining the upper bound of an interval.

2.1.1 Computing the Left (Upper) Envelope from a Joint Distribution
Tableau.

The example is based on Table 1 and is stated in several steps.

1. For x < 0, F,(z) = 0 because no interior cell contains an interval containing any values
below zero, so p(x < 0) must be zero.

2. For 0 <z <1, F,(x) = p11 +po1 + p31 = 0.1 for the following reasons.

e Only the interior cells containing pi1, p21, and p3; have intervals with low bounds
< 1. Therefore only those cells can contain  when z <1, thereby contributing their
probability to the cumulative probability F, (x).

e Call the distribution of a particular interior cell’s probability over its interval its
mini-distribution. The probability associated with an interior cell must be distributed
somehow within its interval, but mini-distributions are not otherwise defined. There-
fore to obtain the height of the left bounding envelope at a given value of z we must
assume that each mini-distribution has a form that leads to the greatest possible
height at that value. The simplest such assumption is that the mini-distribution of
each interior cell interval is an impulse at its low bound, because then each interior
cell whose interval low bound is at or below a value z = xy will contribute all of its
probability to F (zo).

3. Forl<z< %, p32 = 0.24 can also contribute to F, (), so F,(x) = p11 + p21 + D31 + 32 =
0.34.

4. For 2 <z < %, p33 = 0.03 can also contribute to F,(z), for a total cumulative probability
of 0.37.

5. This line of reasoning continues until all interior cells contribute their probabilities to
F,(z), resulting in the staircase-shaped left envelope shown in Figure 1.



2.1.2 Computing the Right (Lower) Envelope

The right bounding envelope, F,(z), is derived similarly, except that points on it are obtained
by assuming that the probability in each interior cell is an impulse at its interval high bound
instead of its interval low bound.

2.2 Solution for an Arbitrary Dependency Between the Marginals

In Table 1, each p;; = p(u € u;)-p(v € v;) is the product of the probabilities of its corresponding
marginal cells. This is consistent with the traditional definition of statistical independence.
Other assignments of probabilities to the p;;’s imply other dependency relationships. If the
dependency relationship is known then the interior cells can be filled in so that their probabilities
are consistent with that dependency relationship and its joint distribution. In such cases the
value of each p;; is not necessarily p(u € w;) - p(v € v,), instead arising out of the dependency
relationship, which defines the value of p(u € u; and v € v;). This implies a generalization of
Equations (1)-(2), shown as Equations (3)-(4).

F.(20) = Z p(u € u; and v € v;) (3)

i,5:8(ui,v;)<zo

F.(x0) = Z p(u € u; and v € vj) (4)

i,j:g(ui,vi)<zo

2.3 Solution for the Case of Unknown Dependency Between the Marginals

As explained earlier (Section 2), the interior cells of a joint distribution tableau represent a
family of CDFs. When the dependency relationship between the marginals is unknown, then
Equations (1)-(4) cannot be evaluated because the p;;s are not determined. Intuitively, because
the p;;’s are now variable, they may take on values consistent with a greater variety of joint
distributions, and hence a greater variety of CDFs for derived random variable z. This will
tend to make the envelopes bounding this larger family of CDFs wider apart. An augmentation
to the algorithm is required to deal with this situation. The augmented algorithm is described
next in two steps, one short and one longer, and then summarized in Equations (5)-(9).

1. Determine which interior cells contribute. The same cells contribute their probabilities to
the CDF at a value of x as would contribute in the case of known dependency, and for the
same reasons. These are the cells specified by Equations (1)-(4).

2. Mazimize (for the left envelope), or minimize (for the right envelope) the sum of the
probabilities of the contributing cells. Because the p;;’s are not fully determined when
the dependency relationship is unknown, DEnv finds maximums and minimums given the
result of step 1 by manipulating the p;;’s in the joint distribution tableau. Call the interior
cells identified in step 1 the contributing cells, and the cells containing the remaining p;;’s
the non-contributing cells.

To maximize the sum of the probabilities of the contributing cells, we transfer as much
probability as possible from non-contributing interior cells to contributing interior cells.
To illustrate, recall Table 1. If the assumption that the marginals are independent is
relaxed, the p;;’s are underdetermined. However they are constrained by the fact that
the probabilities of the interior cells in any given row must sum to the probability of its
corresponding marginal cell, and similarly for any given column (Table 3).

For example, compare the assignment of probability to ps2 in Table 2 with its assignment

in Table 1, 0.3 vs. 0.24. In Table 2, F,(1.1) = p11 + p21 + p31 + p32 = 0.4, which is greater



p(v € v3) =0.1 P13 D23 P33
p(v € vo) = 0.8 P2 Do P32
p(v € vy) =0.1 Pi1 Do P31

vt u— Hp(u€u1)20.2‘p(u€u2)20.5‘p(u€u3)20.3‘

Row constraints Column constraints
p11 +p21 +p31 =0.1 | p11 +p12 +p13 =0.2
P12 +p22 +p32 = 0.8 | pa1 +paz2 +p23 = 0.5
P13 +p23 +p33 =0.1 | p31 +p32 +p33 = 0.3

Table 3: (top) a joint distribution tableau like that of Tables 1 and 2, but showing only the p;;’s
and without values assigned to them. (Bottom) the constraints that the tableau defines on the
values of the p;;’s. Each constraint states that the sum of the probabilities of the p;;’s in a row
or column equals the probability in the marginal cell for that row or column. This follows from
standard properties of joint distributions and their marginals.

than the 0.34 implied by p11 +p21 +ps1 +ps2 in Table 1. F,(1.1) can be no higher than the
Table 2 value of 0.4 no matter what the joint distribution is, because the third row must
comply with the constraint p11 + p21 + p31 = p(v € vi) = 0.1, and the only contributing
interior cell outside of the third row is the one containing ps2, which can be no higher than
0.3 because its column must comply with the constraint psy + ps2 + pss = p(u € uz) = 0.3.
The result is a point on the left envelope at = 1.1 that is higher than the envelope
derived for the independent case, a new height that applies not only to © = v/u = 1.1 but
also to all values of © = v/u for which the contributing cells are p11, p21, p31, and psa. For
other values of x the set of contributing cells is different, so the p;;’s of Table 2 might not
lead to the highest possible value of F,(z). In that case some other set, of assignments of
probabilities to the p;;’s consistent with Table 3 will result in the highest possible value
instead. Thus for each value of x = v/u it is necessary to find the contributing cells, and
assignments to the p;;’s in them that lead to the highest possible value of F,(z). The
result is ultimately a left envelope that is farther to the left than the left envelope shown
in Figure 1. Similar reasoning based on minimization instead of maximization gives a new
right envelope that is farther to the right than the one shown in Figure 1.

Maximizing the collective probability of a set of contributing cells by the ad hoc reasoning
process used for x = 1.1 for various values of x would rapidly become tedious to do
manually. Fortunately a general and automatable method is available in the form of
linear programming (LP). LP optimizes (maximizes or minimizes) a linear function, called
the objective function, with respect to a set of linear constraints. The linear function
to optimize in this case is the sum of the probabilities of the contributing cells. LP
will maximize this consistently with the linear constraints imposed by the marginals, one
constraint for each u; and one for each v; in the joint distribution tableau (Table 3).
LP is invoked and its output, the maximum (minimum) possible total probability that
can be allocated among the contributing cells, is the y coordinate associated with z, thus
completing the coordinates for a point on the left (right) envelope.

The extensions of Equations (1)-(2) and (3)-(4) to objective functions to optimize for the un-
known dependency situation are:



F_x(xo) = max Z Dij (5)

i,j:g(ui,vy)<zo
for the left envelope, and
F,(z9) = min Z Dij (6)
i,j:g(ui,v;)<zo

for the right envelope. The applicable constraints are:

> piy=p(w),  foralli (7)
J

Zpij = p(v;j), for all j (8)
i

pij >0, for all i, j. (9)

3 Using Correlation to Move the Envelopes Closer To-
gether

Specifying a dependency relationship between the input random variables implies envelopes
that are closer together than when the dependency is unknown (Figure 2). A value or range for
correlation is a partial specification of the dependency, and so implies envelopes that are:

1) at least as close together as when the dependency is unknown, but
2) at least as far apart as when the dependency is fully specified.

DEnv infers the effects of constraints on envelopes via calls to a linear programming routine.
Thus to use information about correlation, this information must be expressed as linear con-
straints. These constraints can then supplement the row and column constraints used by the
LP calls. This is explained next, while Section 4 provides examples.

We begin with a standard formula for the Pearson correlation coefficient p. We use Pearson
correlation in this paper as it is the most common kind of correlation and is usually implied by
otherwise unqualified uses of the term “correlation.”

_ E(uwv) — E(u)E(v) _ Huv — Pu * Py ) 10
g VIE@?) = E)?][E(v?) — B(v)?] on 0y 1o

u

Here p is the Pearson correlation coefficient of the distributions of v and v, u and v are values
to be drawn from the marginal distributions, E(u) is the expectation function and is equivalent
to the mean yu,, F(u?) — E(u)? = o2 is the variance of u, and similarly for v. Since p and the
marginals are problem inputs, all terms can be computed from the inputs except E(uv), the
only term that depends on the joint distribution. Solving for E(uv) gives

E(uw) = E(u)E(v) + pV/[E(u?) = Eu)*|[E(v?) - E(v)?]. (11)

Because DEnv uses the PDFs of u and v after they have been discretized into sets of intervals
and their associated probabilities, and because the distribution of each associated probability
over its interval is unspecified, terms in Equation (11) can be determined only to within intervals.
For example, given the discretized distribution of v in Tables 1 and 2,

E(w) €0.1-[0,4] +0.8- (4,5] + 0.1 - (5,9] = (3.7,5.3]. (12)



If we follow the convention of bolding interval-valued symbols, then E(v) = (3.7, 5.3]. This leads
to an intervalized form of Equation (11) suitable for use with discrete representations of PDFs
for v and v.

E; = E(w) = E(u)E(v) + pV/[E(w?) - E@)][E(v?) - E(v)?] = pyp, + pV/oio?  (13)

Thus E(uv) is calculated from p and discretizations of the PDFs of u and v. Since p and the
marginals are givens, we will call this expectation Eg.

Another way to calculate E(uv) is directly from a joint distribution tableau. This gives an
interval for E(uv), namely El ;u;v;p;j. See Table 4. Because it is computed as a property of
the joint distribution, as expressed discretely by a given joint distribution tableau, call it E¢(.).
Its argument is a joint distribution tableau with a fully specified set of value assignments to the
pi;’s. The assignment of probability values to the interior cells of the joint distribution tableau,
in conjunction with the u;v; intervals, implies an interval for E(.) that must be consistent
with Eg (which represents the discretized distributions of v and v and the given correlation).
If E¢(.) and Eg are not consistent with each other, that assignment of values to the p;;’s is not
consistent with the given correlation and therefore is not allowed. As the following steps show,
consistency means that E¢(.) and Eg overlap.

1. Eg is the interval of admissible values for E(uv) based on p and other problem inputs
as specified in Equation (13). The terms in (13) are all calculated from the u;’s and
v;’s (see e.g. Equation (12)). Because the u;’s and v;’s appear repeatedly in (13), naive
interval evaluation will often result in Eg containing excess width, thereby weakening the
power of Eg as a constraint on admissible values of E(uv). To avoid that, an optimization
technique can be used to compute good bounds for Eg. Alternatively, values or ranges
for the means (u,, and p,) and variances (02 and 02) of the marginals can be provided

as problem inputs. This has the added benefit of allowing incorporation of mean and

variance information that may be available and more specific than the bounds for mean

and variance derivable directly from the discretized marginals.

2. E¢(.), in contrast to Eg, is affected by the p;;’s, which are determined by the joint distri-
bution. An expression for E¢(.) may be derived as follows.

E(.) = Z u;v;p;; (by the definition of expectation)
2
= Z u,;v;p;; (because the maximum of the sum is the sum of the maximums)
i,

= E u;v;p;; (because the p;; are numbers)
1)

E((.) = Zuivjpij (similarly). (14)
i,J

To compute bounds on E¢(.) using Equations (14), the numerical value of each u;v; and
u;v; term is needed. The standard definition of interval multiplication accounts for all
possible combinations of signs on the bounds of u; and v; by multiplying each bound of
u; by each bound of v; (four combinations), and using the min and maz of the four as
w;v; and u;v; respectively (e.g. Alefeld and Herzberger 1983).

3. The p;;’s are variables because they are under-determined by the row and column con-
straints (Table 3). Assigning a specific set of values to the p;;’s implies an associated

10



z = g(u,v) € g(u, vj) = xij

\Zi pij:p(UEui andUEVj)

u;v; = [min(w; vy, W; V5, W vj, 0 V;),
maz(; vj, W vy, v, Wv;)]

vt oz =guo) A - u;

u —r

Table 4: abstract template for joint distribution tableaus. The bottom row includes a marginal
cell describing the case where a value u drawn from marginal f,(.) falls within interval u; of the
discretization of f,(.). The left column includes a similar cell for v, f,(.), and v;. The function for
combining values v and v is g(u, v) = z, its interval extension is g(u;, v;) = x;;, and the distribution
of value z = g(u,v) is represented discretely by the interior cells of the tableau, one of which is
shown in detail. Product u;v; is used in calculating E¢(.), which is the range of possible values of
E(uwv) for the different joint distributions consistent with the intervals and p;;’s in the interior cells
of the tableau.

interval E¢(.), which can be calculated per Equations (14). Some sets of value assignments
to the p;;’s imply intervals for E¢(.) that do not overlap Eg. Those assignments are in-
consistent with the correlation provided as a problem input (as explained in detail in the
next step), and so can be excluded as implausible. Excluding a set of assignments to the
pi;’s can move the left envelope toward the right of where it would be if there was no
information about correlation, and/or move the right envelope toward the left, narrowing
their separation. This is because the excluded set of assignments might have a higher
maximum cumulation F,(z) or lower minimum cumulation F,(z) for a given value of z
than any that are not excluded.

4. The previous step stated that E¢(.) and Eg are inconsistent when they have no overlap.
This step explains why. Specifying the values of the p;;’s does not define the distribution
of any p;; over u;v;. Hence a joint distribution tableau with specified values for its
pij’s represents a family of joint distributions. All joint distributions that conform to the
discretization expressed by the joint distribution tableau are in that family.

A joint distribution for values u and v has a numerical value for E(uv). E¢(.) =
> Wivjpi; thus gives the range of numerical values for E(uv) exhibited by the vari-
ous joint distributions in the family associated with a particular set of value assignments
to the p;;’s. If E¢(.) does not intersect Eg, then there is no joint distribution in that
family for which E(uv) € Eg, so that set of value assignments to the p;;’s is excludable as
inconsistent with the value p or range p provided as a problem input. This requirement
that E¢(.) and Eg overlap is stated in inequality form as the following two constraints:

and

o()
¢()- (15)

IN

SIS
o

g 2

5. To use constraints (15) in a linear programming problem, symbols E; and Eg are re-

placed with their numerical values as calculated in step 1. E¢(.) and E¢(.) are replaced
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with Z” w;v;p;; and E” u;V;p;; respectively, as described in step 2. This results in
Equations (16).

Boutb, + p/ o202 < Z w,v,;p;; and
]
Bulty + PV OG05 >

Zuivjpij- (16)
i,J

Since the only variables in Equations (16) are the p;;’s, (16) constitutes linear constraints
as required by LP. These can supplement the row and column constraints (Table 3), and
will tend to result in envelopes that are closer together than those resulting from the row
and column constraints alone.

3.1 Strengthening the Effect of Correlation

The width of interval E¢(.) = Z” u;v;p;; is derived from the widths of the u;v; terms. However
if the distribution of each probability p;; over the corresponding interval u;v; was fully defined
then the overall distribution of uv would be fully defined. Then a numerically-valued function,
call it E(.), could be calculated instead of the interval-valued function E¢(.). To define the
distribution of each p;; one might consider assuming that, as examples, the distribution of each
p;j over the interval u;v; is uniform, or is an impulse at the midpoint of u;v;, or has some other
fully defined form.

Since Ei(.) is a number it will be narrower than the interval E¢(.), unless E¢(.) is a thin
interval containing only one number. (This will occur in the important special case where u and
v are discretized as series of impulses.) Suppose E;(.) is in fact narrower. Then it is less likely to
intersect with Eg and so more likely to be excluded as inconsistent with Eg. Thus constraints
(15) would be strengthened, leading to envelopes that are closer together.

For example, assume the distribution of each p;; is uniform over u;v;. Since the expectation
of a uniform distribution is its midpoint, Equations (14) become

Ei() =E() = Ei() =Y mid(wv;) - pi; (17)
]
where mid(.) is the midpoint of its interval argument. Then (15) becomes the stronger pair of
constraints

IN

E(.)
> Ei(.). (18)

Sl's

)

The effect of correlation can be strengthened not only by narrowing E¢(.), but also by
narrowing Eg. A way to narrow Eg is to accept as inputs point value(s) for expectations and
variances i, = E(u), p, = E(v), 02 = [E(u?) — E(u)?], and/or 02 = [E(v?) — E(v)?], instead of
calculating intervals for them from the discretized marginals as in step 1 of Section 3. If these
were all point values then the width of Eg would be controlled by the width of p, and if p was
a number then Eg would be a number (call it E,;) as well.

Since narrowing either E¢(.) or Eg tends to strengthen the effects of correlation, a third
approach that narrows both is to use a finer discretization for the marginals. Finer discretiza-
tions narrow Eg by narrowing E(u), E(v), E(u?), and E(v?) in Equation (13), and also nar-
row computations of E¢(.) by narrowing the u;’s and v;’s, resulting in narrower u;v; terms

12



Table 5:

vy = [100,100] || v+ v =[101,101] | u + v = [200, 200]
p=10.5 p12 =" P22 =7
vy =[1,1] u+v=12,2] u+v = [101,101]
p=10.5 p11 =" P21 =7
utv 2| u=[1,1] uy = [100, 100]
p=0.5 p=20.5
Constraint name Equation
Top row p12 + p22 = 0.5
2nd row P11 +p21 = 0.5
2nd column p12 +p11 = 0.5
Right column P22 +p21 = 0.5

implied by the tableau.

in Equations (14). Other ways of expressing partial information about dependency, including
identification of useful assumptions besides correlation, and when those assumptions are rea-
sonable to make, are likely to enable additional progress in narrowing envelopes around derived
distributions.

4 Examples

We start with an example that is simple enough to go through in full detail, followed by another
example of more realistic complexity.

4.1 A Basic, Detailed Example

Let the distribution for value u consist of two impulses of equal probability: u; = [1,1] and
uy = [100,100], with p(u € uy) = p(u € uy) = 0.5, and let the distribution describing v be
the same as for u. The joint distribution tableau is shown in Table 5. First the envelopes for
the case of unknown dependency are derived. Then correlation is added as a constraint and we
show how this reduces the separation between the envelopes.

4.1.1 TUnknown dependency condition
The left envelope may be derived as follows.

e For u +v <2, Fyuty(.) =0 because u + v cannot be below 2.

e For u +v € [2,101), only pi; contributes its probability to Fy4,(.), and its maximum
possible value is 0.5. This is because p;; = 0.5 is consistent with the row and column
constraints, shown in Table 5, by setting p11 = p22 = 0.5 and p12 = po; = 0, while any
value for p;; over 0.5 would immediately violate the 2nd row and 2nd column constraints.
Thus Fy4,(.) = 0.5 in this case.

e For u +wv € [101,200), p11, p12, and po; contribute to F,4,(.). Their sum py; + p12 + pa1
can be as high as 1 while remaining consistent with the row and column constraints, by
setting pi2 = p21 = 0.5 and p11 = pas = 0. Thus F,1,(.) = 1 in this case.

13
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Figure 3: envelopes around the CDF of u + v, for the joint distribution tableau of Table 5.

e For u +v > 200, Fyi,(.) = 1 because u + v must be at or below 200.
The right envelope may be derived as follows.

e For u+v <2 Fui,(.) =0 because u + v cannot be below 2.

e For u+ v € [2,101), only p11 contributes to Fy,(.). The minimum possible value of pi;
is 0 because the row and column constraints are all satisfied if we set p11 = p2s = 0 and
p12 = p21 = 0.5. Thus Fy1,(.) =0 in this case.

e For u + v € [101,200), p11, p12, and pa; contribute to Fy1,(.). Their sum p1; + p1a + pa1
can be as low as 0.5 while remaining consistent with the row and column constraints, by
setting p12 = po1 = 0 and p1; = p22 = 0.5. Any value below 0.5 for the sum would
immediately violate the 2nd row and 2nd column constraints. Thus F,,(.) = 0.5 in this
case.

e For u +v > 200, Fyi,(.) = 1 because u + v must be at or below 200.

The envelopes are shown in Figure 3. Next we show how correlation narrows the separation of
these envelopes.
4.1.2 Effect of correlation

Let us illustrate how correlation works step by step, extending the example just detailed by
incorporating the information that p € [0.7,1]. From this, and the joint distribution tableau of
Table 5, Eg may be calculated by substituting intervals into Equation (13) as follows:

E. — [L1]+[100,100]  [1,1]+[100,100]
g = 2 ’ 2

2 2
1,1]2+[100,100]2 1,1]4[100,100 1,1]2+4[100,100]2 1,1]4[100,100
+[0.7,1].\/<[ | [2 12 _ ([ | [2 ]) > . ([ ] [2 | ([ | [2 ]) >

= [4265.425, 5000.5].

Next, values are substituted from the interior cells of the joint distribution tableau of Table 5
into Equation (14) to get an expression for E¢(.), as follows.

E¢() = pu-[1,1]-[1,1] 4 p12 - [1,1] - [100,100] + p2y - [100,100] - [1,1] + pao - [100, 100] - [100, 100]
p11 + 100p1s 4+ 100pa; + 10%pas

14



Thus E¢(.) is a thin interval in this example. To signify that, we will consider it a number
and use the symbol E;(.) henceforth. The four constraints of Table 5 are augmented with the
following two new constraints derived from the computations for Eg and E;(.) just shown, and
from Equations (15).

4265.425
5000.5

P11+ 100p12 + 100pa; + 10%p2o (19)

<
> p11 + 100p12 + 100p2; + 104p22. (20)

Applying the new constraints. One can now ask how adding Constraints (19)-(20) to the
row and column constraints leads to envelopes that are closer together than for the unknown
dependency condition.

The new left envelope may be derived as follows.
e For u + v < 2 the earlier conclusion, Fy1,(.) = 0, is unaffected.

e For u + v € [2,101) the earlier conclusion, F,1,(.) = 0.5, occurs for p;; = paa = 0.5
and pi2 = p21 = 0, is unchanged because those assignments to the p;;’s imply E(.)
0.5+ 100 -0+ 100 - 0 + 10* - 0.5 = 5000.5, and 5000.5 is consistent with Constraints (19)-
(20).

e For u + v € [101,200) the analysis is more involved. The earlier conclusion based on only
the row and column constraints was that F,,(.) = p11 +pi2 +p21 = 1 and that this could
be achieved by setting p1o = p21 = 0.5 and p1; = pas = 0. For the present scenario of
p € [0.7,1], however, this result is too high because those assignments to the p;;’s lead to
the following calculation.

Ey()=1-0+100-0.5+ 100- 0.5+ 10* - 0 = 100 (21)

which violates Constraint (19). The reason is that these assignments to the p;;’s allocate
all the probability for value u + v in Figure 5 to p12 and ps;, which are in the cells for
which one marginal has value 1 and the other has value 100. Thus when a value of one
marginal is low the value of the other is high. This allocation is inconsistent with the given
correlation of [0.7,1] which, being positive, requires u and v to tend to be either both low
or both high.

To calculate a new value of Fy 1, (.) for u+wv € [101,200) given p € [0.7,1], we can derive
and solve simultaneous equations on the p;;’s by hand or, as Statool does, invoke linear
programming on a computer. For illustration we do it next using simultaneous equations.

The extreme of assigning all probability to pi2 and p2; and no probability to p;; and pos,
which gave the envelope height calculated earlier for the unknown dependency condition,
is not possible for p € [0.7,1] as shown by Equation (21). We wish to reduce the sum
P11 + P12 + p21 (hence increasing p2») just enough to raise E;(.) from 100 up to 4265.425,
because this will result in the maximum possible assignment to py; + p12 + p21 that is
consistent with Ey(.) = p11 + 100p12 + 100p2; + 10%pay € [4265.425,5000.5], as required
by Constraints (19)-(20). To do this we use, as one of the simultaneous equations, pi1 +
100p12 + 100ps; + 10*psy = 4265.425. Solving this simultaneously with the constraint
equations of Table 5 gives p11 + pi2 + p21 = 0.425 4+ 0.075 + 0.075 = 0.575.

The conclusion is that, for v + v € [101,200) and p € [0.7,1], the left envelope height

Fu1v(.) is 0.575, which is considerably lower than its value of 1 under the unknown de-
pendency condition.

e For u + v > 200, the earlier conclusion that F,,(.) =1 is unaffected.

The new right envelope may be derived as follows.

15
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Figure 4: envelopes around the CDF of u + v, for the joint distribution tableau of Table 5, given
p €0.7,1].

e For u + v < 2 the earlier conclusion, F,, = 0, is unaffected.

e For u+ v € [2,101), only p;; contributes to F,4,(.). The minimum possible value of 0
for pi1 found for the unknown dependency condition is too low for p € [0.7,1]. This is
because p1; = 0 implies p22 = p11 = 0 and pi12 = p21 = 0.5 due to the constraints shown
in Table 5, just as in the discussion of u + v € [101,200) for the left envelope, above.
There, we moved as small as possible an amount of probability out of pi;; + pi12 + po1,
which was the sum of the contributing cell probabilities. This is the same as moving
as small a probability as possible into ps2, the only non-contributing cell and thus the
complement of the contributing cells. Here, we wish to move as small as possible an
amount into pi1, not pso, but because the constraints in Table 5 imply p1; = po2, the
resulting allocation of probabilities among the interior cells is actually the same. Thus,
as above, Constraints (19)-(20) in conjunction with the constraints of Table 5 imply a
minimum value for pi11 = pas of 1 — (p11 + P12 + p21) = 1 — 0.575 = 0.425. Therefore for
u+ v € [2,101), when p € [0.7,1], Fy1,(.) = 0.425. This is considerably higher than its
value of 0 under the unknown dependency condition.

e For u + v € [101,200), the earlier conclusion that F,,(.) = 0.5 occurs for p;o = p2; =0
and p11 = p22 = 0.5 is unchanged, because those assignments to the p;;’s imply E;(.) =
0.5+ 1000+ 100 -0 + 10* - 0.5 = 5000.5, which is consistent with Constraints (19)-(20).

e For u + v > 200 the earlier conclusion, Fy4,(.) = 1, is unaffected.

The envelopes around the CDF of u + v when p € [0.7,1] are shown in Figure 4. They
are closer together than for the unknown dependency condition shown in Figure 3. For ease of
exposition the example just described used a joint distribution tableau containing numbers (or
strictly speaking, thin intervals). If the marginal intervals are widened, giving weaker specifica-
tions for the inputs, wider envelopes around the CDF of u + v result (Figure 5).

4.2 A More Complex Example

Here we show the effects of different correlation conditions using inputs with realistically detailed
discretizations. Figures 6 and 7 show two discretized distributions. Let u and v be values drawn
from the skewed distribution and the bimodal distribution, respectively. (Bimodal distributions
can find application in describing system parameters that are controlled to stay within an
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vy =[99,101] || w+v €[99,103] | u + v € [198,202]
p=0.5 P12 =7 P22 =7
vy =10,2] u+v € [0,4] u+v € [99,103]
p=0.5 P11 =7 p21 =7
vt u+4v 2 | u=10,2] uy = [99, 101]
u— || p=0.5 p=20.>
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Figure 5: (top) joint distribution tableau like that of Table 5 except that the intervals are wider.
(Bottom) envelopes around the CDF of u + v for the joint distribution tableau at top, assuming
p € [0.7,1]. These envelopes are wider than the envelopes in Figure 4 because the u;’s and v;’s
here specify the PDFs for v and v more weakly, with widths of 2 instead of 0 as in Table 5.

17



—= o

Figure 6: a discretized input distribution. The flat tops of the bars are an artifact of the graphical
representation and do not imply uniform (or any other) distribution of probability over the domain

of any given bar.
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Figure 7: discretization of a bimodal PDF to be used as a divisor.

allowable range. As the parameter wanders within this range, it often approaches the endpoints

of the range, activating a control mechanism that prevents it from passing those endpoints.

As a result the parameter may tend to spend more time near the endpoints of the range than

in the middle.) We further specify that u, € [3,3.1], u, € [5.15,5.25], 02 € [5,5.1], and
2 € [11.4,11.5).

Let z = ¢. Assuming that values u and v are independent gives envelopes for z that are
relatively close together (Figure 8). The relatively small separation between them occurs because
the algorithm automatically bounds the effects of discretization as noted in Section 2. Removing
the independence assumption leads to envelopes that are much wider apart (Figure 9).

Specifying that the correlation is negative, that is, that p € [—1,0), results in envelopes that
are slightly narrower (Figure 10) than for the unknown correlation condition. Note for example
the rounding of the northwest knee of the left envelope relative to the unknown correlation case
in Figure 9. This rounding means we can, for example, rule out the possibility that the CDF
has value 1 (i.e. certainty) for some values on the horizontal axis, which could potentially be
significant for decision-making. Restricting the sign of the correlation appears to usually be
a rather weak constraint, since many different dependency relationships can have correlation
measures with the same sign.

Stronger correlations can have greater effects. Figure 11 shows 3 pairs of envelopes super-
posed. Progressing from weaker to stronger restrictions on correlation, the outermost envelopes
bound the possible CDFs for z given p € [-1,—0.5]. The 2nd envelope from the left and 2nd
envelope from the left bound the possible CDFs given [—1,—0.8]. The innermost envelopes
bound the possible CDFs given the strongest restriction on correlation, p € [—-1, —0.83].
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the dependency relationship between v and v. The lack of information about dependency yields

assumed independent. This is a strong assumption that leads to envelopes that are relatively close
envelopes around the cumulative distribution of z that are relatively widely separated.

Figure 8: envelopes around the cumulative distribution for z, where z = u/v and u and v are
together.

Figure 10: envelopes around the CDF of z = u/v, where u and v are assumed to have negative
19

correlation (p < 0).
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Figure 11: envelopes around the CDF for z = u/v under three correlation conditions. The out-
ermost envelopes are for the weakest of the three, p € [—1,—0.5]. The envelopes 2nd from the
left and 2nd from the right are for p € [—1, —0.8]. The innermost envelopes are for the strongest
correlation condition, p € [—1,—0.83].

5 Conclusion

DEnv (Distribution Envelope Determination) is a numerical algorithm for computing envelopes
around the space of possible cumulative distribution functions of derived random variables.
These are random variables whose values are a function of the values of other random variable(s).
Envelopes are appropriate for safely bounding the CDF's of derived random variables when the
dependency relationship between the input distributions is not fully known. This is important
because often available information is insufficient to reliably justify a particular dependency
relationship. Each possible dependency relationship implies some CDF in the family that is
bounded by the envelopes. Envelopes can also bound the effects of discretization, which occurs
because DEnv requires that input distributions be discretized.

We have previously reported how DEnv can handle the case where the dependency relation-
ship between input distributions is unknown. However, partial information about dependency
may be available in the form of values or ranges for correlation. This paper extends the DEnv
algorithm to incorporate such information about correlation. Pearson correlation is used be-
cause it is the most commonly used kind of correlation. Some examples are provided, showing
how correlation can strengthen results relative to those obtained without any information about
dependency.
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