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ABSTRACT: Plant modeling is used extensively in plant structure research and in 
creating virtual plants for virtual environments. Lindenmayer systems (L-systems), 
which consist of a set of replacement rules that iteratively modify a string, are an 
important tool in plant modeling, and have already been used to model the structures 
of plants like corn and soy. In this study, the L-system concept was combined with a 
finite state machine (FSM), a system consisting of a set of states with rules that 
dictate movement among the states. Each FSM state is associated with its own L-
system. Although L-system and FSM hybrids have relatively rich and complex 
behavior, no method to create such hybrids that model specific plants exist. Effective 
use of these hybrids requires such a method. 

This study examined the potential of using a set of mutation strategies to 
change an L-system/FSM hybrid to model a predetermined plant. An initial hybrid that 
represented a single diagonal line reminiscent of a slanted stalk was the starting 
point, and four mutation strategies were specified. Twenty-five mutated hybrids were 
each produced by randomly applying one of the four mutation strategies to the parent 
hybrid, and the hybrid that best resembled the target plant was chosen by the user for 
our human-in-the-loop selection strategy. This was used as the basis to produce 25 
more mutations. This process continued until further mutations were unable to 
produce a hybrid with a significantly greater resemblance to the chosen plant. 

The chosen mutation strategies successfully mutated the simple initial L-
system/FSM hybrid into one resembling the target plant. This method's success 
shows that using mutation strategies as a way to produce an L-system/FSM hybrid 
that resembles a specific plant is feasible. Different mutation strategies could 
potentially produce even better results. 

 
INTRODUCTION 
The study of plant structures in real and virtual environments often uses plant 
modeling techniques. Lindenmayer systems (L-systems) are capable of modeling a 
variety of plant structures because of their ability to produce potentially recursive 
branching. An L-system consists of a group of rules that modify a string of characters 
over a series of iterations (Prusinkiewicz and Lindenmayer 1991a; Lindenmayer 
1968). They have previously been used to model the growth and structure of certain 
plants, including soybeans (Sun and Tang 2008) and corn (Fournier and Andrieu 
1998). 

A standard L-system attempts to model an entire plant with a single set of 
replacement rules. In practice, features like developmental transitions from woody to 
herbaceous tissue and from stems to leaves or flowers suggests modifying the L-
system algorithm with sentinels or calls to separate algorithms for leaves, flowers and 
other tissue structures (Prusinkiewicz and Lindenmayer 1991b). A state-conditioned 
L-system has the potential to implement this modeling requirement directly as well as 
to support more complex and varied branching structures. 

In this study the L-system and the finite state machine (FSM, see e.g. 
Hopcroft and Ullman 1979) concepts were combined. Each state in the machine 



contains a distinct L-system, which helps provide the system with flexibility and 
expressiveness in modeling plant structures. Fusing L-systems with a finite state 
control structure generalizes the notion of an L-system in a manner that includes 
earlier techniques (Prusinkiewicz and Lindenmayer 1991a) that use sentry variables 
to create internal system states.  

The combination of L-systems and FSMs has been explored in little previous 
work. Badr (1998, 2001) et al. (1999) explored using L-systems with a combination of 
FSMs and Petri nets for intelligent system design. In the plant domain, however, 
despite the demonstrated potential of L-systems in plant studies, the effective 
combination of L-systems and FSMs does not seem to have been addressed 
previously. In order to use this new type of L-system effectively in plant structure 
research, a way to produce a combined L-system and FSM model for a specific plant 
is needed. A mutation-based strategy can be useful (Droop and Hickinbotham 2011). 
The mutation-based algorithm we explored for creating state-conditioned L-systems 
that provide progressively improved models of a plant is a simple evolutionary 
strategy (Beyer 2001). The present study explains this novel approach, and gives its 
application in an example. The results suggest the potential value of developing this 
approach for use in additional and potentially more complex problems in plant 
modeling. 
 
MATERIALS AND METHODS 
User interface. Fig. 1 shows the output and interface screen. The main portion 
shows 25 different mutations, comprised of one mutation selected by the user from 
the preceding display of 25 mutations, plus 24 new mutations obtained by mutating 
that selection. From this screen, the user may in turn select one of the 25 shown by 
clicking on it. (One has been selected in the figure; it is shown with a highlighted 
border.) The “Expand” button near the bottom of the screen will zoom into the 
selected mutation and toggle the name of the “Expand” button to “Mutate.” From the 
zoomed image the user may click the “Mutate” button to generate a new screen of 25 
images. 
 
Data representation and processing. Other elements of Fig. 1 provide information 
about the evolving plant model. “State Info” lists the states in the FSM for the selected 
image. Directly below that, the name of the highlighted state is given, and can be 
changed for mnemonic purposes if desired. While the mutation process often creates 
new states automatically, the “Add State” button permits manual creation of a new 
state in the FSM for test purposes. Below that is the “Variable Info” box. This lists the 
characters in the L-system. Clicking any of them highlights it. The replacement string 
for the highlighted variable is shown directly below the “Variable Info” box, and below 
that, the numerical arguments associated with the variable. These arguments are 
used to help define drawing actions, and can be mutated. The “Destination State” box 
shows the state that the FSM will transition to when highlighted character (“+” in the 
figure) is encountered by the L-system string interpreter. An action is associated with 
that character, indicated in the radio button list. 

A small window near the bottom in Fig. 1 holds the number 4. This software 
parameter may be changed by the user for experimental purposes, and indicates the 
number of iterations through the string, starting from the initial string, in which 
character replacement is performed by the L-system character replacement rules. 
The drawing of the images occurs after the iteration is complete, so each image 
reflects the same number of iterations involved in producing the string that the 



interpreter draws the image from. More iterations yield longer strings and, potentially, 
more complex plant images. The string length depends on the substitution rules 
invoked, which in turn depend on the state when a particular character is being 
processed, and indirectly on the mutation history because that can change the 
substitution rules associated with a given state as well as creating new states. 
However, average string length will tend to naturally increase exponentially with the 
number of iterations.  

Since each drawing is constructed by interpreting the string resulting from n 
expansion iterations (n=4 in Fig. 1), the computation involved in the drawing process 
also increases exponentially with the number of iterations. Thus overall system 
operation is governed by a time complexity of O(xn), where x is by the average 
number of characters in a character replacement rule and n is the number of 
iterations. Consequently the system is quite sensitive to the value of n. In practice we 
have found that values of n over 7 lead to significant delays in image generation that 
interfere with the interactive nature of the user interface. 
 
L-system string interpretation. It is useful to understand how an L-system is 
represented in the software. Every character (i.e. variable) in each L-system is 
associated with four values: a replacement string, a destination state, a number 
representing an action associated with that variable, and a numerical magnitude m 
used by some of the actions. There are five actions, two for drawing, two for state 
handling, and null. The actions are 1) draw a line m pixels long, 2) turn m degrees 
clockwise, 3) “store state” by pushing the current status of the drawing mechanism 
onto a stack, 4) “restore state” by popping a status from the aforementioned stack 
and assigning it to the drawing mechanism, and 5) do nothing. Only two actions use 
their associated magnitude m, potentially allowing a magnitude mutation to have no 
effect until the action itself mutates later into an action that does use its magnitude 
parameter. 
 
Mutations. The software is initialized with a simple initial L-system/finite state 
machine hybrid. The software then applies successive mutations. The evolutionary 
goal was to obtain an L-system/FSM hybrid that resembled a predetermined plant. 
Four mutation strategies were implemented in software and a simple initial hybrid 
system were created. The initial hybrid system expresses a single diagonal line. From 
this, 25 child mutations are created and drawn on a 5x5 grid on the screen (Fig. 1). 
Each mutation is obtained by randomly applying one of the 4 mutation strategies, 
each of which randomly produces a mutation from among a large space of 
possibilities. From these 25 mutations, we applied a human-in-the-loop selection 
strategy, in which the best picture of the predetermined plant was user-selected, then 
used as the parent of 25 more mutations. This may be referred to as a (1,25)-ES 
algorithm (Beyer 2001).  

The process of selecting among mutating requires a fitness function. In the 
case of human-in-the-loop systems fitness determinations are made by humans. In 
the present system these determinations were based on a prioritized list of criteria. 
The primary criterion was to choose the mutant with a branching morphology most 
similar to the target plant, in terms of which branches go on to branch again 
themselves. The secondary criterion, used in cases of ties, was based on which 
mutation resulted in angles more similar to the target plant, and the tertiary criterion 
used when there was still no clear best mutation, was to examine the relative lengths 
of the branches for similarity to the target. The process of successive iterations of 



mutations followed by choosing one of them continued until little or no further 
improvement was noted.  
 
Mutation Strategies. The four mutation strategies are closely tied to the 
representation of the L-system and FSM data structures in the program code. The 
mutation strategies were as follows. 

1) Choose two L-system variables and randomly interchange either their a) 
magnitudes, b) drawing actions, c) replacement strings, or d) destination states. 

2) Randomly do one of the following: 
a. change one variable's magnitude by adding a random integer from -10 to 

+10, 
b. change the drawing action of one variable to a randomly chosen new 

action, 
c. change one variable's entire replacement string to be another randomly 

chosen (1-character) variable in the L-system, or 
d. change the destination state of one variable to a new state in the FSM. 

3) Split one variable's replacement string at a random location and exchange the 
beginning and ending portions of the string. 

4) Append a randomly chosen variable to the end of another variable's 
replacement string. 

 
Initial System. The initial L-system/FSM hybrid contained a two-state FSM. Each 
state had its own associated L-system of 6 variables designated by 6 arbitrary 
characters. The axiom (i.e., initial string) of the system contained one character, an 
‘X.’ Table 1 shows the starting values for each variable of the six in each state's L-
system. 
 

State 0 

Variable 
Replacement 

String 
Destination 

State 
Drawing Action Magnitude 

+ + 0 Turn 25 

- - 0 Turn -25 

[ [ 0 Store status 0 

] ] 0 Restore status 0 

F FF 0 Draw 5 

X FX 0 Do nothing 0 

(a) 

State 1 

Variable Replacement 
String 

Destination 
State 

Drawing Action Magnitude 

+ + 1 Turn 25 

- - 1 Turn -25 

[ [ 1 Store status 0 

] ] 1 Restore status 0 

F FF 1 Draw 5 

X FX 1 Do nothing 0 

(b) 

TABLE 1. Variable rules for (a) state 0, and (b) state 1 in the initial system. 



RESULTS AND DISCUSSION 
The L-system/FSM hybrid systems used in this study draw in two dimensions. Thus, 
the plant chosen for this study was a small branch of a northern white cedar (Thuja 
occidentalis), because of its two-dimensional character. 

The initial system drew a single diagonal line, which was mutated and 
selected as described earlier until further iterations did not appear to significantly 
increase the model's resemblance to the chosen Thuja occidentalis branch. Note the 
resemblance in tilt and general layout of the main branches. Although the number of 
iterations varies from test to test, a typical run consisted of about 100 iterations. For 
example, Fig. 3 shows a result that took 119 iteration. Many mutations do not 
produce an immediately visible effect on the drawn image, but are unmasked later by 
future mutations. Bends typically appear after about 10 iterations, but branches often 
take about 50 iterations. As the images progressively resemble the branch more 
strongly, convergence toward it slows. 

We found that mutations to the L-system replacement strings (mutation 
strategies 1c, 2c, 3, & 4 above) were especially potent in producing changes to the 
images. Although significant improvements to the system with continued iterations 
cease after a point, mutation strategies different from the ones outlined previously 
might have the potential to produce a final system that models the chosen plant even 
more closely. 

 

FIGURE 1. Twenty-five mutated systems. 



 
While an L-system with a larger rule set can sometimes simulate state 

conditioned L-systems, the question arises of whether the set of structures 
describable by a state conditioned L-system is larger than the set describable with 
either L-systems or finite state machines alone. Further work to resolve this 
interesting and potentially significant question is needed. 
 
CONCLUSION 
While L-systems are well known to be useful in modeling plant structure, the 
combination of L-systems and finite state machines in hybrid systems has been left 
remarkably unstudied. In this study we have demonstrated the possibility that this 
combination has value for plant modeling. Showing the feasibility of hybrid systems, 
as we have done in this investigation, suggests that continued research on hybrid 
combinations of L-systems and FSMs for plant modeling may prove fruitful. 
 
Availability and Requirements. The software written for this study runs under Java 
Version 1.6.0 or later. Testing was performed on a 2.00 GHz Intel T2500 CPU based 
PC running Windows XP Service Pack 3. Source code and compiled bytecode are 
available from the authors upon request. The system was written in Java, and 
requires Java 1.6.0 or higher. It is run by typing a Java command line from a terminal 
window on Windows or a Mac. Software available upon request. 

 
 
 
 
 
 

FIGURE 2. The Thuja occidentalis branch.       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3. Model (produced after 119 
iterations). 
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