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Abstract 

Uncertainty quantification is an important approach to modeling in the presence of limited 
information about uncertain quantities. As a result recent years have witnessed a burgeoning body 
of work in this field. The present paper gives some background, highlights some recent work, and 
presents some problems and challenges.  

1  Introduction 

While traditional methods emphasize uncertainty due to intrinsic variability in values of 
parameters of interest, there is growing interest in also handling uncertainty due to lack of 
knowledge about values that often could be better known if more information was somehow 
obtained about them. Because such information can be expensive or difficult to obtain, we wish 
to be able to reason in the presence of incomplete information. This kind of uncertainty due to 
incomplete knowledge has several names, including epistemic uncertainty, 2nd order uncertainty, 
reducible uncertainty, and subjective uncertainty. These kinds of uncertainty are distinguished 
from uncertainty sometimes considered to be intrinsic to the phenomena themselves rather than to 
our knowledge about it, which has been called by such terms as randomness, natural variability, 
aleatory uncertainty, irreducible uncertainty, objective uncertainty, and stochastic uncertainty. 
Philosophically the distinctness of these two categories is not completely clear (more knowledge 
can reduce what might be thought to be natural variability, and to take this to the limit a quantity 
can be measured, making its value a historical record and removing most of the uncertainty 
associated with it even if its source is natural variability). However from a computational 
perspective there is a clear distinction between: 

• uncertainty described with a distribution function (of which a specific probability value is 
a special case), and 

• uncertainty described with both a distribution function and error bounds of some sort 
(giving, for example, dependency bounds/envelopes/p-boxes, confidence intervals, or 
interval-valued probabilities). 



All too often, incomplete knowledge requires that one work with the latter case. Thus non-
classical computational methods are needed that can handle quantities described with something 
less specific than a distribution function. 

Diverse problems in important fields such as risk, reliability, measurement interpretation, signal 
processing, control, and decision theory, and in applications as varied as insurance, finance, 
mathematical ecology, and many others can benefit from inference under conditions in which the 
uncertainty that is present includes vague, conflicting, or otherwise incomplete knowledge of the 
problem itself. 

Traditional approaches, such as making assumptions as needed to allow problem solution by 
traditional means, are often thought necessary or used without sufficient attention to the 
dependability of the results. Consequently there is growing interest as well as a growing body of 
results on innovative ways to dependably handle uncertainties that are incompletely 
characterized, vague, imprecise, etc.  

Relevant work falls under various overlapping subject categories. A non-exhaustive list of such 
relevant areas would include, for example, approximate reasoning [31], interval-valued 
probabilities [16], fixed marginals of unknown dependency [24], rough sets [28], robust statistics 
[11], imprecise probabilities [29], copulas [22], fuzzy set computations [30], and possibility 
theory [9]. Common themes and problems in the dependable handling of uncertainty imply 
potential opportunities for convergences, interrelationships, and cross-fertilization, as well as 
recognition and exposure among the various areas. 

In the next section some current research paths are synopsized. Following that, Section 3 
describes some problems for future investigation. 

 2  Some Current Investigations 

It would take literally volumes to give a full account of the field. The following paragraphs thus 
do not give a comprehensive view, but rather focus on some notable current research paths related 
to papers in this special issue. 

Benford’s Law, first described not by Benford (1938 [1]) but by Newcomb (1881 [23]), 
describes how in many data sets the probability that a datum begins with the numeral “1” is 
greater than the probability that it begins with “2,” and so on with “9” having the lowest 
probability of being the most significant digit. It is likely that this tendency explains in part the 
fact that on Google.com, a leading Web search engine, the query term “18” has more hits than 
“28,” which has more hits than “38,” a trend that continues on with occasional exceptions and 
generally seems to apply to other sequences of numbers 1x1x2x3…xk, 2x1x2x3…xk, 3x1x2x3…xk, …. 
One application of this is detecting faked data. Hill (1999 [13]) suggests that using Benford’s law 
for this purpose is only the beginning, and that the future holds great potential for advances in the 
detection of data fraud. 

Credal sets (Levi 1980 [18]) provide a way to express partial knowledge of probability using 
probability intervals and to reason with such knowledge. Credal networks (Cozman 2000 [6]; 
Fagiuoli and Zaffalon 1998 [10]) are a recent advance which generalizes Bayesian networks to 
handle evidence in the form of credal sets. As the field advances, we may expect to see advances 
in such areas as elicitation of expert knowledge in the form of credal sets, and extensions to 
handle partial knowledge of a probability that is non-convex in that it may consist of a disjoint set 



of intervals. Solutions to such problems would be valuable advances toward the goal of 
widespread application. 

Interval Probability Theory, or IPT (Cui and Blockley 1990 [7]) has recently been applied to 
combining evidence for decision-making (Davis and Hall 2003 [8]). A compelling approach to 
combining evidence needs to provide a way of describing the dependency relationship between 
pieces of evidence. IPT addresses this problem by with a parameter, ρ, that states the degree of 
overlap between two propositions with interval-valued probabilities. Mutually exclusive 
propositions have ρ=0. If one proposition is a subset of another, then ρ=1. Intermediate degrees of 
overlap have intermediate values of ρ. If future work shows that the quality of decisions produced 
with this technique to be superior to those produced using conventional techniques, that would be 
a significant result with great practical value. 

The Imputation toward Directional Extremes (IDE) algorithm (Vansteelandt and Goetghebeur 
2001 [26]) addresses the problem of understanding the sensitivity of results to the range of 
possible values of missing data (Little and Rubin 1987 [19]). This is distinct from ranges (e.g. 
confidence intervals) implied by noise due to sampling that is addressed by standard statistical 
methods, although both degrade the quality of conclusions derived from the data. The IDE 
algorithm is tuned to handle generalized linear data models efficiently. As further advances occur 
toward the goals of algorithms that are both fast and general, better understanding of the 
implications of missing data will be increasingly available, thus supporting better results in 
design, decision-making, and other important tasks. 

Nonparametric predictive inference (NPI) is a technique for predicting the value of a future 
observation based on previous observations. Previous observations are listed in order from 
smallest to largest, and a future observation is assumed to have equal probabilities of being 
smaller than the smallest previous observation, larger than the largest, or between any two 
adjacent ones (Hill 1968 [12]). A result of the minimal structural assumptions underlying NPI is 
that uncertainty quantifications are mostly via envelopes around families of distributions. 
Application of NPI to reliability problems is reported by Coolen et al. (2002 [5]). The method 
they describe for handling right-censored data enables further progress in applying NPI to 
replacement and maintenance decisions. (Right-censored failure times derive from observations 
of survival at discrete time points, which bound the failure time from below).  

In mathematical finance, such phenomena as risk and risk tolerance, decision theory, game 
theory, utility theory, freedom of action (as in real options theory), and information are all 
translated into monetary terms. As one example, research into the value of information has 
inspired investigation of the financial implications of fixed marginal distributions when 
information about the joint distribution is lacking or is limited to restrictions on the values of 
Spearman [32] or Pearson [2] correlation coefficients. Spearman correlation is indicated when the 
investigation is based on the mathematical theory of copulas (Nelsen 1999 [22]), while Pearson 
correlation is indicated when marginals are used without the normalization implied by copulas. 
Results can apply to such financial problems as bounding value at risk (VaR). Another example is 
the problem of asset pricing in incomplete markets. Recent work by Staum (to appear [25]) and 
others has led not only to valuable theorems but has also revealed parallels with such concepts as 
the previsions of the imprecise probabilities community. In that work as in other work, the 
assumption of convexity is important. If it is established that non-convex problems have 
sufficient practical importance, further work may lead to results in which the convexity 
assumption is relaxed. 



3  Some unsolved problems 

The problems in this section appear to require non-traditional handling of uncertainty. Further 
work is expected to shed more light on the challenges they pose. Section 3.1 gives simply stated 
(but not necessarily easily solved) problems related to the mathematics and/or software 
implementation of computations on incompletely specified distributions (p-boxes, envelopes, 
imprecise probabilities, etc.). Section 3.2 explains some challenging application problems in more 
detail. 

3.1  Challenges to computations on incompletely specified distributions 

The following challenges involve envelopes (Figure 1) as problem inputs and/or outputs.  

 
Figure 1. Example of envelopes (i.e. a p-box) around the cumulative distribution of x, bounding a 
family of cumulative distributions for x consistent with our state of knowledge about x.  

1) Backcalculation (deconvolution). Suppose z=g(x,y) where x and y are samples of 
distributions Fx(.) and Fy(.) and z is a sample of derived distribution Fz(.). If we have envelopes 
for Fx(.) and Fz(.), then determine envelopes for Fy(.). A similar problem is the constraint 
updating problem: given z=g(x,y), how can envelopes for the distribution of any two variables be 
used to derive (or tighten) envelopes for the third? 

2) Black box propagation. Suppose z=g(x) where x and z are samples of distributions Fx(.) and 
Fz(.). If we have envelopes for Fx(.) and Fz(.), and pairs of samples (x1,z1)… (xn,zn), what can we 
say about what the value of z will be given a future sample value for x? 

5) Limit theorems.  If random variables described using envelopes are added or otherwise 
combined sufficiently many times, what form will the result converge to? 

6) Non-rigorous envelopes. One source of envelopes is confidence limits, which can be 
determined from sets of samples [15]. Given two distributions, each described using confidence 
limits, how can these be arithmetically combined, as with function g characterized above?  

7) Algorithm equivalence. Various algorithms have been proposed for calculating function g. To 
what degree are these algorithms equivalent? 

8) Discretization schemes. The finer the discretization used to represent envelopes, the more 
computation is required to compute with them. For a given degree of discretization, and allowing 
variable step sizes, what is the best discretization to use from the standpoint of quality of the 
envelopes computed when other envelopes used as inputs are combined with function g? 



9) Partial information about dependency relationships. The envelopes for z=g(x,y) are 
affected not only by the envelopes for x and y but also by the dependency relationship between x 
and y. No information about the dependency tends to lead to envelopes for z that are wider apart 
than a specific dependency relationship. There are many possible ways to describe dependency 
besides the commonly used correlation coefficient (Hutchinson and Lai 1990 [14]). A way to 
seek to narrow the envelopes for z when justification for fully specifying a dependency 
relationship between x and y is lacking is to partially specify a dependency relationship. Research 
on applying this concept to the case where x and y are described using envelopes is still in its 
infancy despite its considerable promise. 

10) Partial information about marginals. Moments and unimodality are examples of how 
marginals might be characterized, and these characteristics need to be propagated through g to 
help determine envelopes for z=g(x,y). Some recent work appears in Manski (2003 [20]). 

11) Properties of the space of CDFs.  A focus on envelopes can take attention away from other 
properties of a family of distributions that might usefully be propagated through g (in the case of 
marginals) or used for decisions (in the case of z). Convexity – or lack of it – is an example of 
such a property (Kyberg and Pittarelli 1996 [17]). Is there a “natural” sense in which the density 
of functions in the family is greater in some areas within the bounds defined by the envelopes 
than in other areas? If so, what are the implications of this? 

12) (post-publication note) Marginal envelopes from non-parametric predictive inference.  

13) (post-publication note) Estimating optimizations from envelopes. This requires such 
additional problem inputs as decision criteria and risk position. Envelope averaging algorithms 
might be contemplated for obtaining a best guess about the actual unknown distribution.  

14) (post-publication note) Decision-making under severe uncertainty. Information-Gap 
Decision Theory may be of interest here. This appears to tie into concepts like Value at Risk 
(VaR) and Profit at Risk (PaR). 

3.2  Applications challenge problems 

In this section four problems in separate application domains are described. Such problems 
illustrate the potential for use of flexible and dependable use of uncertainty on important and 
challenging problems. 

3.2.1  The Networking domain 

Providing quality of service (QoS) guarantees to flows whose traffic distributions are unknown is 
an example of a type of system where there is a need to flexibly deal with uncertainty.  
Guarantees are of interest for a number of performance measures, such as minimum bandwidth, 
maximum delay, maximum delay jitter, and maximum data loss rate. QoS guarantees take two 
forms, deterministic and stochastic. Deterministic guarantees provide absolute bounds on the 
performance offered to the traffic. This typically requires some knowledge of upper bounds of the 
traffic characteristics, which is provided in practice through traffic regulation at the ingress to the 
network.  This effectively acts to keep the demands on the network within a certain envelope 
[27].  For example, the leaky bucket is a prominent and simple mechanism for traffic regulation 
which is used in ATM networks [27]. Service guarantees are then provided to the regulated traffic 
by routers that provide minimal service guarantees for each of the input flows [4]. The 



combination of the upper bound on input traffic, and the lower bound on service provides the 
guarantees.  Figure 2 shows an example of an arrival stream and the input traffic curve that it 
should not exceed.  The regulated input traffic curve is also shown, where packets are delayed at 
the ingress to the network. 

Stochastic guarantees, in contrast to the deterministic guarantees just mentioned, provide 
probabilistic bounds rather than deterministic ones.  For example, the delay can be guaranteed to 
be less than a certain value with a probability that is less than, but close to 1.  The ingress traffic 
in this case is a stochastic process (whose tail function needs to be within a certain envelope). 

Multiplexing different flows at routers introduces a degree of correlation between the traffic 
served from such flows, even if the flows are independent. The use of non-FIFO service 
strategies, e.g. prioritized service, may further increase the degree of correlation.  In networks of 
routers where the route for each of the flows is determined before the start of the session (often 
called route pinning), a router operates on each of the flows potentially with knowledge of its 
traffic envelope.  This traffic envelope corresponds to worst case conditions and, as correlation 
between flows is rarely taken into account, the guarantees provided on an end-to-end basis tend to 
be more conservative than necessary and, usually, unrealistically weak.  For example, using (σ,ρ)-
calculus (chapter 1 of [27]) it can be shown that if two flows are multiplexed in a queue, the sum 
of the envelopes of the output processes of the two flows is much higher than the envelope of the 
total output process.  This is due to the assumption of worst case conditions on the service 
strategy.  Using knowledge about the correlation between the different flows would lead to better 
envelopes, hence more informed service strategies and ultimately better guarantees. 

 

Figure 2. An example of an input traffic stream which is shaped in order to conform to a certain 
traffic envelope. 

3.2.2  Modeling sensor nodes and clusters in large-scale wireless sensor networks 

Large-scale distributed sensor networks are comprised of many small sensing devices equipped 



with memory, processors, and short-range wireless communication.  They can be used in a wide 
range of challenging environments in which sensor nodes are linked together to monitor and 
report distributed event occurrences. Optimizing use of such sensor networks will require simple, 
scalable, self-organizing, and energy-efficient algorithms for data dissemination, discovery of 
conclusions by humans interacting with the network, routing, and aggregation.  However the 
efficiency and effectiveness of an algorithm relies heavily on how the behaviors of sensor 
networks in real world settings are modeled. For example, many previous theoretical studies 
assume a circular connectivity model, in which the transmission range of a sensor forms a circular 
region, called a connectivity cell, with the sensor at its center. Such a model simplifies the 
analysis and allows geometric approaches to be used. 

However in real sensor networks such simplifications may lead to problematic conclusions. For 
example the connection radius cannot be accurately modeled as a circular cell, since sensor 
transmission signals are stronger in some directions than in others. Other sources of uncertainty 
and variability include the fact that ability to transmit successfully can vary over time as 
environmental conditions change, as can the ability of other sensors to receive the transmissions, 
and that batteries deteriorate over time, reducing transmission power and/or limiting the lifetime 
of the sensor. In addition, coupling between different layers (such as the data link layer, MAC 
layer, and application layer) results in complex unanticipated behavior in large-scale wireless 
sensor networks.  For example, the interactions among asymmetric links (at the link layer) and 
contention and collision (at the MAC layer) often complicate the modeling of the collision 
behavior of the sensors. These make modeling the behavior of sensor networks challenging and 
difficult, since for example there might be dependencies among these characteristics. 
Manipulation of distributions whose details and dependency relationships are imperfectly known 
may find application in modeling complex behaviors of sensor networks and may provide a basis 
for subsequent algorithmic studies of sensors and sensor networks. 

For example, consider the following basic problem. Suppose a sensor network consists of two 
large sections each containing many sensors, and a small section containing a small number of 
sensors that must act as relays in order for messages originating in either one of the large sections 
to be transmitted to the other. For purposes of transmission between the large sections, the 
lifetime of the relay section determines the lifetime of the entire network. We might seek to 
address the lifetime of the relay section as a reliability problem, modeling it as an n-component 
system which fails when k of its components fail, resulting in network partition where sensors 
between two partitions cannot communicate with each other. However it may not be known 
whether the lifetimes of its components are positively correlated, negatively correlated, or 
perhaps independent. This is because some factors suggest positive correlation (such as 
environmental conditions), some suggest negative correlation (such as if there is a tendency for 
traffic to go through some relay sensors in preference to others), and so on. Thus calculating the 
cumulative probability of network failure over time becomes more challenging. Handling of this 
challenge by the algorithm that the sensors use could enable it to make better decisions as it seeks 
to optimize network lifetime. Designing such algorithms poses a further interesting challenge. 

3.2.3  From 2nd-order uncertainty to bidding decisions in electric energy trading 

We consider a problem in the deregulated electric energy market, that of bidding in an electric 
energy auction to sell electricity. Let two electricity generation companies (GENCOs), GENCO 1 
and GENCO 2, be competing to sell the 1000MWh of power needed by the buyer to supply retail 
customers over a particular 1-hour time period. Both GENCOs submit bids, each consisting of a 
price and an amount of power, to the Independent System Operator (ISO). Bids are accepted 



starting from the one with the lowest price per MWh, and proceeding to successively higher 
priced bids until the total need of 1000 MWh has been reached. A profit-maximizing strategy for 
GENCO 1 is to try to bid as high as possible while still undercutting the bid of GENCO 2. To do 
this, GENCO 1 must model its competitor, GENCO 2. 

Assume that GENCO 2 owns two generators, 2A and 2B. Generator 2A has a capacity of 300 
MW and 2B has a capacity of 700 MW. Generator 2A has a lower cost than generator 2B. We do 
not know the precise generation cost of each, but model those with probability density functions: 

f2A(.): uniform distribution from $95-105/MWh, and 

f2B(.): normal distribution from $145-155/MWh. 

GENCO 1 has only one generator and knows its own generation cost, f1(.). At this point we have 
a problem that can be solved without reference to non-classical methods of manipulating 
uncertainty. However what if precise distribution functions for f2A(.) and f2B(.) are not available? 
This could be if they were to model not only the generation costs of generators 2A and 2B, but 
also a profit margin beyond that cost whose value we do not know very well and hence wish to 
model using an interval (that is, a minimum and a maximum for the range of profit margins we 
believe GENCO 2 might incorporate into their bids). Then the cumulative distributions 
corresponding to f2A(.) and f2B(.), call them F2A(.) and F2B(.), will be envelopes (Figure 1). Such 
2nd-order uncertainties lead to three questions regarding optimal bidding. These are as follows. 

1) What is the optimal bid when intelligence about the competitor, GENCO 2, contains 2nd-
order uncertainty, and how might this bid be ascertained? 

2) What is the expected monetary value (EMV) of obtaining additional information that 
would eliminate or reduce the 2nd-order uncertainty, and can that information be obtained 
at or below that cost? 

3) What is the expected cost of ignoring the presence of 2nd-order uncertainty during the bid 
determination process by making assumptions that are not justified by intelligence but are 
made instead for the purpose of making the problem tractable, as is often done? 

Ultimately, understanding the degree to which these questions can be answered will provide the 
motivation and the means for GENCO 1 to determine its optimal (profit-maximizing) bid. Clearly 
this problem is an archetype for a large class of competitive bidding problems. The need for 
solution strategies that properly account for 2nd-order uncertainty is real, and success will have 
real monetary value. 

3.2.4  Integrated circuit fabrication 

Process variation has always been a key concern in Integrated Circuit (IC) fabrication as it can 
lead to yield loss. This is the failure of a manufactured chip to meet functional and performance 
specifications. With continued shrinking of transistor dimensions, device characteristics will 
become increasingly sensitive to variations in the fabrication process. Process variations are 
commonly characterized with probability distributions and analyzed with statistical techniques. 
Thus advances in reasoning under uncertainty may be expected to enable advances in process 
control and circuit design. 

As an example, Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) devices are well 
known to be particularly sensitive to effective channel length (chapter 6 of [3]). Channel length 



variation has direct impact on device output current characteristics. Channel length variation can 
be decomposed into inter-die and intra-die components. Inter-die variation is the variation across 
nominally identical dice. It can be caused by several physical and independent sources like 
variations in etch rate, implant dose, and implant energy.  Intra-die variation is the spatial 
variation within any one die. It can be caused by variations in mask, lens or photo system, 
photolithography proximity effects, etc. 

It is usually sufficient to lump the contributions of different sources of inter-die variation together 
into a single effective die-to-die variation component with a single mean and variance. On the 
other hand, intra-die variation may be systematic [21]. By systematic, we mean the variation 
follows a non-random pattern.  Bounds can often be derived for systematic variations. Hence, the 
variation of channel length can be viewed as a probability distribution with uncertain but bounded 
mean. The effect of changes in the process technology to the channel length and hence important 
device characteristics, and the resulting downstream effects on yield, implications for yield 
optimization, and cost issues, become difficult to analyze dependably. We hypothesize that 
advanced techniques for reasoning about uncertainty can lead to improved understanding of, and 
solutions for, such problems. 

4  Conclusion 

Some problems and challenges relating to reasoning in the presence of uncertainty have been 
presented. Many opportunities for advancement exist. Several advances are given in the papers of 
this special issue. We expect that continued advances will have increasingly felt practical effects 
as practice follows growing awareness of the value of modeling 2nd-order uncertainty. 
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