
Adding Unimodality or Independence Makes Interval
Probability Problems NP-Hard

Daniel J. Berleant
Electrical and

Computer Engineering
Iowa State University
Ames, IA 50011, USA
berleant@iastate.edu

Olga Kosheleva
NASA Pan-American Center for
Earth and Environmental Studies

(PACES)
University of Texas at El Paso

El Paso, TX 79968, USA
olgak@utep.edu

Hung T. Nguyen
Dept. of Mathem. Sciences
New Mexico State Univ.

Las Cruces, NM 88003, USA
hunguyen@nmsu.edu

Abstract

In many real-life situations, we only
have partial information about prob-
abilities. This information is usually
described by bounds on moments, on
probabilities of certain events, etc.
– i.e., by characteristics c(p) which
are linear in terms of the unknown
probabilities pj . If we know interval
bounds on some such characteristics
ai ≤ ci(p) ≤ ai, and we are inter-
ested in a characteristic c(p), then
we can find the bounds on c(p) by
solving a linear programming prob-
lem.

In some situations, we also have ad-
ditional conditions on the probabil-
ity distribution – e.g., we may know
that the two variables x1 and x2 are
independent, or that for each value
of x2, the corresponding conditional
distribution for x1 is unimodal. We
show that adding each of these con-
ditions makes the corresponding in-
terval probability problem NP-hard.
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1 Introduction

Interval probability problems can be
often reduced to linear programming
(LP). In many real-life situations, in addi-
tion to the intervals [xi, xi] of possible values

of the unknowns x1, . . . , xn, we also have par-
tial information about the probabilities of dif-
ferent values within these intervals.

This information is usually given in terms of
bounds on the standard characteristics c(p) of
the corresponding probability distribution p,
such as the k-th moment Mk

def=
∫

xk · ρ(x) dx
(where ρ(x) is the probability density), the
values of the cumulative distribution function
(cdf) F (t) def= Prob(x ≤ t) =

∫ t
−∞ ρ(x) dx of

some of the variables, etc. Most of these char-
acteristics are linear in terms of ρ(x) – and
many other characteristics like central mo-
ments are combinations of linear chractaris-
tics: e.g., variance V can be expressed as
V = M2 −M2

1 .

A typical practical problem is when we know
the ranges of some of these characteristics
ai ≤ ci(p) ≤ ai, and we want to find the range
of possible values of some other characteristic
c(p). For example, we know the bounds on
the marginal cdfs for the variables x1 and x2,
and we want to find the range of values of the
cdf for x1 + x2.

In such problems, the range of possible val-
ues of c(p) is an interval [a, a]. To find a
(correspondingly, a), we must minimize (cor-
respondingly, maximize) the linear objective
function c(p) under linear constraints — i.e.,
solve a linear programming (LP) problem;
see, e.g., [15, 16, 17, 20].

Other simple examples of linear conditions
include bounds on the values of the density
function ρ(x); see, e.g., [14].



Comment. Several more complex problems
can also be described in LP terms. For ex-
ample, when we select a new strategy for a
company (e.g., for an electric company), one
of the reasonable criteria is that the expected
monetary gain should be not smaller than the
expected gain for a previously known strat-
egy. In many case, for each strategy, we
can estimate the probability of different pro-
duction values – e.g., the probability F (t) =
Prob(x ≤ t) that we will produce the amount
≤ t. However, the utility u(t) corresponding
to producing t depends on the future prices
and is not well known; therefore, we cannot
predict the exact value of the expected utility∫

u(x) · ρ(x) dx. One way to handle this situ-
ation is require that for every monotonic util-
ity function u(t), the expected utility under
the new strategy – with probability density
function (pdf) ρ(x) and cdf F (x) – is larger
than or equal to the expected utility under the
old strategy – with pdf ρ0(x) and cdf F0(x):∫

u(x)·ρ(x) dx ≥ ∫
u(x)·ρ0(x) dx. This condi-

tion is called first order stochastic dominance.
It is known that this condition is equivalent
to the condition that F (x) ≤ F0(x) for all x.

Indeed, the condition is equivalent to
∫ t

0
u(x) · (ρ(x)− ρ0(x)) dx ≥ 0.

Integrating by part, we conclude that

−
∫ t

0
u′(x) · (F (x)− F0(x)) dx ≥ 0;

since u(x) is non-decreasing, the derivative
u′(x) can be an arbitrary non-negative func-
tion; so, the above condition is indeed equiv-
alent to F (x) ≤ F0(x) for all x.

Each of these inequalities is linear in terms of
ρ(x) – so, optimizing a linear objective func-
tion under the constraints F (x) ≥ F0(x) is
also a LP problem.

This requirement may be too restrictive; in
practice, preferences have the property of risk
aversion: it is better to gain a value x with
probability 1 than to have either 0 or 2x with
probability 1/2. In mathematical terms, this
condition means that the corresponding util-
ity function u(x) is concave. It is therefore

reasonable to require that for all such risk
aversion utility functions u(x), the expected
utility under the new strategy is larger than
or equal to the expected utility under the old
strategy. This condition is called second order
stochastic dominance (see, e.g., [7, 8, 18, 19]),
and it known to be equivalent to the condition
that

∫ t
0 F (x) dx ≤ ∫ t

0 F0(x) dx.

Indeed, the condition is equivalent to
∫ t

0
u(x) · (ρ(x)− ρ0(x)) dx ≥ 0

for every concave function u(x). Integrating
by part twice, we conclude that
∫ t

0
u′′(x)·

(∫ x

0
F (z) dz −

∫ x

0
F0(z) dz

)
dx ≥ 0.

Since u(x) is concave, the second derivative
u′′(x) can be an arbitrary non-positive func-
tion; so, the above condition is indeed equiv-
alent to

∫ t
0 F (x) dx ≤ ∫ t

0 F0(x) dx for all t.

The cdf F (x) is a linear combination of the
values ρ(x); thus, its integral

∫
F (x) dx is also

linear linear in ρ(x), and hence the above con-
dition is still linear in terms of the values ρ(x).
Thus, we again have a LP problem; for details,
see [2].

Most of the corresponding LP problems
can be efficiently solved. Theoretically,
some of these LP problems have infinitely
many variables ρ(x), but in practice, we can
discretize each coordinate and thus, get a LP
problem with finitely many variables.

There are known efficient algorithms and soft-
ware for solving LP problems with finitely
many variables. These algorithms require
polynomial time (≤ nk) to solve problems
with ≤ n unknowns and ≤ n constraints;
these algorithms are actively used in impre-
cise probabilities; see, e.g., [1, 1, 3, 4, 5, 6].

For example, for the case of two variables x1

and x2, we may know the probabilities pi =
p(x1 ∈ [i, i + 1]) and qj = p(x2 ∈ [j, j + 1]) for
finitely many intervals [i, i +1]. Then, to find
the range of possible values of, e.g.,

Prob(x1 + x2 ≤ k),



we can consider the following linear program-
ming problem: the unknowns are

pi,j
def= p(x1 ∈ [i, i + 1] &x2 ∈ [j, j + 1]),

the constraints are pi,j ≥ 0, pi,1 + pi,2 + . . . =
pi, p1,j + p2,j + . . . = qj , and the objective
function is

∑
i,j:i+j≤k

pi,j .

Comment. The only LP problems for which
there may not be an efficient solution are
problems involving a large amount of vari-
ables v. If we discretize each variable into n
intervals, then overall, we need nv unknowns
pi1,i2,...,iv (1 ≤ i1 ≤ n, 1 ≤ i2 ≤ n, . . . ,
1 ≤ iv ≤ n) to describe all possible proba-
bility distributions. When v grows, the num-
ber of unknowns grows exponentially with v
and thus, for large v, becomes unrealistically
large.

It is known (see, e.g., [12]) that this expo-
nential increase in complexity is inherent to
the problem: e.g., for v random variables
x1, . . . , xv with known marginal distributions,
the problem of finding the exact bounds on
the cdf for the sum x1 + . . . + xv is NP-hard.

Beyond LP. There are important practical
problems which lie outside LP. One example is
problems involving independence, when con-
straints are linear in p(x, y) = p(x) · p(y) and
thus, bilinear in p(x) and p(y). In this paper,
we show that the corresponding range estima-
tion problem is NP-hard.

Another example of a condition which cannot
be directly described in terms of LP is the
condition of unimodality. For a one-variable
distribution with probabilities p1, . . . , pn, uni-
modality means that there exists a value m
(“mode”) such that pi increase (non-strictly)
until m and then decreases after m:

p1 ≤ p2 ≤ . . . ≤ pm−1 ≤ pm;

pm ≥ pm+1 ≥ . . . ≥ pn−1 ≥ pn.

When the location of the mode is known, we
get several linear inequalities, so we can still
use efficient techniques such as LP; see, e.g.,
[9, 21].

For a 1-D case, if we do not know the loca-
tion of the mode, we can try all n possible
locations and solve n corresponding LP prob-
lems. Since each LP problem requires a poly-
nomial time to run, running n such problems
still requires a polynomial time.

In the 2-D case, it is reasonable to consider
the situation when, e.g., for every value of x2,
the corresponding conditional distribution for
x1 is unimodal. In this case, to describe this
as a LP problem, we must select a mode for
every x2. If there are n values of x2, and at
least 2 possible choices of mode location, then
we get an exponential amount of 2n possible
choices. In this paper, we show that this prob-
lem is also NP-hard – and therefore, that, un-
less P=NP, no algorithm can solve it in poly-
nomial time.

Comment. Other possible restrictions on
probability may involve bounds on the en-
tropy of the corresponding probability distri-
butions; such problems are also, in general,
NP-hard [11].

2 Adding Unimodality Makes
Interval Probability Problems
NP-Hard

Definition 1 Let n1 > 0 and n2 > 0 be given
integers.

• By a probability distribution, we mean
a collection of real numbers pi1,i2 ≥ 0,
1 ≤ i ≤ n1, and 1 ≤ j ≤ n2, such that
n1∑

i1=1

n2∑
i2=1

pi1,i2 = 1.

• We say that the distribution pi1,i2 is uni-
modal in the 1st variable (or simply uni-
modal, for short) if for every i2 from 1 to
n2, there exists a value m such that pi1,i2

grows with i1 for i1 ≤ m and decreases
with i1 for i1 ≥ m:

p1,i2 ≤ p2,i2 ≤ . . . ≤ pm,i2 ;

pm,i2 ≥ pm+1,i2 ≥ . . . ≥ pn1,i2 .

• By a linear constraint on the probability
distribution, we mean the constraint of



the type b ≤
n1∑

i1=1

n2∑
i2=1

bi1,i2 · pi1,i2 ≤ b for

some given values b, b, and bi1,i2.

• By an interval probability problem under
unimodality constraint, we mean the fol-
lowing problem: given a find list of linear
constraints, check whether there exists a
unimodal distribution which satisfies all
these constraints.

Theorem 1 Interval probability problem un-
der unimodality constraint is NP-hard.

Comment. So, under the unimodality con-
straint, even checking whether a system of lin-
ear constraints is consistent – i.e., whether the
range of a given characteristic is empty – is
computationally difficult (NP-hard).

Proof. We will show that if we can check,
for every system of linear constraints, whether
this system is consistent or not under uni-
modality, then we would be able to solve a
partition problem which is known to be NP-
hard [10, 13]. The partition problem con-
sists of the following: given n positive inte-
gers s1, . . . , sn, check whether exist n integers
εi ∈ {−1, 1} for which ε1 ·s1 + . . .+εn ·sn = 0.

Indeed, for every instance of the partition
problem, we form the following system of con-
straints: n1 = 3, n2 = n,

• p2,i2 = 0 for every i2 = 1, . . . , n2,

• p1,i2 + p2,i2 + p3,i2 = 1/n for every i2 =
1, . . . , n2;

•
n2∑

i2=1
(−si2 · p1,i2 + si2 · p3,i2) = 0.

Let us prove that this system is consistent if
and only if the original instance of the parti-
tion problem has a solution.

“If” part. If the original instance has a so-
lution εi ∈ {−1, 1}, then, for every i2 from
1 to n2, we can take p2+εi2

,i2 = 1/n and
pi1,i2 = 0 for i1 6= 2 + εi2 . In other words:

• if εi2 = −1, then we take p1,i2 = 1/n and
p2,i2 = p3,i2 = 0;

• if εi2 = 1, then we take p1,i2 = p2,i2 = 0
and p3,i2 = 1/n.

The resulting distribution is unimodal: in-
deed, for each i2, its mode is the value 1+εi2 .
Let us check that it satisfies all the desired
constraints. It is easy to check that for every
i2, we have p2,i2 = 0 and p1,i2 + p2,i2 + p3,i2 =
1/n. Finally, due to our choice of pi1,i2 , we

conclude that −si2 ·p1,i2 +si2 ·p3,i2 =
1
n
·εi2 ·si2

and thus,

n2∑

i2=1

(−si2 ·p1,i2+si2 ·p3,i2) =
1
n
·

n2∑

i2=1

εi2 ·si2 = 0.

“Only if” part. Vice versa, let us assume
that we have a unimodal distribution pi1,i2 for
which all the desired constraints are satisfied.
Since the distribution is unimodal, for every
i2, there exists a mode mi2 ∈ {1, 2, 3} for
which the values pi1,i2 increase for i1 ≤ mi2

and decrease for i1 ≥ mi2 . This mode cannot
be equal to 2, because otherwise, the value
p2,i2 = 0 will be the largest of the three val-
ues p1,i2 , p2,i2 , and p3,i2 hence all three values
will be 0 – which contradicts to the constraint
p1,i2 + p2,i2 + p3,i2 = 1/n. Thus, this mode is
either 1 or 3:

• if the mode is 1, then due to monotonic-
ity, we have 0 = p2,i2 ≥ p3,i2 hence
p3,i2 = p2,i2 = 0;

• if the mode is 3, then due to monotonic-
ity, we have p1,i2 ≤ p2,i2 = 0 hence
p1,i2 = p2,i2 = 0.

In both case, for each i2, only one value of
pi1,i2 is different from 0 – the value pmi2

,i2 .
Since the sum of these three values is 1/n,
this non-zero value must be equal to 1/n. If
we denote εi

def= mi−2, then we conclude that
εi ∈ {−1, 1}. For each i2, we have

−si2 · p1,i2 + si2 · p3,i2 = εi2 · si2 · (1/n),

hence from the constraint
n2∑

i2=1

(−si2 ·p1,i2+si2 ·p3,i2) =
1
n
·

n2∑

i2=1

εi2 ·si2 = 0,



we conclude that
∑

εi · si = 0, i.e., that the
original instance of the partition problem has
a solution.

The theorem is proven.

Comment. The above constraints are not
just mathematical tricks, they have a natural
interpretation if for x1, we take the values −1,
0, and 1 as corresponding to i1 = 1, 2, 3, and
for and for x2, we take the values s1, . . . , sn.
Then:

• the constraint p2,i2 = 0 means that
Prob(x1 = 0) = 0;

• the constraint p1,i2 + p2,i2 + p3,i2 = 1/n
means that Prob(x2 = si) = 1/n for all
n values si, and

• the constraint
n2∑

i2=1
(−si2 ·p1,i2+si2 ·p3,i2) =

0 means that the expected value of the
product is 0: E[x1 · x2] = 0.

So, the difficult-to-solve problem is to check
whether it is possible that E[x1 · x2] = 0 and
Prob(x1 = 0) = 0 for some unimodal distrib-
ution for which the marginal distribution on
x2 is “uniform”.

3 Adding Independence Makes
Interval Probability Problems
NP-Hard

In general, in statistics, independence makes
problems easier. We will show, however, that
for interval probability problems, the situa-
tion is sometimes opposite: the addition of
independence assumption turns easy-to-solve
problems into NP-hard ones.

Definition 2 Let n1 > 0 and n2 > 0 be given
integers.

• By an independent probability distribu-
tion, we mean a collection of real num-
bers pi ≥ 0, 1 ≤ i ≤ n1, and qj, 1 ≤ j ≤
n2, such that

n1∑
i=1

pi =
n2∑

j=1
qj = 1.

• By a linear constraint on the independent
probability distribution, we mean the con-
straint of the type

b ≤
n1∑

i=1

ai ·pi +
n2∑

j=1

bj ·qj +
n1∑

i=1

n2∑

j=1

ci,j ·pi ·qj ≤ b

for some given values b, b, ai, bj, and ci,j.

• By an interval probability problem un-
der independence constraint, we mean
the following problem: given a find list
of linear constraints, check whether there
exists an independent distribution which
satisfies all these constraints.

Comment. Independence means that pi,j =
pi ·qj for every i and j. The above constraints
are linear in terms of these probabilities pi,j =
pi · qj .

Theorem 2 Interval probability problem un-
der independence constraint is NP-hard.

Proof. To prove this theorem, we will re-
duce the problem in question to the same
known NP-hard problem as in the proof of
Theorem 1: to the partition problem.

For every instance of the partition problem,
we form the following system of constraints:
n1 = n2 = n,

• pi − qi = 0 for every i from 1 to n;

• Si · pi − pi · qi = 0 for all i from 1 to n,

where

Si
def=

2 · si
n∑

k=1
sk

.

Let us prove that this system is consistent if
and only if the original instance of the parti-
tion problem has a solution.

Indeed, if the original instance has a solution
εi ∈ {−1, 1}, then, for every i from 1 to n, we

can take pi = qi =
1 + εi

2
· Si, i.e.:

• if εi = −1, we take pi = qi = 0;

• if εi = 1, we take pi = qi = Si.



Let us show that for this choice,
n∑

i=1
pi =

n∑
j=1

qj = 1. Indeed,

n∑

i=1

pi =
n∑

i=1

1 + εi

2
·Si =

1
2
·

n∑

i=1

Si+
1
2
·

n∑

i=1

εi ·Si.

By definition of Si =
2 · si
n∑

k=1
sk

, we have

n∑

i=1

Si = 2 ·

n∑
i=1

si

n∑
k=1

sk

= 2,

and

n∑

i=1

εi · Si = 2 ·

n∑
i=1

εi · si

n∑
k=1

sk

.

Since
n∑

i=1
εi ·si = 0, the second sum is 0, hence

n∑
i=1

pi = 1.

In both cases εi = ±1, we have Si ·pi−pi ·qi =
0, so all the constraints are indeed satisfied.

Vice versa, if the constraints are satisfied, this
means that for every i, we have pi = qi and
Si · pi − pi · qi = pi · (Si − qi) = pi · (Si −
pi) = 0, so pi = 0 or pi = Si. Thus, the
value pi/Si is equal to 0 or 1, hence the value
εi

def= 2 · (pi/Si) − 1 takes values −1 or 1. In

terms of εi, we have pi/Si =
1 + εi

2
, hence

pi =
1 + εi

2
· Si. Since

n∑
i=1

pi = 1, we conclude

that

n∑

i=1

pi =
1
2
·

n∑

i=1

Si +
1
2
·

n∑

i=1

εi · Si = 1.

We know that
1
2
·

n∑

i=1

Si = 1, hence
n∑

i=1

εi ·Si =

0. We know that this sum is proportional to
n∑

i=1
εi · si, hence

n∑
i=1

εi · si = 0 – i.e., the orig-

inal instance of the partition problem has a
solution.

The theorem is proven.
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