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Combining different items of evidence is important because it results in a single 
composite likelihood. For example, a sentence may have a number of features, each 
associated with some probability that the sentence describes an interaction between 
biomolecules. What, then, is the composite likelihood that the sentence describes an 
interaction implied by combining the various sources of evidence provided by various 
features of the sentence? By determining such a composite likelihood that a given sentence 
describes an interaction, important applications can be supported. Putative interactions in 
automatically generated biomolecular interaction network simulators can be rated, sentences 
can be ranked for curation, etc. In the following paragraphs we give a theoretical comparison 
of two methods for evidence combination. One is the well-known Naïve Bayes model. The 
other is semi-naïve evidence combination. 

Naïve Bayes and semi-naïve evidence combination both have a similar scalability 
advantage over full Bayesian analysis using Bayes Theorem to account for whatever 
dependencies may exist. That scalability is why they are useful. However when used to 
estimate probabilities that an item (e.g. a sentence) is in some category (e.g. describes a 
biomolecular interaction) or in the complementary category, semi-naïve evidence 
combination makes fewer assumptions. Next we explain each method. Following that they 
are compared and discussed. 

Evidence combination with the Naïve Bayes model. This standard method produces 
probability estimates which are often used for categorization (Lewis 1998). It may be 
explained as follows.  

1) We wish to determine p(h|f1,...,fn) where h represents is a hit – i.e., the sentence in 
question contains an interaction, and f1...fn represent features 1 through n (a feature 
can be any property of the sentence such as, for example, an attribute-value pair). 

2) By Bayes’ Theorem we have p(h|f1,...,fn)=p(h)p(f1,...fn|h)/p(f1,...,fn). 
3) From standard probability we know that p(a,b)=p(a)p(b|a). (This can be visualized 

using a Venn diagram.) This fact can be extended to 3 variables: p(a,c,d)=p(a)p(c,d|a) 
where c,d (that is, the simultaneous occurrence of c and d) acts like a single variable – 
and can even be named such: let b stand for “c and d.” The same fact can also be 
extended by limiting the domain of discourse (technically, the “reference set”) to 
cases where some property e holds: p(a,b|e)=p(a|e)p(b|a,e). 

4) The fact and its extensions laid out in the preceding step may be applied to the term 
p(f1,...fn|h) to give p(f1,...fn|h) 
=p(f1|h)p(f2,...,fn|f1,h) 
=p(f1|h)p(f2|f1,h)p(f3,...fn|f2,f1,h) 
=p(f1|h)p(f2|f1,h)p(f3|f2,f1,h)p(f4,...fn|f3,f2,f1,h) 



=... . 
This process is described nicely in, for example, Wikipedia (see refs.). 

5) To make the process of calculation tractable, we now start making independence 
assumptions. Assuming that the features are independent of one another given that 
the sentence being a hit, implies that p(fa|h,fb,fc,...)=p(fa|h). In other words, the result 
of the preceding step becomes: p(f1,...fn|h)=p(f1|h)p(f2|h)p(f3|h)...p(fn|h). 

6) By making the additional assumption that the features are unconditionally 
independent (i.e. ignoring whether the sentence is a hit or not), we can simplify the 
computation of the denominator in step 2 as follows: p(f1,...,fn)=p(f1)p(f2)p(f3)...p(fn). 
This simplifies the calculations because if there are n attributes each with j possible 
values, then there are jn possible p(f1,...,fn)’s to be determined, and for even relatively 
modest n and j, jn is a prohibitive number of probabilities to find.  

7) Having made both the numerator and denominator in step 2 tractable, the Naïve 

Bayes model estimates 
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The Naïve Bayes model is tractable to compute but provides only an estimate of the 
probability that a given sentence is a hit, because of the two sets of assumptions, which are 
that the features occur independently of one another both when conditioned by h, and when 
not conditioned by h. 

Semi-naïve evidence combination. This method is scalable in the number of features, like 
Naïve Bayes, but has the advantage of making fewer independence assumptions under certain 
important conditions. Unlike the Naïve Bayes model, it does not assume that the features are 
unconditionally independent (e.g., regardless of whether sentences are hits or not). The most 
parsimonious formula for semi-naïve evidence combination is  

O(h|f1,...,fn)=O1...On/(O0)n-1 

where the odds that a sentence describes an interaction if it has features f1,...,fn are 
O(h|f1,...,fn),  the odds that a sentence with feature k is a hit are Ok, and the prior odds (i.e. 
over all sentences in the test set irrespective of their features) that a sentence is a hit are O0. 
The equation O(h|f1,...,fn)=O1...On/(O0)n-1 just given is in terms of odds, which are ratios of 
hits to misses. Thus, for example, the odds of flipping a head are 1/1=1 (1 expected success 
per failure), while the odds of rolling a six are 1/5 (one success expected per five failures). 
Odds are easily converted to the more familiar probabilities by applying p=O/(O+1). 
Similarly, O=p/(1-p).  

Let us now derive the preceding equation for O(h|f1,...,fn), while referring to a concrete 
example as appropriate to help develop the intuitions behind it. We start by looking at the 
odds without reference to any features, then account for features one by one. 

1) Prior to considering any features, we must rely on the overall number of sentences 
that are hits compared to those that are not. The ratio of hits to non-hits determines 
the prior odds, O0, of a sentence being a hit. For example, consider a sample, quite 
small for purposes of explanation, of 8 sentences, 4 that are hits and 4 that are not. In 
this pool, odds O0 are 4/4=1 (corresponding to a probability of ½).  



2) Now consider the influence of feature f1, possessed by 4 sentences that are hits and 2 
that are not. The odds that a sentence possessing feature f1 is a hit, O1, now override 
the prior odds. For the example, these new odds are 4/2, so O1=2. Note that this is 
consistent with the equation O(h|f1,...,fn)=O1...On/(O0)n-1 given earlier because it 
implies O(h|f1)=O1/(O0)0=2/1=2. The rationale for this equation, however, becomes 
evident only when additional features are also considered. 

3) Next consider feature f2, possessed by 4 sentences that are hits and 2 that are not, one 
of which also possesses feature f1. What are the odds that a sentence possessing both 
features f1 and f2 is a hit? The odds are determined from the pool of sentences with 
both features.  
 
The value is the number that are hits divided by the number that are not. For the 
example, this is 4/1=4. While the number of sentences to count is small in the 
example, the number may also be very large, as in the case of all sentences on the 
Web. Regardless, it is not necessary to actually count the relevant sentences as we are 
able to do in the small example. The process for finding the odds is described next. 

1. Let F1 be the number of hits possessing feature f1. 
2. Let F2 be the number of hits possessing feature f2. 
3. Let H be the number of sentences that are hits, and let SH be  the set of 

such sentences. 
4. Then the fraction of hits with feature f2 is F2/H. 
5. Here some assumptions are needed: we must assume f1 and f2 occur 

independently of each other within SH.  
6. Then, the fraction of hits with feature f1 that also possess feature f2, is the 

same as the fraction of hits with feature f2 regardless of  f1; that is, F2/H. 
7. Thus, the number of hits possessing features f1 and f2 is F1(F2/H). 
8. Similarly, we determine the number of non-hits possessing features f1 and 

f2. Let F1’ be the number of non-hits possessing feature f1. 
9. Let F2’ be the number of non-hits possessing feature f2. 
10. Let H’ be the number of sentences that are non-hits and let SH’ be  the set 

of such sentences. 
11. Then the fraction of non-hits with feature f2 is F2’/H’. 
12. Here more assumptions are needed: assume f1 and f2 occur independently 

of each other within SH’. 
13. Then, the fraction of non-hits with feature f1 that also possess feature f2, is 

the same as the fraction of non-hits with feature f2 regardless of f1; that is, 
F2’/H’. 

14. Thus, the number of non-hits possessing features f1 and f2 is F1’F2’/H’. 
15. The odds of a sentence being a hit if it has features f1 and f2 are therefore 

O(h|f1,f2)=(F1F2/H)/(F1’F2’/H’)=F1F2H’/F1’F2’H. 
16. O1, the odds that a sentence with feature f1 is a hit, is F1/ F1’, by the 

definition of odds.  Similarly, O2= F2/F2’. Similarly, O0, the prior odds a 
sentence is a hit without considering its features, is H/H’. Therefore, 
O(h|f1,f2)=F1F2H’/F1’F2’H= (F1/F1’)(F2/F2’)/(H/H’)=O1O2/O0.  

17. To account for feature f3, the same reasoning by which odds O1, implied 
by feature f1, are multiplied by the factor O2/O0 to account for feature f2 is 
applied again. Thus O1O2/O0 is multiplied by the factor O3/O0 to account 
for feature f3. In symbols, O(h|f1,f2)=O1O2/O0 is modified to 
O(h|f1,f2,f3)=O1O2O3/(O0)2. 



18. The same process is repeated. Each feature fi causes the odds due to 
previously considered features to be multiplied by the factor Oi/O0, 
ultimately giving the formula O(h|f1,...,fn)=O1...On/(O0)n-1 if there are n 
features considered. 

 
Comparison of the Naïve Bayes and semi-naïve evidence combination models. Naïve 

Bayes is often used for category assignment. The item to classified is put into the category 
for which Naïve Bayes gives the highest likelihood. In the present context there are two 
categories, one of hits and one of non-hits, but in general there can be N categories. In either 
case, the denominator of the Naïve Bayes formula is the same for each category, so it can be 
ignored. This is fortunate because it is this denominator whose computation assumes that 
features are unconditionally (i.e. disregarding the category of the sample sentences) 
independent of one another. However, when the Naïve Bayes formula is used for estimating 
the probability that a sentence is in a particular category, the denominator must be evaluated. 
This is problematic because the assumption of unconditional independence is not only 
unsupported, but most likely wrong. The reason is that the presence of features that provide 
evidence that the sentence belongs in a particular category are probably correlated. For 
example, two features that both predict a sentence will be a hit do not occur independently of 
one another. Rather, if a sentence has one of them (and thus is likely to be a hit), then it will 
have an enhanced likelihood of possessing the other (because it is also particularly associated 
with hits). 

For this problem of estimating the probability that a particular sentence is a hit or, more 
generally, belongs to a particular category, semi-naïve evidence combination appears more 
suitable because it estimates odds (which are easily converted to probabilities) without the 
problematic assumption that features are unconditionally independent in their occurrence.  

Both methods require assuming that features occur independently given (i.e. within) the 
category. Semi-naïve evidence combination additionally requires assuming features are 
independent within the complement of the category. In the example, the category is sentences 
that are hits and the complement of the category is sentences that are not hits. However, if 
Naïve Bayes is to be used to determine assignment to the hits category or the non-hits 
category, then it will have to be applied separately to each of those categories, thus requiring 
the same assumptions as semi-naïve evidence combination. On the other hand, then the 
denominator of the Naïve Bayes formula would become superfluous, so that the two methods 
would be making the same independence assumptions.  

For cases where there are multiple categories, semi-naïve evidence combination requires 
independence assumptions for the complement of each category, whereas Naïve Bayes does 
not. It may be, however, that the effect of assuming features are independent within the 
complement of a category will tend to counteract any inaccuracy resulting from assuming 
features are independent within the category. For some problems, the decision of which 
method to use may ultimately depend on for which formula the required figures are most 
easily obtained. 

 
Exercise 1. Suppose there is a set of 8 sentences, 4 of which are hits and 4 of which are not. 
Feature 1 is present in all 4 hits and in 2 non-hits. Feature 2 also occurs in 4 hits and 2 non-hits. 
There is 1 non-hit with both features. What is the probability estimated by the Naïve Bayes 
formula that a sentence with both features is a hit? What are the odds for this estimated by the 
formula for semi-naïve evidence combination? What is the probability implied by these odds? 
What is the true probability? Repeat this process for the non-hit category. Discuss the results. 
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