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Abstract� In many practical situations, there is a need to
combine interval and probabilistic uncertainty. The need for such
a combination leads to two types of problems: (1) how to process
the given combined uncertainty, and (2) how to gauge the amount
of uncertainty and � a related question � how to best decrease
this uncertainty. In our research, we concentrate on these two
types of problems. In this paper, we present two examples that
illustrate how the corresponding problems can be solved.

I. INTRODUCTION: INTERVAL COMPUTATIONS

Why indirect measurements? In many real-life situations,
we are interested in the value of a physical quantity y that is
dif�cult or impossible to measure directly. Examples of such
quantities are the distance to a star and the amount of oil in
a given well. Since we cannot measure y directly, a natural
strategy is to measure y indirectly. Speci�cally, we �nd some
easier-to-measure quantities x1, . . . , xn which are related to y
by a known relation y = f(x1, . . . , xn). To estimate y, we �rst
obtain measurements x̃1, . . . , x̃n of the quantities x1, . . . , xn,
and then compute an estimate for y of ỹ = f(x̃1, . . . , x̃n).
Why interval computations? Measurement are never 100%
accurate, so the actual value xi of measured quantity i can dif-
fer from the measurement result x̃i. Because of these measure-
ment errors ∆xi

def= x̃i − xi, the result ỹ = f(x̃1, . . . , x̃n) is,
in general, different from the actual value y = f(x1, . . . , xn)
of the desired quantity y [15].

It is desirable to describe the error ∆y
def= ỹ−y in the result.

To do that, we must have some information about the errors
of direct measurements.

What do we know about the errors ∆xi of direct measure-
ments? First, the manufacturer of the measuring instrument
may supply us with an upper bound ∆i on the measurement
error. In this case, once we perform a measurement and get a
measurement result x̃i, we know that the actual (unknown)
value xi of the measured quantity is in the interval xi =
[xi, xi], where xi = x̃i −∆i and xi = x̃i + ∆i.

In many practical situations, we have no information about
the probabilities of ∆xi; the only information we have is the
upper bound on the measurement error.

In this case, after performing a measurement and getting
a measurement result x̃i, the only information that we have
about the actual value xi of the measured quantity is that
it belongs to the interval xi = [x̃i − ∆i, x̃i + ∆i].1 In
such situations, the only information that we have about the
(unknown) actual value of y = f(x1, . . . , xn) is that y belongs
to the range y = [y, y] of the function f over the box
x1 × . . .× xn:

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.
The process of computing this interval range based on the
input intervals xi is part of interval computations; see, e.g., [6].

Interval computations techniques: brief reminder. Histor-
ically what is often called the �straightforward� method was
the �rst for estimating the desired range of a function. This
method is based on the fact that inside the computer, every
algorithm for processing real numbers is implemented as a
sequence of elementary operations a+ b, a− b, a · b, and a/b;
usually, a/b is computed as a ·(1/b), making a+b, a−b, a ·b,
and 1/a suf�cient. For each of these elementary operations
f(a, b), if we know the intervals a and b for a and b, we can
compute the exact range f(a,b). The corresponding formulas
form the so-called interval arithmetic:

[a, a] + [b, b] = [a + b, a + b];

[a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] =

[min(a · b, a · b, a · b, a · b),max(a · b, a · b, a · b, a · b)];
1/[a, a] = [1/a, 1/a] if 0 6∈ [a, a].

In straightforward interval computations, we replace each
�oating point operation in the program f by the corresponding

1We use the convention of bold, non-italic symbols for naming intervals.



interval operation. It is known that, as a result, we get an
enclosure Y ⊇ y of the desired range.

In some cases, Y = y. In more complex cases, the enclo-
sure has excess width (Y ⊃ y). There exist more sophisticated
techniques for producing narrower enclosures, e.g., centered
form methods [6]. However, for each of these techniques, there
are cases when we still get excess width. Reason: it is known
(see, e.g., [11]), that the problem of computing the exact
range is NP-hard even for polynomial functions f(x1, . . . , xn)
(indeed, even for quadratic functions f ).
What we plan to do in this paper. In many practical
situations, there is a need to combine interval and probabilistic
uncertainty. The need for such a combination leads to two
types of problems:
• how to process the given combined uncertainty, and
• how to gauge the amount of uncertainty and � a related

question � how to best decrease this uncertainty.
In our research, we concentrate on these two types of prob-
lems. In this paper, we present two examples that illustrate
how the corresponding problems can be solved.

II. ADDING PROBABILITIES AND CORRELATIONS TO
INTERVAL COMPUTATIONS: FORMULATION OF THE FIRST

PROBLEM

Motivating practical problem. In some practical situations,
in addition to lower and upper bounds on each random variable
xi, we know bounds Ei = [Ei, Ei] on its mean Ei.

Indeed, in measurement practice (e.g. [15]), the overall
measurement error ∆x is usually represented as a sum of
two components: a systematic error component ∆sx which
is de�ned as the expected value E[∆x], and a random error
component ∆rx which is de�ned as the difference between
overall measurement error ∆x and the systematic error com-
ponent ∆sx: ∆rx

def= ∆x − ∆sx. In addition to an upper
bound ∆ on the magnitude of overall measurement errors,
the manufacturers of a measuring instrument often provide
an upper bound ∆s on the magnitude of the systematic error
component: |∆sx| ≤ ∆s.

When this additional information is given, then, after obtain-
ing a measurement result x̃, we not only have the information
that the actual value x of the measured quantity belongs to
the interval x = [x̃ − ∆, x̃ + ∆], but we can also conclude
that the expected value E[x] of x = x̃ − ∆x (which is
E[x] = x̃ − E[∆x] = x̃ − ∆sx) belongs to the interval
[x̃−∆s, x̃ + ∆s].

If we have this information for every xi, then, in addition
to the interval y of possible values of y, we can also know
the interval of possible values of E[y]. This additional interval
will, we hypothesized, provide us with information on how re-
peated measurements can improve the accuracy of this indirect
measurement. Thus, we arrive at the following problem.
New problem in precise terms. Given an algorithm comput-
ing a function f(x1, . . . , xn) from IRn to IR, and values x1,
x1, . . . , xn, xn, E1, E1, . . . , En, En, we want to �nd

E
def= min{E[f(x1, . . . , xn)] : all distributions of

(x1, . . . , xn) for which x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn],

E[x1] ∈ [E1, E1], . . . E[xn] ∈ [En, En]};
and E which is the maximum of E[f(x1, . . . , xn)] for all such
distributions.

In addition to considering all possible distributions, we can
also consider the case when all the variables xi are inde-
pendent, or, more generally, when we know the correlations
among the xi.

III. FIRST PROBLEM: WHAT IS KNOWN

Extending interval arithmetic to handle expectations. The
main idea behind standard interval computations can be
applied here as well. First we �nd out how to solve the
problem when n = 2 and f(x1, x2) is one of the standard
arithmetic operations. Then, once we have an arbitrary algo-
rithm f(x1, . . . , xn), we parse it and replace each elementary
operation on real numbers with the corresponding operation
on quadruples (x,E, E, x).

To implement this idea, we must therefore know how to
solve the above problem for elementary operations.

For addition, the answer is straightforward: E[x1 + x2] =
E[x1]+E[x2]. So, if y = x1 +x2, the only possible value for
E = E[y] is E = E1 + E2. This value does not depend
on whether we have correlation or whether we have any
information about the correlation. Thus, E = E1 + E2.

Similarly, the answer is straightforward for subtraction: if
y = x1 − x2, there is only one possible value for E = E[y]:
the value E = E1 − E2. Thus, E = E1 −E2.

For multiplication, if the variables x1 and x2 are indepen-
dent, then E[x1 ·x2] = E[x1] ·E[x2]. Hence, if y = x1 ·x2 and
x1 and x2 are independent, there is only one possible value
for E = E[y]: the value E = E1 · E2; hence E = E1 ·E2.

The only non-trivial case is the case of multiplication in
the presence of possible correlation. When we know the exact
values of E1 and E2, the solution to the above problem is
known [9]:

Theorem 1. If y = x1 · x2, and we have no information
about the correlation, then the range [E, E] of E[x1 · x2] is
[Emin, Emax], where pi

def= (Ei − xi)/(xi − xi), and:

Emin
def= max(p1 + p2 − 1, 0) · x1 · x2+

min(p1, 1− p2) · x1 · x2 + min(1− p1, p2) · x1 · x2+ (1)

max(1− p1 − p2, 0) · x1 · x2;

Emax
def= min(p1, p2) · x1 · x2+

max(p1 − p2, 0) · x1 · x2 + max(p2 − p1, 0) · x1 · x2+ (2)

min(1− p1, 1− p2) · x1 · x2.

Comment. In this case, E = [Emin, Emax]. In the following
text, we will use the expressions (1) and (2) to describe the
ranges of E for other cases, when the expression for the



range E = [E,E] is different from the above expression
[Emin, Emax].

For the inverse y = 1/x1, a �nite range is possible only
when 0 6∈ x1. Without loss of generality, we can consider
the case when 0 < x1. In this case, we have the following
bound [9]:

Theorem 2. For the inverse y = 1/x1, the range of possible
values of E is E = [1/E1, p1/x1 + (1− p1)/x1].

(Here p1 denotes the same value as in Theorem 1.)

Taking correlation into account. As we have seen, for
elementary arithmetic operations other than multiplication, the
range of the result's expectation is uniquely determined by the
ranges of the input expectations. For multiplication, the range
of E[x1 · x2] depends on both the ranges of E[xi] and the
correlation between the xi.

For multiplication, we know the bounds on E[x1 · x2] for
two cases: when x1 and x2 are independent, and when we
have no information about their correlation. It reality, we may
have partial information about the correlation. For example,
we may know the exact value ρ of the correlation

ρ(x1, x2)
def=

E[x1 · x2]− E1 · E2

σ1 · σ2
(3)

(where σi is the standard deviation of xi). Or more generally
we might have an interval [ρ, ρ] of possible values of ρ.

Analytical expressions are desirable. In [1], a linear
programming-based numerical method is described for com-
puting the ranges of binary functions under constraints on the
correlation of its arguments. For example, this method can be
applied to the problem of estimating the range of E[x1 · x2]
under known correlation.

In the cases of independence and unknown correlation, there
are explicit analytical expressions for the range of E[x1 · x2].
In general, analytical expressions are much faster to compute
than numerical methods. In this paper, we provide analytical
expressions for the correlation case as well.

IV. FIRST PROBLEM: MAIN RESULTS

Preliminaries. Our objective is, given the intervals [x1, x1],
[x2, x2], the values E1 = E[x1], E2 = E[x2], and ρ =
ρ(x1, x2), to �nd the range [E, E] of possible values of
E[x1 · x2].

Before we derive an expression for the general situation,
let us identify the quantitative values for Pearson correlation
coef�cient ρ corresponding to the known cases � independence
and unknown correlation. For the former case, ρ = 0. For the
latter, according to [9] both Emin and Emax are attained when
each of the variables xi has a 2-point (2-impulse) marginal
distribution: p(xi = xi) = pi and p(xi = xi) = 1 − pi.
(Probability pi is uniquely determined by expected value
E[xi].) For this marginal distribution,

σ2[xi] = E[(xi−Ei)2] = pi ·(xi−Ei)2+(1−pi) ·(Ei−xi)
2.

Since pi = (Ei−xi)/(xi−xi), algebraic manipulation yields

σ2[xi] = (xi − Ei) · (Ei − xi).

Thus, using eq. (3), the correlation coef�cients ρmin and
ρmax corresponding to these extreme distributions are equal to
ρmin =

Emin − E1 · E2

σ
and ρmax =

Emax − E1 · E2

σ
, where

σ
def= σ1 · σ2=σ[x1] · σ[x2]=√

(x1 − E1) · (E1 − x1) ·
√

(x2 − E2) · (E2 − x2).

Case of exactly known non-zero correlation. The negative
value ρmin corresponds to the smallest possible value Emin

of E[x1 · x2], and the positive value ρmax corresponds to
the largest possible value Emax. Because the corresponding
analyses are limited to the extremes, it is therefore desirable
to extend results to include intermediate values of ρ.
Theorem 3. Let [x1, x1] and [x2, x2] be given intervals,
E1 ∈ [x1, x1] and E2 ∈ [x1, x1] be given numbers, and ρ
be a number from the interval [ρmin, ρmax]. Then the closure
[E, E] of the range of possible values E[x1, x2] for all possible
distributions for which:
• x1 is located in [x1, x1], and x2 is located in [x2, x2];
• E[x1] = E1, and E[x2] = E2; and
• ρ[x1, x2] = ρ,

is
• for ρ ≥ 0: [E1 · E2, E1 ·E2 + ρ · σ];
• for ρ ≤ 0: [E1 · E2 + ρ · σ,E1 · E2].

Comment. The need for closure comes from the fact that ρ
is only de�ned when σi > 0. Thus, e.g., for ρ > 0, eq. (3)
implies E[x1 · x2] > E[x1] · E[x2]. So, under the standard
de�nition of (Pearson) correlation, the lower endpoint E1 ·E2

might be unattainable.
If we instead de�ne a distribution with correlation ρ as a

distribution for which

E[x1 · x2] = E[x1] · E[x2] + ρ · σ[x1] · σ[x2],

then the degenerate distribution x1 ≡ E1, x2 ≡ E2, with
σ[x1] = σ[x2] = 0, is a distribution with a given ρ for which
E[x1 ·x2] = E1 ·E2. Under this alternative de�nition, closure
is not needed.
Proof. When ρ = 0, then, by de�nition of the correlation,
E[x1 · x2] = E1 ·E2. So, it is suf�cient to consider values of
ρ 6= 0. In this proof, we will only consider the case ρ > 0;
the case ρ < 0 is similar.

We �rst prove that the value E[x1 · x2] always belongs to
the interval [E1 · E2, E1 · E2 + ρ · σ]. E1 · E2 is the lower
bound because, since ρ > 0, we have E[x1 · x2] = E1 ·E2 +
ρ · σ[x1] · σ[x2] > E1 · E2.

To prove the upper bound, we show that for each xi,
σ2[xi] ≤ (Ei − xi) · (xi − Ei). Let us �rst consider discrete
distributions that take values x

(j)
i ∈ [xi, xi] (1 ≤ j ≤ N )

with probabilities p(j) ≥ 0 such that
N∑

j=1

p(j) = 1. For



such distributions, the constraint E[xi] = Ei takes the form
N∑

j=1

p(j) · x(j)
i = Ei. Under these constraints, let us �nd the

largest possible value of

σ2[xi] = E[x2
i ]− E2

i =
N∑

j=1

p(j) ·
(
x

(j)
i

)2

− E2
i .

In terms of the unknown probabilities p
(j)
i , we are minimiz-

ing a linear function under linear constraints (equalities and
inequalities). Geometrically, the set of all points that satisfy
several linear constraints is a polytope. It is well known that
to �nd the minimum of a linear function on a polytope, it
is suf�cient to consider its vertices (this is the idea behind
linear programming). In algebraic terms, a vertex can be
characterized by the fact that for N variables, N of the
original constrains are equalities. Thus, in our case, all but
two probabilities p

(j)
i must be equal to 0, i.e., the distribution

must be located at two points x−i and x+
i . Since the mean is

Ei, we these values must be on different sides of Ei. Without
losing generality, we can thus assume that x−i ≤ Ei ≤ x+

i .
We have already mentioned that for 2-point distributions,

once the points x−i and x+
i are �xed, the condition that the

mean equals Ei uniquely determines the probabilities, and the
resulting variance is (x+

i − Ei) · (Ei − x−i ). When x+
i ≤ xi

and x−i ≥ xi, the largest value of this product is attained
when x+

i attains its largest possible value xi, and x−i attains
its smallest possible value xi. Thus, for discrete distributions,
σ2[xi] ≤ (xi − Ei) · (Ei − xi).

An arbitrary distribution can be approximated by discrete
ones to arbitrary accuracy (in weak topology), so this inequal-
ity is true for all distributions. Thus, σ[x1] · σ[x2] ≤ σ, and
the equality E[x1 · x2] = E1 · E2 + ρ · σ[x2] · σ[x2] implies
that E[x1 · x2] ≤ E1 · E2 + ρ · σ.

We now prove that both endpoints are exact. For every ε >
0, if we take a distribution in which each xi is located in the
ε-vicinity of Ei, then x1 ·x2 (and hence E[x1 ·x2]) is located
in the close vicinity of E1 · E2. When ε → 0, we conclude
that E[x1 ·x2] can be arbitrarily close to E1 ·E2, so the lower
endpoint is indeed exact.

To complete the proof, we next show that the upper endpoint
E1 ·E2 +ρ ·σ is attainable, and thus also exact. Indeed, as we
have mentioned, the largest possible value Emax is attained
for a joint distribution in which both marginal distributions
are 2-point ones, located on the endpoints of the corresponding
interval [xi, xi], and that for such distributions, σ2[xi] = (xi−
Ei)·(Ei−xi). In general, distributions with such marginals are
located at 4 vertices of the rectangle [x1, x1] × [x2, x2]. The
set of such distributions is determined by linear constraints
and is, thus, connected. Along this set, the correlation ranges
from 0 to the value ρmax. Since ρ ∈ [0, ρmax] and correlation
continuously depends on the probabilities, these exists an
intermediate value of these probabilities where the correlation
exactly equals the given value ρ.

The theorem is proven.

Case of correlation known with interval uncertainty. We
can handle the case of an interval [ρ, ρ] of possible values
for ρ instead of an exact value of ρ by simply combining
the intervals from Theorem 3 and using the fact that the
corresponding formulas monotonically depend on ρ.

Theorem 4. Let [x1, x1] and [x2, x2] be given intervals, E1 ∈
[x1, x1] and E2 ∈ [x1, x1] be given numbers, and [ρ, ρ] be
a subinterval of the interval [ρmin, ρmax]. Then the closure
[E, E] of the range of possible values E[x1, x2] for all possible
distributions for which:
• x1 is located in [x1, x1], and x2 is located in [x2, x2];
• E[x1] = E1, and E[x2] = E2; and
• ρ[x1, x2] ∈ [ρ, ρ]

equals
• for 0 ≤ ρ: [E1 · E2, E1 ·E2 + ρ · σ];
• for ρ ≤ 0: [E1 · E2 + ρ · σ,E1 · E2];
• for ρ ≤ 0 ≤ ρ: [E1 · E2 + ρ · σ,E1 ·E2 + ρ · σ].

V. FIRST PROBLEM: AUXILIARY RESULTS

Computationally ef�cient expressions for Emin and Emax.

Proposition 1.

Emax = E1·E2+min((E1−x1)·(x2−E2), (x1−E1)·(E2−x2));

Emin = E1·E2−min((E1−x1)·(E2−x2), (x1−E1)·(x2−E2)).

Proof. Let us �rst simplify the expression for Emax from
Theorem 1. When p1 ≤ p2, we get

Emax = p1 · x1 · x2 + (p2 − p1) · x1 · x2 + (1− p2) · x1 · x2 =

p1 · (x1 − x1) · x2 + p2 · x1 · (x2 − x2) + x1 · x2.

Substituting the de�nitions of pi, we conclude that

Emax = (E1 − x1) · x2 + (E2 − x2) · x1 + x1 · x2.

Opening parentheses, we get

Emax = E(1) def= E1 · x2 − x1 · x2 + E2 · x1.

By using the symmetry between x1 and x2, we can now
conclude that when p1 ≥ p2,

Emax = E(2) def= E2 · x1 − x1 · x2 + E1 · x2.

The condition p1 ≤ p2 is equivalent to

(E1 − x1) · (x2 − x2) ≤ (E2 − x2) · (x1 − x1),

i.e.,

E1·x2−E1·x2−x1·x2+x1·x2 ≤ E2·x1−E2·x1−x1·x2+x1·x2.

Subtracting the common term x1 · x2 from both sides and
moving terms to other sides, we get an equivalent form of
this inequality:

E1 · x2 − x1 · x2 + E2 · x1 ≤ E2 · x1 − x1 · x2 + E1 · x2,



i.e., E(1) ≤ E(2). So, if p1 ≤ p2, i.e., if E(1) ≤ E(2), we
get Emax = E(1); otherwise, we get Emax = E(2). These
two cases can be combined into a single formula Emax =
min(E(1), E(2)), i.e.,

Emax = min(E1 ·x2−x1 ·x2+E2 ·x1, E2 ·x1−x1 ·x2+E1 ·x2).

By adding −E1 · E2 to both expressions E(1) and E(2), we
get the desired expression for Emax.

Since E[x1 ·x2] = −E[(−x1) ·x2], where −x1 ∈ [−x1, x1]
with E[−x1] = −E1, we have

Emin
def= min E[x1 · x2] = −max E[(−x1) · x2].

Hence, the new expression for Emax leads to the desired
expression for Emin. The proposition is proven.

Can we propagate correlations through computations? In
straightforward interval computations, we propagate intervals
through computations; can we similarly propagate correla-
tions? The following result shows that it is not easy even for
addition:

Proposition 2. If we know that ρ[x1, x2] = ρ, then the only
possible conclusion about ρ′ = ρ[x1, x1 + x2] is that ρ′ ∈
[ρ, 1].

Proof. If we take x1 ¿ x2, we get ρ′ ≈ ρ, and if we take
x2 ¿ x1, we get ρ′ ≈ 1. The smaller the corresponding ratio
x1/x2 or x2/x1, the closer we are, correspondingly, to ρ and
to 1.

Let us prove that ρ′ cannot be smaller than ρ. Since corre-
lation can be de�ned in terms of the differences xi − E[xi],
we can shift both variables to E[xi] = 0 without changing the
correlations ρ[x1, x2] and ρ[x1, x1 + x2]; thus, is it suf�cient
to prove the desired inequality ρ′ ≥ ρ for the case when
E[xi] = 0. In this case, if we denote σi

def= σ[xi], we get

ρ′ =
E[x1 · (x1 + x2)]
σ1 · σ[x1 + x2]

=
σ2

1 + E[x1 · x2]
σ1 · σ[x1 + x2]

.

Here, since Ei = 0, we have E[x1 ·x2] = ρ ·σ1 ·σ2. Similarly,

σ2[x1+x2] = E[(x1+x2)2] = E[x2
1]+E[x2

2]+2·E[x1 ·x2] =

σ2
1 + σ2

2 + 2ρ · σ1 · σ2,

so the above expression for ρ′ takes the form: ρ′ =
σ1 + ρ · σ1 · σ2

σ1 ·
√

σ2
1 + σ2

2 + 2ρ · σ1 · σ2

, and the desired inequality ρ′ ≥

ρ takes the form σ2
1 + ρ · σ2√

σ2
1 + σ2

2 + 2ρ · σ1 · σ2

≥ ρ. Multiplying

both sides by the denominator, we get the equivalent inequality

σ1 + ρ · σ2 ≥ ρ ·
√

σ2
1 + σ2

2 + 2ρ · σ1 · σ2. (4)

If ρ ≥ 0, then we can square both sides and get an equivalent
inequality

σ2
1 + 2ρ · σ1 · σ2 + ρ2 · σ2

2 ≥ ρ2 · (σ2
1 + σ2

2 + 2ρ · σ1 · σ2).

Subtracting ρ2 · σ2
2 from both sides, and moving all the terms

to the right-hand side, we get an equivalent inequality

σ2
1 · (1− ρ2) + 2ρ · σ1 · σ2 · (1− ρ2) ≥ 0,

which is always true for ρ ≥ 0 (since ρ ≤ 1).
If ρ < 0, the right-hand side of (4) is negative, so we

consider two possible cases. The �rst case is when

σ1 + ρ · σ2 ≥ 0.

Then inequality (4) is automatically true.
The second case is when σ1 + ρ · σ2 < 0. In this case, (4)

is equivalent to

0 < −σ1 + |ρ| · σ2 ≤ |ρ| ·
√

σ2
1 + σ2

2 − 2|ρ| · σ1 · σ2.

By squaring both sides, we get an equivalent inequality

σ2
1 − 2|ρ| · σ1 · σ2 + ρ2 · σ2

2 ≤ ρ2 · (σ2
1 + σ2

2 − 2|ρ| · σ1 · σ2).

Subtracting ρ2 · σ2
2 from both sides, and moving all the terms

to the right-hand side, we get an equivalent inequality

σ2
1 · (1− ρ2)− 2|ρ| · σ1 · σ2 · (1− ρ2) ≤ 0.

Dividing both sides by σ1 · (1−ρ2) > 0, we get an equivalent
inequality σ1 − 2|ρ| · σ2 ≤ 0. We consider the case when
σ1−|ρ| ·σ2 < 0, hence σ1− 2|ρ| ·σ2 ≤ σ1−|ρ| ·σ2 < 0. The
inequality is proven.

Since x1−x2 = x1 +(−x2), and ρ[x1,−x2] = −ρ[x1, x2],
we have the following corollary:

Proposition 3. If we know that ρ[x1, x2] = ρ, then:
• the best possible conclusion about ρ′ = ρ[x1, x1− x2] is

that ρ′ ∈ [−ρ, 1];
• the best possible conclusion about ρ′′ = ρ[x2, x1 − x2]

is that ρ′′ ∈ [−1, ρ].

For a unary linear function f(x1) = a · x1 + b, we get
ρ[x1, f(x1)] = 1 for a > 0 and ρ[x1, f(x1)] = −1 for a < 0.
For non-linear unary functions f(x1), we can get different
intermediate values. As an example, we take f(x1) = x2

1.
Then, ρ ≈ 1, e.g., for a 2-point distribution located at a − ε
and a + ε (where a > 0 and ε → 0) with probability 1/2.
ρ ≈ −1, e.g., for a similar distribution with a < 0. We get all
possible values from −1 to 1 for intermediate distributions.

VI. FIRST PROBLEM: REMAINING OPEN QUESTIONS

What if we have a multiple product? For the case of un-
known correlation, analytical formulas were obtained in [10].

What if we use different correlation characteristics [16], e.g.,
the Spearman and Kendall correlations, or copulas [5], [14]?

What about the ranges for E[min(x1, x2)] and
E[max(x1, x2)] under a given correlation (for the case of
unknown correlation, such ranges were described in [9]).



VII. HOW TO MEASURE LOSS OF PRIVACY:
INTRODUCTION TO THE SECOND PROBLEM

Measuring loss of privacy is important. Privacy means, in
particular, that we do not disclose all the information about
ourselves. If some of the originally un-disclosed information is
disclosed, some privacy is lost. To compare different privacy
protection schemes, we must be able to gauge the resulting
loss of privacy.

Seemingly natural idea: measuring loss of privacy by
the acquired amount of information. Since privacy means
that we do not have complete information about a person, a
seemingly natural idea is to gauge the loss of privacy by the
amount of new information that we gained about this person;
see, e.g., [2], [13].

The traditional Shannon's notion of the amount of infor-
mation is based on de�ning information as the (average)
number of �yes�-�no� (binary) questions that we need to ask
so that, starting with the initial uncertainty, we will be able to
completely determine the object.

Discrete case: no information about probabilities. Let us
start with the simplest situation when we know that we have n
possible alternatives A1, . . . , An, and we have no information
about the probability (frequency) of different alternatives.
After each binary question, we can have 2 possible answers.
So, if we ask q binary questions, then, in principle, we can
have 2q possible results. Thus, if we know that our object is
one of n objects, and we want to uniquely pinpoint the object
after all these questions, then we must have 2q ≥ n. In this
case, the smallest number of questions is the smallest integer
q that is ≥ log2(n). This smallest number is called a ceiling
and denoted by dlog2(n)e.

Let us show that in this case, the smallest number of binary
questions that we need to determine the alternative is indeed
q

def= dlog2(n)e.
We have already shown that the number of questions cannot

be smaller than dlog2(n)e; so, to complete the derivation, it is
let us show that it is suf�cient to ask q questions.

Indeed, let's enumerate all n possible alternatives (in ar-
bitrary order) by numbers from 0 to n − 1, and write these
numbers in the binary form. Using q binary digits, one can
describe numbers from 0 to 2q − 1. Since 2q ≥ n, we can
this describe each of the n numbers by using only q binary
digits. So, to uniquely determine the alternative Ai out of n
given ones, we can ask the following q questions: �is the �rst
binary digit 0?�, �is the second binary digit 0?�, etc, up to �is
the q-th digit 0?�.

Case of a discrete probability distribution. Let us now
assume that we also know the probabilities p1, . . . , pn of
different alternatives A1, . . . , An. If we are interested in an
individual selection, then the above arguments show that we
cannot determine the actual alternative by using fewer than
log(n) questions. However, if we have many (N ) similar
situations in which we need to �nd an alternative, then we

can determine all N alternatives by asking ¿ N · log2(n)
binary questions.

To show this, let us �x i from 1 to n, and estimate the
number of events Ni in which the output is i.

This number Ni is obtained by counting all the events in
which the output was i, so Ni = n1 + n2 + . . . + nN , where
nk equals to 1 if in k-th event the output is i and 0 otherwise.
The average E(nk) of nk equals to pi ·1+(1−pi)·0 = pi. The
mean square deviation σ[nk] is determined by the formula

σ2[nk] = pi · (1− E(nk))2 + (1− pi) · (0−E(nk))2.

If we substitute here E(nk) = pi, we get σ2[nk] = pi ·(1−pi).
The outcomes of all these events are considered independent,
therefore nk are independent random variables. Hence the
average value of Ni equals to the sum of the averages of
nk:

E[Ni] = E[n1] + E[n2] + . . . + E[nN ] = N · pi.

The mean square deviation σ[Ni] satis�es a likewise equation

σ2[Ni] = σ2[n1] + σ2[n2] + . . . = N · pi · (1− pi),

so σ[Ni] =
√

pi · (1− pi) ·N .
For big N the sum of equally distributed independent ran-

dom variables tends to a Gaussian distribution (the well-known
central limit theorem), therefore for big N , we can assume
that Ni is a random variable with a Gaussian distribution.
Theoretically a random Gaussian variable with the average
a and a standard deviation σ can take any value. However,
in practice, if, e.g., one buys a voltmeter with guaranteed
0.1V standard deviation, and it gives an error 1V, it means
that something is wrong with this instrument. Therefore it
is assumed that only some values are practically possible.
Usually a �k-sigma� rule is accepted that the real value can
only take values from a − k · σ to a + k · σ, where k is 2,
3, or 4. So in our case we can conclude that Ni lies between
N ·pi−k ·

√
pi · (1− pi) ·N and N ·pi+k ·

√
pi · (1− pi) ·N .

Now we are ready for the formulation of Shannon's result.
Comment. In this quality control example the choice of k
matters, but, as we'll see, in our case the results do not depend
on k at all.
De�nition 3.
• Let a real number k > 0 and a positive integer n be

given. The number n is called the number of outcomes.
• By a probability distribution, we mean a sequence {pi}

of n real numbers, pi ≥ 0,
∑

pi = 1. The value pi is
called a probability of i-th event.

• Let an integer N is given; it is called the number of
events.

• By a result of N events we mean a sequence rk, 1 ≤
k ≤ N of integers from 1 to n. The value rk is called
the result of k-th event.

• The total number of events that resulted in the i-th
outcome will be denoted by Ni.

• We say that the result of N events is consistent with
the probability distribution {pi} if for every i, we have



N · pi − k · σi ≤ Ni ≤ N + k · σi, where σi
def=√

pi · (1− pi) ·N.
• Let's denote the number of all consistent results by

Ncons(N).
• The number dlog2(Ncons(N))e will be called the number

of questions, necessary to determine the results of N
events and denoted by Q(N).

• The fraction Q(N)/N will be called the average number
of questions.

• The limit of the average number of questions when N →
∞ will be called the information.

Theorem. (Shannon) When the number of events N tends to
in�nity, the average number of questions tends to

S(p) def= −
∑

pi · log2(pi).

Shannon's theorem says that if we know the probabilities
of all the outputs, then the average number of questions that
we have to ask in order to get a complete knowledge equals to
the entropy of this probabilistic distribution. As we promised,
this average number of questions does not depend on the
threshold k.
Case of a continuous probability distribution. After a �nite
number of �yes�-�no� questions, we can only distinguish
between �nitely many alternatives. If the actual situation is
described by a real number, then, since there are in�nitely
many different possible real numbers, after �nitely many
questions, we can only get an approximate value of this
number.

Once we �x the accuracy ε > 0, we can talk about the
number of questions that are necessary to determine a number
x with this accuracy ε, i.e., to determine an approximate value
r for which |x− r| ≤ ε.

Once an approximate value r is determined, possible actual
values of x form an interval [r − ε, r + ε] of width 2ε. Vice
versa, if we have located x on an interval [x, x] of width 2ε,
this means that we have found x with the desired accuracy
ε: indeed, as an ε-approximation to x, we can then take the
midpoint (x + x)/2 of the interval [x, x].

Thus, the problem of determining x with the accuracy ε
can be reformulated as follows: we divide the real line into
intervals [xi, xi+1] of width 2ε (xi+1 = xi + 2ε), and by
asking binary questions, �nd the interval that contains x. As
we have shown, for this problem, the average number of binary
question needed to locate x with accuracy ε is equal to S =
−∑

pi · log2(pi), where pi is the probability that x belongs
to i-th interval [xi, xi+1].

In general, this probability pi is equal to
∫ xi+1

xi
ρ(x) dx,

where ρ(x) is the probability distribution of the unknown
values x. For small ε, we have pi ≈ 2ε · ρ(xi), hence
log2(pi) = log2(ρ(xi)) + log2(2ε). Therefore, for small ε,

S = −
∑

ρ(xi) · log2(ρ(xi)) · 2ε−
∑

ρ(xi) · 2ε · log2(2ε).

The �rst sum in this expression is the integral sum for the
integral S(ρ) def= − ∫

ρ(x) · log2(x) dx (called the entropy),

so S ≈ S(ρ) − log2(2ε). (this integral is called the entropy
of the probability distribution ρ(x)); so, for small ε, this
sum is approximately equal to this integral (and tends to this
integral when ε → 0). The second sum is a constant log2(2ε)
multiplied by an integral sum for the interval

∫
ρ(x) dx = 1.

Thus, for small ε, we have

S ≈ −
∫

ρ(x) · log2(x) dx− log2(2ε).

So, the average number of binary questions that are needed to
determine x with a given accuracy ε, can be determined if we
know the entropy of the probability distribution ρ(x). [7], [8],
[12].

Often, this de�nition is in good accordance with our
intuition. In some cases, the above de�nition is in good
accordance with the intuitive notion of a loss of privacy. As an
example, let us consider the case when our only information
about some parameter x is that the (unknown) actual value of
this parameter x belongs to the (unknown) interval [L,U ].
In this case, the amount of information is proportional to
log2(U − L). If we learn a narrower interval containing x,
e.g., if we learn that the actual value of x belongs to the left
half [u, l] def= [L, (L + U)/2] of the original interval, then the
resulting amount of information is reduced to

log2((L+U)/2−L) = log2((U −L)/2) = log2(U −L)− 1.

Thus, by learning the narrower interval for x, we gained
log2(U −L)− (log2(U −L)− 1) = 1 bit of new information.

The narrower the new interval, the smaller the resulting new
amount of information, so the larger the information gain.

The above de�nition is not always perfect. In some other
situations, however, the above de�nition is not in perfect
accordance with our intuition.

Indeed, when we originally knew that a person's salary
is between $10,000 and $20,000 and later learn that the
salary is between $10,000 and $15,000, we gained one bit of
information. On the other hand, if the only new information
that we learned is that the salary is an even number, we also
learn exactly one bit of new information. However, intuitively:
• in the �rst case, we have a substantial privacy loss, while
• in the second case, the direct privacy loss is minimal.

Comment. It is worth mentioning that while the direct privacy
loss is small, the information about evenness may indirect lead
to a huge privacy loss. The fact that the salary is even means
that we know its remainder modulo 2. If, in addition, we learn
the remainder of the salary modulo 3, 5, etc., then we can
can combine these seemingly minor pieces of information and
use the Chinese remainder theorem (see, e.g., [4]) to uniquely
reconstruct the salary.

What we plan to do. The main objective of this part of the
paper is to propose a new de�nition of privacy loss which is
in better accordance with our intuition.



VIII. SECOND PROBLEM: OUR MAIN IDEA

Why information is not always a perfect measure of loss
of privacy. In our opinion, the amount of new information is
not always a good measure of the loss of privacy because it
does not distinguish between:
• crucial information that may seriously affect a person,

and
• irrelevant information � that may not affect a person at

all.
To make a distinction between these two types of information,
let us estimate potential �nancial losses caused by the loss of
privacy.

Example when loss of privacy can lead to a �nancial loss.
As an example, let us consider how a person's blood pressure
x affects the premium that this person pays for his or her
health insurance.

From the previous experience, insurance companies can
deduce, for each value of blood pressure x, the expected
(average) value of the medical expenses f(x) of all individuals
with this particular value of blood pressure. So, when the
insurance company knows the exact value x of a person's
blood pressure, it can offer this person an insurance rate
F (x) def= f(x) · (1 + α), where α is the general investment
pro�t. Indeed:
• If an insurance company offers higher rates, then its

competitor will be able to offer lower rates and still make
a pro�t.

• On the other hand, if the insurance company is selling
insurance at a lower rate, then it will not earn enough
pro�t, and investors will pull their money out and invest
somewhere else.

To preserve privacy, we only keep the information that
the blood pressure of all individuals from a certain group
is between two bounds L and U , and we do not know
have any additional information about the blood pressure of
different individuals. Under this information, how much will
the insurance company charge to insure people from this
group?

Based on the past experience, the insurance company is
able to deduce the relative frequency of different values x ∈
[L,U ] � e.g., in the form of the corresponding probability
density ρ(x). In this case, the expected medical expenses of
an average person from this group are equal to E[f(x)] def=∫

ρ(x) · f(x) dx. Thus, the insurance company will insure the
person for a cost of E[F (x)] =

∫
ρ(x) · F (x) dx.

Let us now assume that for some individual, the privacy
is lost, and for this individual, we know the exact value x0

of his or her blood pressure. For this individual, the company
can now better predict its medical expenses as f(x0) and thus,
offer a new rate F (x0) = f(x0) · (1 + α). When F (x0) >
E[F (x)], the person whose privacy is lost also experiences a
�nancial loss F (x0)−E[F (x)]. We will use this �nancial loss
to gauge the loss of privacy.

Need for a worst-case comparison. In the above example,
there is a �nancial loss only if the person's blood pressure
x0 is worse than average. A person whose blood pressure is
lower than average will only bene�t from reduced insurance
rates.

However, in a somewhat different situation, if the person's
blood pressure is smaller (better) than average, this person's
loss or privacy can also lead to a �nancial loss. For example,
an insurance company may, in general, pay for a preventive
medication that lowers the risk of heart attacks � and of
the resulting huge medical expenses. The higher the blood
pressure, the larger the risk of a heart attack. So, if the
insurance company learns that a certain individual has a lower-
than-average blood pressure and thus, a lower-than-average
risk of a heart attack, this risk may not justify the expenses
on the preventive medication. Thus, due to a privacy loss, the
individual will have to pay for this potentially bene�cial med-
ication from his/her own pocket � and thus, also experience a
�nancial loss.

So, to gauge a privacy loss, we must consider not just a
single situation, but several different situations, and gauge the
loss of privacy by the worst-case �nancial loss caused by this
loss of privacy.

Which functions F (x) should we consider. In different situ-
ations, we may have different functions F (x) that describe the
dependence of a (predicted) �nancial gain on the (unknown)
actual value of a parameter x.

This prediction only makes sense only if we can predict
F (x) for each person with a reasonable accuracy, e.g., with
an accuracy ε > 0. Measurements are never 100% accurate,
and measurement of x are not exception. Let us denote by δ
the accuracy with which we measure x, i.e., the upper bound
on the (absolute value of) the difference ∆x

def= x̃−x between
the measured value x̃ and the (unknown) actual value x. Due
to this difference, the estimated value F (x̃) is different from
the ideal prediction F (x). Usually, measurement errors ∆x

are small, so we can expand the prediction inaccuracy ∆F
def=

F (x̃) − F (x) = F (x + ∆x) − F (x) in Taylor series in ∆x
and ignore quadratic and higher order terms in this expansion,
leading to ∆F ≈ F ′(x) ·∆x. Since the largest possible value
of ∆x is δ, the largest possible value for ∆F is thus |F ′(x)|·δ.
Since this value should not exceed ε, we thus conclude that
|F ′(x)| · δ ≤ ε, i.e., that |F ′(x)| ≤ M

def= ε/δ.

Resulting de�nitions. Thus, we arrive at the following de�-
nition:

De�nition 1. Let P be a class of probability distributions on
a real line, and let M > 0 be a real number. By the amount
of privacy A(P) related to P , we mean the largest possible
value of the difference F (x0)−

∫
ρ(x) · F (x) dx over:

• all possible values x0,
• all possible probability distributions ρ ∈ P , and
• all possible functions F (x) for which |F ′(x)| ≤ M for

all x.



The above de�nition involves taking a maximum over all
distributions ρ ∈ P which are consistent with the known infor-
mation about the group to which a given individual belongs. In
some cases, we know the exact probability distribution, so the
family P consists of only one distribution. In other situations,
we may not know this distribution. For example, we may only
know that the value of x is within the interval [L,U ], and we
do not know the probabilities of different values within this
interval. In this case, the class P consists of all distributions
which are located on this interval (with probability 1).

When we learn new information about this individual, we
thus reduce the group and hence, change from the original
class P to a new class Q. This change, in general, decreases
the amount of privacy.

In particular, when we learn the exact value x0 of the
parameter, then the resulting class of distribution reduces to
a single distribution concentrated on this x0 with probability
1 � for which F (x0) −

∫
ρ(x) · F (x) dx = 0 and thus, the

privacy is 0. In this case, we have a 100% loss of privacy �
from the original value A(P) to 0. In other cases, we may
have a partial loss of privacy.

In general, it is reasonable to de�ne the relative loss of
privacy as a ratio

A(P)−A(Q)
A(P)

. (5)

In other words, it is reasonable to use the following de�nition:

De�nition 2.
• By a privacy loss, we mean a pair 〈P,Q〉 of classes of

probability distributions.
• For each privacy loss 〈P,Q〉, by the measure of a privacy

loss, we mean the ratio (5).

Comment. At �rst glance, it may sound as if these de�nitions
depend on an (unknown) value of the parameter M . However,
it is easy to see that the actual measure of the privacy loss
does not depend on M :
Proposition 4. For each pair 〈P,Q〉, the measure of the
privacy loss is the same for all M > 0.
Proof. To prove this proposition, it is suf�cient to show that
for each M > 0, the measure of privacy loss is the same
for this M and for M0 = 1. Indeed, for each function F (x)
for which |F ′(x)| ≤ M for all x, for the re-scaled function
F0(x) def= F (x)/M , we have |F ′0(x)| ≤ 1 for all x, and

F (x0)−
∫

ρ(x) · F (x) dx =

M ·
(

F0(x0)−
∫

ρ(x) · F0(x) dx

)
. (6)

Vice versa, if |F ′0(x)| ≤ 1 for all x, for the re-scaled function
F (x) def= M · F0(x), we have |F ′(x)| ≤ M for all x,
and (6). Thus, the maximized values corresponding to M
and M0 = 1 different by a factor M . Hence, the resulting
amounts of privacy A(P) and A0(P) corresponding to M

and M0 also differ by a factor M : A(P) = M · A0(P).
Substituting this expression for A(P) (and a similar expression
for A(Q)) into the de�nition (5), we can therefore conclude
that A(P)−A(Q)

A(P)
=

A0(P)−A0(Q)
A0(P)

, i.e., that the measure
of privacy is indeed the same for M and M0 = 1. The
proposition is proven.
IX. THE NEW DEFINITION OF PRIVACY LOSS IS IN GOOD

AGREEMENT WITH INTUITION

Let us show that the new de�nition adequately describes the
difference between learning that the parameter is in the lower
half of the original interval and that the parameter if even.
Proposition 5. Let [l, u] ⊆ [L, U ] be intervals, let P be the
class of all probability distributions located on the interval
[L,U ], and let Q be the class of all probability distributions
located on the interval [l, u]. For this pair 〈P,Q〉, the measure
of the privacy loss if equal to 1− u− l

U − L
.

Proof. Due to Proposition 4, for computing the measure of
the privacy loss, it is suf�cient consider the case M = 1. Let
us show that for this M , we have A(P) = U − L.

Let us �rst show that for every x0 ∈ [L,U ], for every
probability distribution ρ(x) on the interval [L,U ], and for
every function F (x) for which |F ′(x)| ≤ 1, the privacy loss
F (x0)−

∫
ρ(x) · F (x) dx does not exceed U − L.

Indeed, since
∫

ρ(x) dx = 1, we have F (x0) =
∫

ρ(x) ·
F (x0) dx and hence,

F (x0)−
∫

ρ(x) · F (x) dx =
∫

ρ(x) (F (x0)− F (x)) dx.

Since |F ′(x)| ≤ 1, we conclude that |F (x0)−F (x)| ≤ |x0 −
x|. Both x0 and x are within the interval [L, U ], hence |x0 −
x| ≤ U −L, and |F (x0)−F (x)| ≤ U −L. Thus, the average
value

∫
ρ(x)·(F (x0)−F (x)) dx of this difference also cannot

exceed U − L.
Let us now show that there exists a value x0 ∈ [L,U ],

a probability distribution ρ(x) on the interval [L,U ], and a
function F (x) for which |F ′(x)| ≤ 1, for which the privacy
loss F (x0) −

∫
ρ(x) · F (x) dx is exactly U − L. As such an

example, we take F (x) = x, x0 = U , and ρ(x) located at a
point x = L with probability 1. In this case, the privacy loss
is equal to F (U)− F (L) = U − L.

Similarly, we can prove that A(Q) = u − l, so we get the
desired measure of the privacy loss. The proposition is proven.

Comment. In particular, if we start with an interval [L,U ],
and then we learn that the actual value x is in the lower half
[L, (L + U)/2] of this interval, then we get a 50% privacy
loss.

What about the case when we assume that x is even?
Similarly to the proof of the above proposition, one can prove
that if both L and U are even, and Q is the class of all
distributions ρ(x) which are located, with probability 1, on
even values x, we get A(Q) = A(P). Thus, the even-values
restriction lead to a 0% privacy loss.



Thus, the new de�nition of the privacy loss is indeed in
good agreement with our intuition.

X. CONCLUSION

In many practical situations, there is a need to combine
interval and probabilistic uncertainty. The need for such a
combination leads to two types of problems: how to process
the given combined uncertainty, and how to gauge the amount
of uncertainty. In this paper, we presented two examples that
illustrate how the corresponding problems can be solved.

The �rst example is related to the fact that the traditional
engineering approach to error estimation assumes that we
know the probabilities of different values of measurement
error ∆xi

def= x̃i − xi. Yet in many practical situations, we
only know the upper bound ∆i for this error. Hence after the
measurement, the only information that we have about xi is
that it belongs to the interval xi

def= [x̃i − ∆i, x̃i + ∆i]. In
this case, we have a classic interval computations problem:
�nd the narrowest possible interval y enclosing all possible
values of the result y = f(x1, . . . , xn) when xi ∈ xi. In this
paper, we generalized the preceding case by discussing what
to do when, in addition to the bounds ∆i, we permit partial
information about the probabilities of different values of ∆xi

and their correlations.
The second example is related to the following problem.

To compare different schemes for preserving privacy, it is
important to be able to gauge loss of privacy. Since loss of
privacy means that we gain new information about a person, it
seems natural to measure the loss of privacy by the amount of
information that we gained. However, this seemingly natural
de�nition is not perfect: when we originally know that a
person's salary is between $10,000 and $20,000 and later learn
that the salary is between $10,000 and $15,000, we gained
exactly as much information (one bit) as when we learn that
the salary is an even number � however, intuitively, in the �rst
case, we have a substantial privacy loss while in the second
case, the privacy loss is minimal. In this paper, we proposed
a new de�nition of privacy loss that is in better agreement
with our intuition. This new de�nition is based on estimating
worst-case �nancial losses caused by the loss of privacy.
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