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Abstract 

 

In clinical settings, technological advancements have facilitated health care 

improvements in data analytics, artificial intelligence, telemedicine, health 

information systems, etc. This has furthered our understanding of cancer biology 

and treatment mechanisms. In this study, we aim to understand whether Moore’s 

law-like models may derive from historical cancer survival data, and how they can 

predict survival statistics for newly diagnosed cancer patients. Historically these 

predictions have previously been done with the diagnosis year as the independent 

variable and the survival as a dependent variable. In this study we use death year 

data as an independent variable and from that, we derive 5-, 10- and 20-year 

survival times. This will help us determine the best fitting curves for determining 

recent cancer survival times as well as future survival times. To do so, we use 

publicly available SEER data to obtain average cancer survival time data while 

avoiding recency bias. 
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Introduction 

Moore’s law is an observation that has profoundly influenced the development and 

evolution of the semiconductor industry and modern technology (Schaller, 1997). The law, 

named after Intel co-founder Gordon E. Moore, refers to the observation that the number of 

transistors on a microchip doubles approximately every two years, while the cost of these 

components decreases at a similar rate (Moore, 1975). This phenomenon has had a revolutionary 

impact on the performance, efficiency, and cost of electronic devices, laying the foundation for 

the information age we live in today including healthcare technology (Keyes, 2006). 

A particular problem yet to be fully understood in cancer research pertains to survival 

estimations for newly diagnosed cancer patients (Deepa & Gunavathi, 2022). Although survival 

estimations exist and are constantly updated, this data is frequently based on historical data 

(Brenner et al., 2004). This paper focuses on how exponential or other trajectory curves for 

advancements of technologies, as predicted by, for example, Moore’s law, helps enable the 

development and implementation of predictive models for kidney and other cancer survival 

times. The outcomes of findings will be useful for clinicians, researchers, policy makers, and 

most importantly, patients.  

Background 

The origins of Moore’s law can be traced back to a paper published in 1965 by Gordon E. 

Moore, who was working at Fairchild Semiconductor at the time (Brock, 2006). In his paper 

titled "Cramming more components onto integrated circuits," Moore observed that the number of 

transistors on a chip had been doubling every year since the invention of the integrated circuit in 

1958, and he predicted that this trend would continue for at least ten more years (Schaller, 1997). 
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Over time, this prediction evolved into the more widely accepted version of doubling 

approximately every two years (Brock, 2006). 

The driving forces behind Moore’s law are multifaceted. One of the primary factors is the 

advancements in semiconductor manufacturing processes (Keyes, 2006). Engineers and 

scientists have consistently found ways to make transistors smaller and pack more of them onto a 

single chip (Schaller, 1997). This miniaturization has allowed for increased computing power 

and energy efficiency (Ning, 2019). Over time, leading companies in the field of research and 

development continue to invest heavily in cutting-edge technologies, which has facilitated the 

continuous refinement of fabrication techniques and the discovery of new materials (Brock, 

2006). 

Impact on Technology 

Moore’s law has had a transformative impact on modeling the technology landscape. It 

has been the driving force behind modeling the rapid growth in computational power and the 

reduction in the size and cost of electronic devices (Schaller, 1997). The continuous 

improvement in computing capabilities has fueled innovations in various fields, including 

telecommunications, medicine, entertainment, and artificial intelligence (Young, 2019). As 

transistors became smaller and more efficient, electronic devices such as computers, 

smartphones, and tablets became more powerful, compact, and affordable (Brock, 2006). This 

has led to an explosion in the availability and accessibility of technology, revolutionizing how 

people communicate, work, and entertain themselves (Kirilenko & Lo, 2013). 

Moore’s law and Health Care Technology 

While Moore’s law directly pertains to the exponential growth of transistors on 

microchips, it has indirectly contributed to the advancement of computational power and data 
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processing capabilities (Mulay, 2015). These advancements have facilitated complex 

simulations, data analysis, and AI applications, which are increasingly being used in cancer 

research and treatment planning (Westwood, 2002). The ability to process vast amounts of data 

quickly and efficiently has accelerated progress in oncology and furthered our understanding of 

cancer biology and treatment mechanisms (Schulmeister, 2016). Researchers and engineers are 

exploring alternative technologies, in order to continue the trend of increased computing power. 

However, the future trajectory of Moore’s law in computing remains uncertain yet hopeful. 

Moore’s law and Survival Estimations 

Survival estimation refers to the process of predicting the time until an event of interest 

occurs, often in the context of medical research or reliability analysis (Wang et al., 2019). It 

involves statistical methods to analyze data and predict the time until an event (like death or 

equipment failure) happens. Survival time should not be confused with mortality. Mortality is the 

probability that a person in the population will die of a specific cancer over a certain time period, 

usually a year. (Mariotto et al., 2014). 

Keeping Moore’s law in mind, it is generally accepted that healthcare technology 

improvements have enhanced survival estimations by enabling earlier and more precise 

diagnoses, personalized treatments, better monitoring, and improved overall patient care 

(Gallacher et al., 2021). These advancements collectively contribute to extending and improving 

the quality of life for individuals with various medical conditions (Marino & Lorenzoni, 2019). 

The focus of this study is to investigate to what degree some of these improvements lead to 

enhanced survival time estimations. To do so, we utilize publicly available cancer data. We 

hypothesize that survival time is increasing and that the rate of increase may be modeled as a 

new application of Moore’s law for cancer survival times. 
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Problem Statement 

This paper explores the growth, as predicted, for example, by Moore’s law, of cancer 

survival time. It is agreed that survival estimates using cancer registry data are often dated 

measures of current-year survival, because of the time needed to observe survival and the lag 

between available data and the current year (National Cancer Institute, 2022a). Utilizing SEER 

data, some of the key research questions this paper plans to investigate are: 

1. Using previous years’ survival statistics data, can a Moore’s law model be derived 

based on historical trends in specific cancer survival data? 

2. Can the model above be used to predict a survival statistic for a patient that has 

recently been diagnosed with a given cancer? 

3. How does the overall trend from #2 match a Moore’s law model? 

4. How consistent are Moore’s law predictions with those of linear and logistic models? 
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2. Literature Review 

 Cancer survival estimation provides insights into disease progression, treatment efficacy, 

and overall patient outcomes (Mariotto et al., 2014). A challenge associated with estimating long-

term survival lies in the fact that only cohorts diagnosed many years ago possess adequate 

follow-up data to directly calculate these measures. Consequently, direct estimates of long-term 

survival may lack relevance for newly diagnosed patients, particularly in cancers that have 

witnessed remarkable advancements in survival rates (National Cancer Institute, 2022a). 

Traditional methods of calculating survival rates rely on historical data and assumptions that may 

not accurately reflect the current pace of medical advancements. This literature review explores 

the potential application of Moore’s law, which is a name for an exponential model of growth 

over time, to calculate more up-to-date cancer survival estimates based on the date of death.  

Related Work  

Survival Prediction in Other Domains 

 Many attempts have been made to produce more reliable survival estimates. For example, 

authors Brooks et al. (2000), utilize the Bayesian model to estimate the lifetime of the blue-

winged teal as well as the Cormack-Jolly-Seber model to estimate European dippers. While the 

paper opens new avenues for research in the field, it also prompts important questions for future 

investigations, including the exploration of complex models within the Bayesian framework, the 

impact of environmental variables on animal survival, and the development of user-friendly tools 

for researchers. Although the paper doesn't directly compare Bayesian methods to traditional 

frequentist approaches in mark recovery and recapture studies, it presents a novel application of 

Bayesian statistics to this specific context.   
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Davis et al. (2007) attempt to predict when new types of water pipes, like PVC, might 

start to fail in the future. For older pipes, like cast iron or asbestos cement, one can use past data 

to make predictions because there is a lot of information about how they break. But for newer 

pipes like PVC, there is an insufficient amount of data to make accurate predictions. In summary, 

this paper introduces a new way to estimate when PVC pipes might fail. It uses a model that 

looks at things like cracks in the pipe and the pressure of the water inside. They also consider 

that these defects in the pipes can vary in size and use a special math tool to account for this 

variability. Using a Monte Carlo simulation, they estimate the chances of PVC pipes failing over 

time. This method helps to include all the uncertainties in the predictions, which helps 

researchers understand when and why new types of water pipes might break, even if we don't 

have a lot of data about them (Davis et al., 2007). 

Alam & Suzuki (2009) try to solve a similar problem to our problem statement. Although 

the focus pertains to products in the manufacturing industry, it is still very relevant. The authors 

seek to understand how long products last and how reliable they are. Manufacturers want to 

know this information to make better products. They often use warranty data to figure this out 

because it's easy to get data from warranty claims when products break. For engineers and 

product designers, it's more important to know how long a product can be used before it breaks, 

like how many miles a car can be driven before it needs major repairs. The problem is that 

warranty data only tells us about the products that have failed, not the ones that are still working 

fine. In their paper, the authors demonstrate shows that they can estimate how long products last 

based on warranty data, even without information about products that haven't failed. This is 

important because it means they don't always need extra data about products that are still 
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working well to figure out how reliable a product is. This finding can help manufacturers make 

better products without the need for expensive additional studies (Alam & Suzuki, 2009). 

Barreto-Souza & Bakouch (2013) introduce the exponential Poisson-Lindley (EPL) 

distribution as a novel means of understanding product lifetimes. The authors are particularly 

interested in this method to help researchers understand products that have decreasing failure 

rates over time. The authors demonstrate how, for this situation, their new method is more 

suitable than other methods for modeling the time it takes for something to fail. For example, it 

could be helpful for predicting when a device might stop working. In the future, they plan to use 

this method to study systems made up of many parts, where everything stops working when even 

one part fails. This may help researchers make better predictions about the overall lifespan of 

complex devices and systems (Barreto-Souza & Bakouch, 2013). 

Authors  Howell et al. (2019) present insight into the field of space technology by 

demonstrating that trends in the mean lifespan of satellites sometimes follow an exponential 

pattern thus being a Moore’s law. This observation challenges the conventional thinking about 

technological advancements in space travel progress. The paper identifies both Wright's law and 

Moore’s law regressions, indicating that the lifespan of satellites may double with an increase in 

accumulated launches, and that the doubling time for Moore’s law in the context of space travel 

is, historically, approximately 15 years. This revelation has significant implications for industry, 

science, and government policies related to space technology, as it underscores the need for 

adaptive strategies and increased investment in this rapidly evolving field (Howell, Kodali, 

Kreinovich, et al., 2019). 

Questions for future research include delving into the specific factors driving the 

observed trends in satellite lifespan, understanding the practical implications of these trends for 
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space exploration and satellite deployment, and assessing the sustainability and environmental 

impact of increasing satellite launches as suggested by Wright's law. Furthermore, the 

conundrum generated by the application of Moore’s law in the context of space travel, as 

explained by Howell, Kodali, Kreinovich, et al., (2019) requires further investigation to gain a 

deeper understanding of the dynamics involved. While the paper doesn't provide detailed insights 

into the practical implications of the identified trends, it introduces a novel perspective on 

technological development in space travel and highlights the importance of monitoring 

exponential trends in various domains (Howell, Kodali, Kreinovich, et al., 2019). 

The same year, Howell and his colleagues (2019a) empirically examined and 

mathematically modeled technological progress in the domain of space travel, specifically 

focusing on the lifespan of satellites. Their findings identify both Wright's law and Moore’s law 

regressions as potential models for describing the trends in satellite lifespan. The authors use the 

models to predict a future deviation from the observed Moore’s law trend, suggesting that 

satellite technology may not continue to fit an exponential function of satellite year of death. The 

study primarily focuses on theoretical aspects and mathematical trends, leaving room for future 

research to bridge the gap between theory and practical applications in the context of space 

technology. This has important implications for the space industry, influencing research, policy, 

and investment decisions (Howell, Kodali, Segall, et al., 2019a). 

In 2022, Batthula (2022) conducted a trend analysis on average satellite lifetimes. Instead 

of humans or animals, the focus of the study is on product lifetime, with the product being space 

satellites. Using existing satellite launch data, Batthula identifies the half-life of space satellites 

and how it changes depending on launch year cohort. The author utilizes satellite half-lives to 
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address recency bias of satellites still in orbit. This data is utilized to project future lifetimes of 

satellites based on the year of launch (Batthula, 2022).  

Estimations may be utilized in various ways. For example, authors Duggirala et al. (2022) 

estimate the proportion of female and male astronauts over time based on historical numbers 

going back to the 1960’s. The authors do so by collecting counts of all astronauts that went into 

space by gender since the 1960’s and using it to regress to a best-fit logistic curve that was used 

to estimate future trajectories of both female and male astronauts (Duggirala et al., 2022). 

Similarly, I may test logistic curve models for kidney and renal pelvis cancer survival as an 

alternative to Moore’s law models.   

 Similar to space satellites, authors Greene et al. (2023) focus on predicting the scrappage 

rates, or lifetime of the automobile product as a function of vehicle age. Using historical data, the 

authors find that modified logistic functions fit the historical data better than a Weibull analysis. 

This data helps analyze the benefits and costs of policies such as promoting deep 

decarbonization, energy efficiency, reduced pollutant emissions and vehicle safety (Greene et al., 

2023).   

Survival Prediction in the Healthcare Domain 

Authors Alexopoulos et al. (2022) use historical data to help predict survival rates of 

glioblastomas multiforme, which is of interest, particularly with its increase in incidence rates 

over the past few decades. Using the multivariate Cox proportional hazards regression and 

accelerated failure time lognormal regression, the latter was found to be the better model to 

describe the survival patterns for glioblastomas multiforme patients. It was also noteworthy that 

the authors suggested that demographics such as gender and race were not useful as predictors 

based on their findings (Alexopoulos et al., 2022). 
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 In the area of heart failure, Levy et al. (2006) developed a multivariate risk model to 

predict 1-, 2-, and 3-year survival in heart failure patients. Using the multivariate Cox model, the 

authors were able to predict prognosis in 1125 patients depending on whether mediations or 

devices were added to each patient’s regimen. The method was found to be very useful, however 

it is important to note that the prognoses of heart failure is about 50% for the first 5 years from 

diagnosis while the 10-year prognosis is at about 35% (Jones et al., 2017). On the other hand, the 

5 year survival rate for kidney cancer is about 77% (American Society of Clinical Oncology, 

2023). This stark difference is important to note, as it means that heart failure data will place 

more weight on recent data due to its generally shorter prognosis, while kidney cancer would 

tend to rely more on historical data.  

 Pocock et al. (2013) also attempted to derive a risk score for heart failure patient 

mortality. This was done using a meta-analysis of almost 40,000 heart failure patients that were 

globally located within 30 cohort studies. The authors utilized multivariable piecewise Poisson 

regression with stepwise variable selection to determine a predictive model. Although the authors 

found similar findings within cohorts, there were various discrepancies between the cohorts. The 

authors suspect this may be due to the geographical variation and patient selection criteria of the 

studies. In summary, the findings allow for generalizability but do not help predict individual 

patient outcomes.  

 For kidney cancer in particular, various studies have been conducted. These studies 

specifically pertain to the numerous variables to consider when predicting kidney cancer. The 

first set of variables are therapeutics. In other words, survival estimates may be based on 

different treatment plans. Kidney cancer treatment may include various interventions such as 

surgery, ablation, targeted therapy, and clinical trials to name a few (National Comprehensive 
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Cancer Network, 2023). Care plan recommendations will vary based on various factors including 

age, cancer stage, cancer location, etc. Note that the Tumor, Node, Metastasis (TNM) staging 

system is commonly used as an industry standard to classify the extent of spread of malignant 

tumors (Brierley et al., 2017). 

Hollingsworth et al. (2007) explore five-year survival rates after surgical treatment of 

over 25,000 kidney cancer patients using SEER data from various United States cancer 

registries. The authors found that patients with smaller kidney tumor masses had lower cancer-

specific mortality. However, they also noticed that competing-cause mortality rose as patient age 

increased despite surgical therapy. It is important to note that 81% of participants in this study 

were white, and only 38% were women. 

 Jiang et al. (2022) on the other hand examine integrating various patient genetic data and 

determining patient survival based on drug therapy. They also only focus on a very specific type 

of cancer, clear cell renal cell carcinoma. Utilizing this personalized treatment data, the authors 

were able to explore data from a cohort of 258 patients. Using machine learning, a variety of 

clustering algorithms were utilized to integrate multiple genetic profiles at the same time to 

perform a classification study on renal cell carcinoma patients into two genetic groups of patients 

and build an effective model that predicts survival rates. The authors found both the training and 

validation sets to be good survival predictors for renal cell carcinoma patients.  

 Zhang et al. (2020) conducted a similar study on clear cell renal cell carcinoma survival 

prediction, however they worked with publicly available genetic data from the Genomic Data 

Commons Data Portal (National Cancer Institute, n.d.(b)) and the Cancer Genome Atlas (TCGA) 

(National Center for Biotechnology Information, n.d.). Using this data as well as other clinical 

prognostic parameters, they developed a gene-based predictive model for the survival of clear 
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cell renal cell carcinoma patients by incorporating multiple prognostic-related genes and clinical 

parameters. They did so by examining sequence data from TCGA to identify differentially 

expressed genes. The selection process involved utilizing univariate Cox proportional hazards 

regression analysis, the Least Absolute Shrinkage and Selection Operator method (LASSO), and 

best subset regression (BSR). Ultimately, a five-gene group with the lowest Akaike Information 

Criterion (AIC) value was identified through this screening process. Considering that the authors 

only explored public data, there are potentially additional genes or non-publicly available 

variables that could be explored.  

Similar to the two studies above, authors Cheng et al. (2017) also investigated clear cell 

renal cell carcinoma. The key difference of this study is that the authors used histopathologic 

images that help diagnose and stage kidney cancer for survival prediction. Specifically, they 

investigated these diagnostics along with genomic data of 410 patients from the publicly 

available Cancer Genome Atlas data. By utilizing the power of machine learning, the authors 

used a combination of quantitative morphologic features extracted from tissue images and gene 

expression signatures to predict survival outcomes of clear cell renal cell carcinoma patients. The 

authors noted that prediction using both images and genetics was more powerful than using each 

separately. It is important to note that almost 66% of participants were male, and most patients 

were in stage I of the disease. It is becoming clear that researchers continue to focus their efforts 

in the field of genomics for personalized medicine.  

Brenner & Hakulinen (2006) reviewed the progress of cancer patient survival rates. 

Noting the criticality of survival data being as current as possible, the authors suggested 

conducting a period analysis to help accomplish this. They noted however, that although period 

analysis helps provide the most recent data on cancer patient survival, accuracy may be lost in 
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the process as a trade-off. To account for this, the authors proposed using a model-based 

approach that utilizes recent data while losing minimal precision.  This approach was tested on 

patients from Finland that had 1 of 20 different cancer types between 1953 and 2002. They found 

the model-based approach to be more precise compared to conventional period estimate data 

(Brenner & Hakulinen, 2006). 

Technological Innovation  

Burg & Ausubel (2021) consolidate and analyze Intel processor characteristics from 1959 

to 2013 and reveal a pattern consistent with a biphasic sigmoidal curve, demonstrating 

characteristic periods of 9.5 years. These periods are marked by significant increases in transistor 

density, about a tenfold surge in around six years, followed by nearly three years of minimal 

growth rates. These six waves of density increase provide crucial insights into the mechanisms 

driving processor advancements, shedding light on potential future limits that could be surpassed 

(Burg & Ausubel, 2021). This is novel as they assert gradual advancements, accumulated step by 

step, align with an overarching exponential trend. These incremental steps collectively contribute 

to generating a pattern of continuous improvement over an extended period. For instance, a 

stepwise analysis can demonstrate the evolution of transistor density, showcasing how successive 

incremental advancements ultimately lead to exponential growth in transistor capacity. 

Modis (2002) attempted to address instances of punctuated equilibrium despite the 

isolated episodes of rapid evolution between long periods of little or no change. He did so by 

analyzing 13 different evolutionary points and derived future predictions by applying exponential 

and logistic models to the data. The logistic model was found to be a better predictor and 

suggests that the maximum growth rate for complexity has already been reached. Furthermore, it 

anticipates a decline in the rate of change for complexity (and consequently, in our lives) in the 
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future. One implication is that we are approximately halfway through the universe's lifespan. 

Additionally, the high present level of complexity's growth rate has evolved through seven 

subprocesses, which can themselves be described using logistic models (Modis, 2002). 

Regardless, today there are various indicators to quantitatively investigate historical 

dynamics or trends (Turchin, 2018). Authors Arthur & Polak (2006) write about modeling 

technological evolution within a simplified artificial system. Their paper investigates how 

technology, consisting of devices and methods, evolves through the creation of new elements 

from existing ones, forming a network of interconnected components that give rise to novel 

technologies. The focus of their study is on logic circuits as the elements within this system, with 

new elements generated through combinations of simpler components. The primary importance 

of this advance lies in its ability to shed light on the underlying mechanisms of technological 

innovation. It underscores the crucial role of simpler elements as building blocks for the 

development of complex technologies, paralleling the concept observed in biological evolution. 

Authors Nagy et al. (2013) tested various hypotheses for predicting technological 

improvement. It evaluates the performance of six postulated laws, including Wright's law, 

Moore’s law, and others, to forecast the future costs of 62 different technologies using an 

extensive database. The findings indicate that technological progress is indeed forecastable, with 

the forecasting error growing linearly with the forecasting horizon. This has far-reaching 

implications for engineers, policymakers, and private investors, enhancing their ability to make 

informed decisions about technological investments and resource allocation (Nagy et al., 2013). 

The importance of this paper is found in its potential to inform technology-related 

decision-making and policy development. It offers a systematic approach to evaluating and 

comparing the effectiveness of different forecasting models, guiding strategies for innovation, 
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and resource allocation. The discovery of the exponential increase in production and the 

predictable nature of technological progress can influence decisions related to climate change 

mitigation, technological investments, and long-term planning in various domains. The paper 

prompts important questions for future research, particularly in terms of exploring the underlying 

mechanisms behind the regularities observed in technological improvement and examining the 

adaptability of these models to different technological and environmental contexts (Nagy et al., 

2013). 

On the other hand, authors Solé et al. (2014) investigate the dynamics of technological 

innovation and the conditions under which it may lead to explosive growth or enter a linear 

regime. They develop a generalized model of technological evolution, focusing on two crucial 

properties: the number of previous technologies required to create new innovations and the rate 

at which technology ages. The study explores two different models of combinatorial growth, one 

involving long-range memory and the availability of old inventions for new innovations, and the 

other with aging having a characteristic time scale.  

The researchers conclude that under specific conditions, technological singularities can 

emerge, representing a period of rapid innovation, while under different conditions, a "black 

hole" of old innovations appears and expands over time, slowing down the rate of invention 

creation into a linear regime. These findings offer valuable insights into the factors influencing 

technological progress, with implications for research, policy, and business strategies (Solé et al., 

2014). 

The findings in this paper are novel in that it provides a structured framework for 

understanding when technology may experience explosive innovation or enter a period of slower 

progress, helping researchers, policymakers, and businesses make informed choices. The models 
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developed in this study can serve as valuable tools for understanding the dynamics of 

technological evolution and the conditions under which innovation reaches critical points. The 

paper raises important questions for future research, particularly in exploring the specific factors 

that determine when technological innovation follows an explosive path or enters a linear 

regime. Researchers may delve into the impact of external variables, such as economic, social, or 

policy factors, on the trajectory of technological evolution. Additionally, future studies could 

investigate the long-term consequences of technological singularities and "black holes" on 

various industries and economies and explore strategies to navigate or mitigate their effects. 

While the study's focus is primarily theoretical, further research could explore the practical 

application of these findings in real-world decision-making and strategy development, extending 

their relevance beyond theoretical models to practical contexts (Solé et al., 2014). 

Similarly, Basnet & Magee (2016a) introduce a significant advance in our understanding 

of technological improvement rates by empirically confirming the relationship between these 

rates and artifact interactions in various domains. Prior quantitative models had posited that the 

pace of technological advancement is inversely proportional to the level of artifact interactions, 

suggesting that more complex domains with a higher number of interactions tend to exhibit 

slower improvement rates.  

This paper provides empirical evidence supporting these modeling predictions, 

effectively validating the importance of considering artifact interactions in the context of 

technology development. This insight is of paramount importance as it not only verifies existing 

models but also emphasizes the significance of addressing complexity and interaction dynamics 

in various technological domains. It offers valuable guidance for decision-making, resource 
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allocation, and strategy development in industries where technological progress plays a pivotal 

role (Basnet & Magee, 2016a). 

From this research, important questions emerge for future investigations, including a 

closer examination of the mechanisms by which artifact interactions influence improvement rates 

and whether these findings are adaptable to a wide range of technological and industrial contexts. 

Furthermore, there is room for exploring strategies to manage and optimize improvement rates 

while handling increased complexity, which would have practical implications for multiple 

sectors dealing with technological advancement. While the paper doesn't delve deeply into the 

practical approaches for addressing high artifact interactions, it paves the way for further 

research in this direction (Basnet & Magee, 2016a). 

In another paper published the same year, both authors (Basnet & Magee, 2016b) attempt 

to understand the dynamics of technological innovation across various domains by presenting a 

simple model. This model is built on the foundation of inventive design processes and 

probabilistic analogical transfers, proposing that inventive design results from combining 

existing knowledge and individual operational ideas to generate novel concepts. The model 

attributes varying rates of technological improvement in different domains to differences in 

interactions among components and scaling laws, while the exponential behavior is attributed to 

the analogic transfer process.  

This knowledge is essential as it offers a systematic framework for comprehending the 

factors influencing technological advancement. It provides a rationale for why certain domains 

progress at faster rates than others and highlights the central role of inventive design and 

analogical thinking in shaping technological innovation. The model's application can inform 
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strategies for optimizing technological improvement and innovation management in diverse 

fields (Basnet & Magee, 2016b). 

From this paper, important questions emerge for future research, including a deeper 

exploration of the mechanisms driving the analogical transfer and inventive design processes. 

Researchers might also investigate practical implications for managing and enhancing 

technological innovation rates in various domains. Furthermore, empirical validation of the 

model's predictions and assumptions is needed to assess its real-world applicability. While the 

paper forms the basis for understanding technological advancement, further research could delve 

into practical strategies and case studies to illustrate the model's application. The paper's novelty 

lies in the structured model it provides to explain the variations in technological advancement 

rates. While the concept of inventive design and analogical thinking in technology development 

is not new, this model offers a systematic framework for comprehending the role of these 

processes in shaping innovation dynamics (Basnet & Magee, 2016b). 

In an alternative analysis, authors Magee et al. (2016) investigate technological change 

and performance trends over time. Specifically, they focus on the relationships between time, 

effort variables such as cumulative production, research and development (R&D) spending, 

patent production, and the performance of technology in various domains. The paper verifies 

Sahal's equation (Sahal, 1979) for additional effort variables, extending its applicability to patent 

and revenue data beyond cumulative production. The findings emphasize the accuracy of Sahal's 

equation when all three key relationships are well-fitted, which involve exponential links 

between performance and time, effort and time, and a power law connection between 

performance and effort variables (Magee et al., 2016).  
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This research is crucial for gaining deeper insights into research and development 

management, technological forecasting, and strategic decision-making. It offers valuable tools 

for industries, policymakers, and researchers to forecast and optimize technological change, 

guiding resource allocation in research and development. It also equips decision-makers and 

researchers with a structured framework for understanding and predicting technological progress 

which is essential for various domains (Magee et al., 2016). Perhaps unsurprisingly, at the 2017 

Association for Computing Machinery meeting, researchers Denning & Lewis (2016) indicated 

that not only is growth of computing exponential, but they hypothesize that it is one small 

component of the growth of a planetary computing ecosystem. 

In 2019, Axtell et al. attempted to develop a simple yet robust model that simulates the 

evolution of economic goods and technological progress. This model characterizes the dynamics 

of goods and technology as the outcome of a stochastic process driven by purposive agents in a 

large population. It considers the introduction of new goods through the recombination of 

existing ones, with agents evaluating and adopting these goods based on their perceived value. 

The model highlights several key properties, including the transient nature of the population of 

goods, the variability in the total number of goods over time, increasing agent welfare, and the 

cyclical pattern of technological stasis followed by bursts of technological progress. The model's 

ability to quantitatively capture many qualitative ideas about technological evolution makes it a 

valuable tool for analyzing and predicting trends in technological progress. It offers insights into 

the complex interplay between invention, adoption, and competition within an economy.  

However, the application of this model to real-world economic and technological systems is 

needed (Axtell et al., 2019).  
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Tsai et al. (2023) systematically review various methods that may be utilized to 

extrapolate future trends from data. Their research classifies the methods used in existing studies, 

highlighting the continued popularity of traditional growth curves and time series methods, as 

well as the emergence of newer machine learning-based hybrid models. The paper's value lies in 

its potential to inform and guide technology forecasting practices, encouraging a shift towards 

more contemporary techniques, and stimulating further research to assess the superiority of these 

methods. The focus of this paper on evolving forecasting approaches has broader implications 

for research methodology, potentially improving predictive modeling in various scientific 

domains, including medical research. Further research questions could revolve around the 

conditions under which each forecasting method is most suitable and the development of 

standardized practices in the field (Tsai et al., 2023). 

  Gams & Kolenik (2021) explore the relationship between the information society, 

electronics, and artificial intelligence (AI). They do so by reviewing various ways that describe 

how these three are all connected. These demonstrate how fast electronics and AI are improving. 

For example, they talk about how devices are getting better and cheaper very quickly, and how 

people are using them more and more. The authors point out that although there are some signs 

that rate of growth might decline, there are still various ways to make electronics and AI even 

better. The authors mention how AI is already doing things that were thought to be impossible at 

one point, like recognizing things in the real world better than humans. AI is also improving at 

tasks such as creating art and writing computer programs. In summary, although technology is 

growing rapidly and AI is a big part of that, there is a limit to any progress, generally following 

an S-curve due to saturation (Gams & Kolenik, 2021).  
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 An important study conducted by authors Basnet and Magee (2017) explores the 

development of a novel patent-based method to empirically study the influence of artifact 

interactions on the improvement rates of various technological domains. The study identifies 

specific keywords within patent content that signal artifact interactions, enabling a technology 

domain-agnostic and cost-effective approach to quantifying these interactions. This is important 

due on the study’s potential to shed light on why some technologies improve faster than others. It 

offers empirical evidence supporting the previously proposed model that suggests the 

improvement rate for a domain is proportional to the inverse of the domain's interaction 

parameter (Basnet & Magee, 2017).  

While the concept of artifact interactions as a determinant of improvement rates has been 

proposed in quantitative modeling research, this paper offers a unique, patent-based approach 

that is both domain-agnostic and cost-effective. It does so by bridging the gap between 

theoretical models and empirical evidence in the field of technological progress. Understanding 

the role of artifact interactions in technological progress can inform strategies for enhancing 

innovation and development in different domains (Basnet & Magee, 2017). 

Kidney Cancer Survival Prediction 

In recent years, there are indications that the global incidence of kidney cancer, which 

had been steadily rising for over two decades, has begun to stabilize or even decrease (Motzer et 

al., 2022). Kidney cancer in adults comprises two primary types: renal cell carcinoma (RCC), 

which is the predominant form, and renal transitional cell carcinoma (RTCC), typically 

originating in the renal parenchyma and renal pelvis, respectively (Chow et al., 2010). While the 

temporal trends of kidney cancer types worldwide are not well-established, the incidence of RCC 

in the United States has continued to increase, particularly for early-stage tumors (Capitanio et 
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al., 2018) . On the other hand, the incidence of RTCC has declined, and overall kidney cancer 

mortality rates have plateaued. Similar trends of stabilized kidney cancer mortality rates have 

also been observed in Europe (Chow et al., 2010).  

In 2006, authors Weiss and Lin provided an overview of the current state of kidney 

cancer diagnosis, therapy, and the emerging novel treatments that capitalize on newly elucidated 

molecular pathways associated with kidney cancer oncogenesis. The authors mention that despite 

having a significant understanding of its genetic underpinnings and the identification of critical 

signaling pathways, kidney cancer has experienced a continuous increase in both the number of 

new cases and the rate of death over the past few decades (Weiss & Lin, 2006).  

As of the year 2006, although the there were fewer than 200,000 new diagnoses in the 

United States (US), it was considered the sixth leading cause of cancer death in the US 

accounting for up to 11,000 deaths per year (Weiss & Lin, 2006). Approximately 90% of all 

kidney cancers are renal cell carcinomas. Within the renal cell carcinoma cancer type, there are 

various subtypes of cancer, the most common subtype affecting individuals being clear-cell renal 

cell carcinoma (Ljungberg et al., 2011).  

Clear-cell renal cell carcinoma is a subtype of kidney cancer located in the renal tubules 

that filter waste from blood (Cleveland Clinic, 2022). For this reason, most kidney cancer 

research efforts are focused on clear-cell renal cell carcinoma as it represents 75% of all kidney 

cancer cases. 5-year survival of patients with localized disease is 89%, in regionally advanced 

disease 61% and in metastatic disease an alarming 9% (Weiss & Lin, 2006). The incidence of 

kidney cancers has been increasing at a rate of about 2% per year for the past 30 years (Ries et 

al., 2006).  Demographically, male African-Americans were impacted the most by this disease 

(Weiss & Lin, 2006). Authors Wallen et al. (2007) noted that rates were increasing more rapidly 
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in the black than in the white population and survival was worse for black individuals at all 

stages of diagnosis (Wallen et al., 2007).  

Michael et al. (2022) investigated if there was a trend among histologic subtypes on the 

overall survival of patients with renal cell carcinoma who have undergone renal mass biopsy. 

Their findings suggest that relying on histology obtained through renal mass biopsy may have 

limited utility in predicting survival although they raise important questions for future research, 

such as whether there are other clinical contexts where histologic subtypes may play a more 

crucial role in prognosis, and whether there are specific patient populations that would benefit 

from a more nuanced approach to kidney cancer management (Michael et al., 2022). Tilki et al., 

(2014) had similar conclusions pertaining to kidney cancer subtypes. 

Kidney cancer may be treated using surgical and non-surgical approaches. Non-surgical 

approaches include targeted therapy, immunotherapy, radiation therapy, ablation, and clinical 

trials. Despite surgery being the primary treatment for kidney cancer, the recommended 

treatment protocol depends on the stage of the cancer, the patient's overall health, and other 

factors (National Comprehensive Cancer Network, 2023). Protocols and recommendations 

continue to get updated. For example, studies have shown improved survival with partial 

nephrectomy compared to radical nephrectomy. This outcome is typically due to the prevention 

of morbidity and mortality associated with chronic kidney disease from a radical nephrectomy 

(Tan et al., 2012). Regardless, it is essential for patients to discuss their options with their 

healthcare team to make informed decisions about the most suitable treatment plan for their 

individual case (National Comprehensive Cancer Network, 2023). 

Although the overall mortality rate from kidney cancers has increased slightly since the 

1970s, the increase is not as rapid as the incidence rate. This discrepancy is due to a significant 
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improvement in 5-year survival (Kosary & McLaughlin, 1993). Up to 70% of individuals 

diagnosed with small clear-cell renal cell carcinoma tumors survive for five years following their 

initial diagnosis. However, treatment is less successful when dealing with larger tumors or cancer 

that has spread to other parts of the body. In such instances, the five-year survival rates may 

decrease significantly to approximately 10%. When patients present with advanced disease, they 

have only an 18% two-year survival rate (Linehan et al., 2003).  Many additional factors impact 

prognosis including tumor location, size and number of tumors  (Cleveland Clinic, 2022).  

Although the five-year survival rate for kidney cancer has improved, the incidence has 

risen, while the mortality rate remains unchanged. See Moore’s law and Survival Estimations for 

differences between survival and mortality. This trend indicates increased diagnoses resulting 

from enhanced early detection, contributing to a higher overall cancer burden (Cho et al., 2014). 

As the US population ages and the prevalence of risk factors such as obesity and hypertension 

increase, the burden of disease will increase significantly. This is a great concern as the US’s 

total expenditure for kidney cancer was $400 million in the year 2000, and continues to grow 

(Wallen et al., 2007). 

It is difficult to discuss cancer survival prediction without mentioning the Gompertzian 

model. Devised by mathematician Benjamin Gompertz in 1825, the model originally served as a 

framework to explain human mortality rates, but was later adapted to characterize tumor growth 

patterns (Tu, 2010). Gompertz’s equation implies that as a tumor grows rapidly (exponentially), 

and approaches the maximum size the environment can support, the growth rate decreases. His 

model also operates under the assumptions below (Laird, 1969):  

1. Initially, tumor growth follows an exponential trend but gradually decelerates as time 

progresses. 
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2. The rate of tumor growth is directly proportional to the tumor's current size (with 

caveats #1 and #3). 

3. There exists a maximum capacity or limit to the tumor's growth, beyond which it 

cannot expand further. 

Over 100 years later, Laird challenged these assumptions after conducting a literature review and 

concluding that true exponential growth of tumors is rare and typically occurs for only brief 

periods. Instead, most tumors exhibit a continuous deceleration in growth as they enlarge. When 

plotted against time, this results in a curve that closely approximates a straight line, particularly 

when the diameter of a solid tumor or the cube root of total cell number in an ascites tumor, also 

called a fluid filled tumor, is plotted against time (Laird, 1969). Ten years later, Goldie and 

Coldman, (1979) described cell heterogeneity and the emergence of resistance to treatments 

employed during cancer therapy. They hypothesized that within the diverse population of cancer 

cells, minute fraction inherently possess resistance to chemotherapy or other anti-cancer 

treatments. As a result, the resistant cells proliferate and repopulate the tumor, leading to relapse 

or recurrence of the cancer that is now more resistant to the initial treatment (Kow, 2023). This 

concept eventually became recognized as the Goldie-Coldman principle. The hypothesis 

highlights the challenges in eradicating all cancer cells using conventional treatments and 

emphasizes the need for developing new therapeutic strategies capable of specifically targeting 

and eradicating these resistant cell populations (Naozuka et al., 2022). As a result, the hypothesis 

has contributed to scientists’ comprehension of mechanisms by which cancer cells undergo 

evolution, adaptation, and acquire resistance to treatment, prompting researchers to investigate 

combined therapeutic regimens, personalized medicine, and pioneering treatment methodologies 

aimed at overcoming drug resistance and improving cancer outcomes. Similar to the 
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Gompertzian model, this hypothesis focuses on the characterization of individual tumor growth 

pattern, unlike a population statistic such as cancer survival. 

Relevant Equations 

Exponential Curves 

 An exponential curve describes the phenomena where a quantity grows or decays at a 

constant percentage rate over time or as a function of another variable (Denning & Lewis, 2016). 

Although they may be leveraged in various fields such as science, mathematics, and engineering, 

exponential growth is frequently observed in technological advancements (Berleant et al., 2021). 

Particularly in this case, we attempt to curve fit survival time data. Doing so will allow research 

to determine parameter values of a function which in turn can make predictions for time points 

for which data are not available, as well as to summarize relationships between variables 

(Arlinghaus, 1994). In order to fit our data into an exponential curve, we begin with a simple 

equation to represent such an exponential curve denoted as (Bartlett, 1976): 

𝒚 = 𝟐𝒙                                                                                                                             ( 1 ) 

Since we are referring to Moore’s law, and interested in exponential growth, we need to take 

doubling time into consideration. According to Moore, for chips, this would be every two years, 

however depending on the data set and domain this value might be different. To represent this, 

we use the formula below: 

𝒚 = 𝑪 ∗ 𝟐((𝒕−𝒕𝟎)/𝑫)                                                                                                    ( 2 ) 

where t and D are function parameters. The input value t represents start year, which could be 

year of diagnosis, year of manufacture of a spacecraft or other artifact, etc. 

The value y is expected (average) survival time of an individual. The reference year (in essence, 

where we would draw the y-axis) is t0, and C is the survival time for that year. Any year could be 
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chosen for t0 so a year should be chosen that is convenient and results in a convenient value of C 

(which is, in essence, the y-axis intercept value, or the estimated survival time for whatever year 

t0 was chosen for the y axis).  In order to find the ideal values for parameters C and D, regression 

can involve initially guessing estimates for them, and then repeatedly adjusting them in a search 

for their optimized values. The optimal values are the ones that produce the lowest sum of 

squares error when comparing the curve to the data we are fitting to the curve (Berleant et al., 

2021).  Rather than regress eq. (2), however, below we will convert eq. (2) to a closely related 

curve. But first, we re-write equation (2), to better suit the domain of interest, as a function 

where survival time, 𝒔𝒙, is a function of diagnosis year, 𝒕𝒙: 

𝒔𝒙(𝒕𝒙) = 𝑪 ∗ 𝟐(𝒕𝑿−𝒕𝟎)/𝑫                                                                                               ( 3 ) 

where 𝒕𝒙 represents the date of diagnosis. The constant C still designates survival time at year 𝒕𝟎. 

This is because when, when 𝒕𝒙 =  𝒕𝟎, then 𝒔𝒙(𝒕𝒙) = 𝑪.   

Recency Bias 

 Recency bias is a cognitive bias that refers to the tendency of individuals to give greater 

importance to more recent events and experiences when making judgments or decisions 

(Sunstein, 2019). Also known as the availability heuristic, it involves estimating the probability 

or frequency of an event based on how easily relevant examples or instances come to mind. In 

other words, people tend to judge the likelihood of an event based on how readily they can recall 

similar events or information from their memories (Phillips-Wren et al., 2019). The more easily 

something comes to mind, the more likely it is perceived to be. Key characteristics of recency 

bias include ease of recall, media influence, personal experience, and confirmation bias 

(Hintzman, 1992).  
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Lifetime prediction data often relies on historical information to make projections about 

future events, and recency bias can distort these predictions in several ways (De Caigny et al., 

2020). When making life predictions, people tend to give more weight to recent events or trends, 

assuming that they are more indicative of the future (Weber, 2006). For example, if there have 

been a few years of declining mortality rates, analysts might extrapolate this trend into the future, 

underestimating the potential for reversals or fluctuations. Recency bias can also cause 

individuals or models to ignore or downplay data from the more distant past. This can be 

problematic when trying to predict long-term trends or rare events, as historical data can provide 

essential context and insights, while recency bias prioritizes short-term outcomes over long-term 

ones (Plonsky & Erev, 2017). 

It helps to implement a few techniques when trying to reduce the impact of recency bias 

in lifetime prediction data, and therefore increase accuracy. One of the key things to ensure is 

that the data set one is trying to predict includes a wide range of historical data as well as recent 

information. This will provide the additional context of the trends and patterns of the prediction 

variable. It is also important to be mindful when assigning weights to both historical and recent 

data. Since recent data generally carries more weight, it is important to keep historical data in 

mind particularly for long term predictions (Wang et al., 2016).  

In the context of survival data, recency bias refers to a cognitive bias where people tend 

to focus more on recent or short-term survival outcomes and may underestimate the significance 

of longer-term or historical survival trends (Farinholt et al., 2018). When analyzing survival data 

for a specific disease or condition, recency bias can cause individuals to place a disproportionate 

emphasis on the survival rates of patients in recent years, possibly leading to the perception that 

there have been more significant improvements or deteriorations in survival than there actually 
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have been over a longer time frame (van Gerven et al., 2008). This bias can be problematic in 

situations where medical treatments or interventions take time to show their full effects, as it may 

lead to premature conclusions about the effectiveness of certain treatments or interventions 

(Gwilliam et al., 2013). To mitigate recency bias in survival data analysis, it's important to 

consider long-term trends and outcomes, ensuring that the evaluation of survival rates is not 

overly influenced by recent data but takes into account the complete historical context (Strauss et 

al., 2006).  

In their 1996 paper, authors Brenner and Gefeller (1996) address the issues of recency 

bias and the lack of recent historical data by introducing the period monitoring methodology for 

estimating long-term survival rates in cancer patients. In perhaps the first account of period 

analysis under that name, (Brenner & Gefeller, 1997) describe the method, compare it to 

traditional cohort analysis (National Cancer Institute, n.d.(a)), and explain how to apply it with 

both a suitably modified traditional life table calculation method and, alternatively, a suitably 

modified Kaplan-Meier calculation method. This article explains the approach at a relatively 

detailed and basic level that may make it more understandable to many readers. An even earlier 

account by the authors (1996) provides a detailed description of how their method (which they 

call "period monitoring" in that article) gives improved lifetime estimates compared to the 

traditional cohort analysis approach when treatment is improving over time leading to improving 

survival times. Later renamed period analysis, this methodology offers a more up-to-date 

approach to estimating long-term survival rates than utilizing standard survival analysis 

techniques (Brenner & Gefeller, 1997).   

This is important as it introduces an alternative to traditional long-term survival statistics, 

which rely on cohort-based analysis, often becoming outdated as they reflect the survival 
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expectations of patients diagnosed many years ago. The authors test period analysis performance 

by comparing survival estimates obtained through period analysis with those obtained through 

traditional survival analysis for a specific calendar period and examines how well they align with 

the actual observed survival rates for patients diagnosed with cancer during that period. This was 

done using the Finnish Cancer Registry data, analyzing various variables to test the reliability of 

period analysis (Brenner et al., 2004). 

The authors initially found that period analysis was advantageous compared to traditional 

cohort analyses across all age groups. However, they also observed that the survival rates were 

most improved for childhood cancers. Upon further analysis of the 15 most prevalent cancer 

types in Finland and major childhood cancers in the United States, the researchers found similar 

trends. In most cases, improvements in survival rates over time were evident, except for certain 

cancers like pancreatic and lung cancer, where no significant improvements were observed. 

Notably, when considering 20-year survival curves, period analysis demonstrated even more 

advantages over traditional cohort-based analysis compared to 10-year survival curves for the 

most common cancer types (Brenner et al., 2004).  

In a similar paper published 2 years later, authors Brenner and Hakulinen (2006a) used 

the same Finnish Cancer Registry data to analyze the performance of period analysis. The 

authors found that period analysis consistently excelled in cases where cancer prognosis 

significantly improved over time. In contrast, traditional methods showed superior performance 

for cancers with persistently poor and minimally improving prognoses, such as esophagus, lung, 

liver, and pancreatic cancers. Clearly, this methodology can be applied not only to kidney cancer 

but also to a wide range of cancer types aiding in better understanding the course of cancer, 

evaluating treatment outcomes, and making informed decisions in the management of cancer 
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patients, contributing to the overall goals of improving cancer survival rates and patient care 

(Brenner & Hakulinen, 2006). 

Recency Bias in Exponential Curves 

While equation 3 currently predicts kidney and renal pelvis cancer survival time using the 

diagnosis date, denoted as 𝒕𝒙, as the independent variable, an objective is to mitigate recency 

bias. To achieve this, we aim to derive an alternative equation from equation 3, which models 

survival time based on a different but related independent variable, the year of death 𝒕𝒅. 

Subsequently, we intend to conduct a regression analysis on this new equation to accurately 

represent a dataset comprising ordered pairs of (death year, survival time) for kidney and renal 

pelvis cancer survival times and, more generally, for other cancers and survival question in other 

domains. To obtain the desired equation the diagnosis year can be expressed as the difference 

between the year of death and the lifetime for any given patient (Berleant et al., in prep): 

𝒕𝒙 = 𝒕𝒅 − 𝒔𝒅(𝒕𝒅)         ( 4 ) 

where 𝒕𝒅 is the independent variable and 𝒔𝒅(𝒕𝒅) is a model predicting expected survival time as 

a function of year of death. Their difference is a prediction for diagnosis year 𝒕𝒙. Note that 

𝒔𝒅(𝒕𝒅) = 𝒔𝒙(𝒕𝒙), since the model’s survival time is the same whether the reference point is year 

of diagnosis, 𝒕𝒙, or year of death 𝒕𝒅 (Berleant et al., in prep). Using that equivalence along with 

equations 3 and 4 we derive a death-based prediction model: 

𝒔𝒅(𝒕𝒅) = 𝑪 ∗ 𝟐
(𝒕𝒅−𝒔𝒅(𝒕𝒅))−𝒕𝟎

𝑫                                                                                               ( 5 ) 

We then solve eq. (5) for the year of death, 𝒕𝒅: 

𝒕𝒅  =  𝒕𝟎  +  𝒔𝒅(𝒕𝒅) +  𝑫 ∗  𝒍𝒐𝒈𝟐 (𝒔𝒅(𝒕𝒅) / 𝑪)                      ( 6 ) 
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It is convenient to set 𝒕𝟎 to the year 1992. We then run a regression analysis on equation 6 using 

its parameters, D and C, in order to achieve the best fit with a scatterplot of data points 

represented as pairs (𝒕𝒅, 𝒔𝒅(𝒕𝒅)). By leveraging the regressed (optimized) values of parameters 

D and C, an exponential model for expected lifetime in relation to the year of diagnosis may be 

deduced by substituting these values for C and D in equation 3. This is novel as it allows us to 

predict current and relevant survival times while accounting for recency bias. Currently, for a 10-

year survival period, patients diagnosed more recently than 10 years ago would be excluded from 

calculating 𝒔𝒙 (since diagnosis date x is more recent than 10 years ago), but they would be 

included in calculating 𝒔𝒅. Thus, using  𝒔𝒅 allows using more data points. 

We have been modeling lifetime as an exponential function of diagnosis date. Why not 

model it as an exponentially increasing function of death date? This turns out to be impossible.  

The conundrum of doing so is that as the increase in lifetime occurs at a faster and faster rate, at 

some point this forces the diagnosis year to become earlier and earlier over time, causing a 

reductio ad absurdum. A better predictive model will need to be utilized. 

Doubling 

Time Death Year Dx. Year Avg Lifetime 

2 years 2010 2009.75 0.25 

2 years 2012 2011.50 0.50 

2 years 2014 2013.00 1.00 

2 years 2016 2014.00 2.00 

2 years 2018 2014.00 4.00 

2 years 2020 2012.00 8.00 
Table 1: Hypothetical Example of the Reductio Ad Absurdum Problem 

Table 1 demonstrates a hypothetical example serving as a thought experiment using death year to 

calculate survival times. Looking at the figure, we see the average death in 2020 was diagnosed 

before the average death in 2018! This illustrates the strange situation that must eventually occur 

for any exponential increase in lifetime as a function of death year. 
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Relevant Resources 

Surveillance, Epidemiology, and End Results (SEER) 

Background 

The Surveillance, Epidemiology and End Results (SEER) program is a comprehensive 

cancer surveillance system in the United States. It is managed by the National Cancer Institute 

(NCI), a division of the National Institutes of Health (NIH). SEER collects and publishes cancer 

incidence and survival data from various regions across the country, providing critical 

information for cancer research, public health planning, and policy development (National 

Cancer Institute, 2022a). 

The SEER program was established in 1973 with the goal of monitoring and 

understanding the patterns of cancer incidence and survival in the U.S. population. It was 

initiated by the NCI to address the need for reliable and up-to-date cancer statistics to support 

cancer research and control efforts. Initially, SEER covered only a limited number of registries, 

but over the years, it expanded its coverage to include various geographic areas across the United 

States. The program currently encompasses 19 population-based cancer registries, covering 

approximately 34.6% of the U.S. population (National Cancer Institute, 2022a). 

SEER collects information on all newly diagnosed cancer cases within its coverage areas, 

as well as data on cancer patient outcomes, such as survival rates, which provide valuable 

insights into the effectiveness of cancer treatments and interventions. The comprehensive data 

gathered by SEER supports various research studies and epidemiological analyses. Researchers 

use SEER data to investigate cancer trends, risk factors, treatment outcomes, and disparities in 

cancer incidence and survival among different populations. Its comprehensive and population-

based approach ensures that the information is representative of various segments of the U.S. 
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population, contributing to a deeper understanding of cancer patterns and improving cancer care 

and outcomes nationwide (National Cancer Institute, 2022a). 

Cancer-Specific Survival Estimation in SEER 

 

To access SEER data, users must use the SEER*Stat software publicly available through 

the National Cancer Institute. The estimation of cancer-specific survival and the probability of 

death can be approached by utilizing cause of death data or expected survival tables. However, 

sources for cause of death information have been a subject of debate. Ideally, one would use the 

specific cancer type as the data source, but issues arise when cancer metastasis occurs, 

potentially leading to incorrect death certificate listings. In such cases, using all cancers, 

especially when the patient has only one cancer, may be more appropriate. Ongoing efforts aim 

to develop sophisticated algorithms to define data sourcing based on common metastasis sites for 

each cancer. (National Cancer Institute, 2022a). 

There are four cancer survival estimation methods that are fairly readily supported by 

using SEER data. Two of the four methods are relative survival and cause-specific survival. 

These are both considered net survival measures. Relative survival calculates cancer survival 

without considering other causes of death. It compares the proportion of observed survivors 

among cancer patients with the proportion of expected survivors in a similar cancer-free cohort. 

It assumes independent competing causes of death and uses expected life tables since obtaining a 

cancer-free cohort is challenging. On the other hand, cause-specific survival focuses on survival 

from a specified cause of death while disregarding other causes. It involves specifying the cause 

of death, and individuals who die from causes other than those specified are considered censored. 

The other two cancer survival estimation methods are considered crude probability measures 

(National Cancer Institute, 2022a). 
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The first crude probability measure is crude probability of death using expected survival. 

This method employs expected survival data from life tables to estimate the probability of dying 

from other causes within each interval. Like relative survival, it assumes that cancer deaths are a 

minimal portion of all deaths and uses expected life tables. The other crude probability 

estimation method uses cause of death information. This approach calculates the probability of 

dying from cancer and other causes within a cohort of cancer patients, relying on cause of death 

information (National Cancer Institute, 2022a). Figure 1 provides illustrations.  

 
Figure 1: SEER Estimation of Cancer-Specific Survival. National Cancer Institute, 2022 

The estimation methods discussed provide various perspectives on cancer survival and 

the likelihood of death, each with its advantages and considerations depending on the use case. 

Researchers must choose the most suitable approach based on their specific study and data 

availability. Kidney and renal pelvis cancer, as well as melanoma data may be found in this 

database.  I was designated as an alpha and beta tester for SEER*Stat application versions 9.0.28 

– 30. 

The Arkansas Central Cancer Registry (ACCR) 

This database, supported by funding from the National Program of Cancer Registries 

(NPCR) under the Centers for Disease Control and Prevention (CDC),  has gathered cancer 

incidence data from the Arkansas residents since 1996 (Arkansas Department of Health, 2017). 
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The primary goal of the registry is to gather data that can be used for surveillance, research, 

policy interventions, and initiatives aimed at early detection and prevention (Arkansas Cancer 

Coalition, 2018).  

In accordance with the Arkansas State Reporting Law, any organization that offers 

diagnostic or therapeutic services to individuals in Arkansas diagnosed with cancer is obligated 

to report this information to the ACCR. This reporting requirement extends to various types of 

healthcare facilities, such as outpatient surgery centers, hematology/oncology clinics, urology 

clinics, gastroenterology and dermatology clinics, hospices, nursing homes, group physician 

offices, and hospitals. These medical facilities are expected to submit their reports to the ACCR 

within six months of diagnosing and/or treating a cancer patient (Arkansas Cancer Coalition, 

2018). 

Arkansas Center for Health Improvement (ACHI) 

The ACHI was opened in alignment with the Arkansas Health Care Payment 

Improvement Initiative (AHCPII). This initiative aims to transform the healthcare system in 

Arkansas, emphasizing a patient-centered approach that aligns with (1) improving the overall 

health of the population, (2) enhancing the quality, accessibility, and reliability of the patient's 

care experience, and (3) reducing or effectively managing healthcare costs. This comprehensive, 

statewide system, involving multiple payers, centers its focus on patient-centered care delivery 

models, prioritizing the patient's needs over a specific delivery system structure (Arkansas 

Center of Health Improvement, 2023).  

Since 2012 the AHCPII has been spearheaded by the Arkansas Department of Human 

Services' Medicaid Program, with significant contributions from various and private 

organizations in the state. The initiative is designed to incentivize healthcare providers, including 
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physicians and hospitals, to deliver high-quality care to patients at a reasonable cost. In 

alignment with their mission, this organization houses Arkansas health data as well as Arkansas 

insurance claims data  for research and transparency purposes (Arkansas Center of Health 

Improvement, 2023).  

National Comprehensive Cancer Network (NCCN) 

The NCCN publishes guidelines of how to treat cancer based on cancer type. It is 

considered the gold standard for clinical decision making (National Comprehensive Cancer 

Network, 2023). Pertaining to kidney and renal pelvis cancer, the NCCN provides 

multidisciplinary recommendations for the clinical management of patients specifically with 

clear cell renal cell carcinoma and nonclear cell renal cell carcinoma. These guidelines are 

intended to assist with clinical decision-making, but they cannot incorporate all possible clinical 

variations and are not intended to replace good clinical judgment or individualization of 

treatments. Unusual patient scenarios (presenting in <5% of patients) are not specifically 

discussed in these guidelines. The guidelines are reviewed and updated at least annually (Motzer 

et al., 2022).  

The Genomic Data Commons Program 

The Genomic Data Commons (GDC) is a program under the National Cancer Institute 

(NCI) with the goal of establishing a unified repository and knowledge base for cancer research. 

It supports the sharing of genomic data across various cancer studies to advance precision 

medicine in oncology. The GDC includes extensive data from significant cancer genomic 

datasets, including The Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research 

to Generate Effective Therapies (TARGET). Notably, the GDC processes this data using 

consistent bioinformatics pipelines, enabling direct comparisons. Furthermore, it allows 
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researchers to contribute their own data, aligns it with a common reference genome, and 

generates high-level data such as variant calls and expression quantifications. As more 

researchers contribute to the GDC, it becomes an increasingly valuable tool for uncovering the 

molecular underpinnings of cancer, potentially leading to improved patient care (National Cancer 

Institute, 2023a). 

The Cancer Genome Atlas 

 

The Cancer Genome Atlas (TCGA) was a significant cancer genomics program that meticulously 

analyzed more than 20,000 primary cancer and matched normal samples across 33 cancer types 

from 2006 to 2018. With contributions from over 11,000 patients and thousands of researchers, 

TCGA generated an enormous dataset exceeding 2.5 petabytes, encompassing genomic, 

epigenomic, transcriptomic, and proteomic information. TCGA's valuable dataset is now 

complete, and the program is not accepting new samples for characterization. Kidney and renal 

pelvis cancer subtypes included in this study are clear cell renal cell carcinoma, chromophobe 

renal cell carcinoma, and papillary renal cell carcinoma. Melanoma subtypes studied include skin 

cutaneous melanoma and uveal melanoma (National Cancer Institute, 2022b). 

Therapeutically Applicable Research to Generate Effective Treatments (TARGET) program 

 

The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) 

program is focused on employing a thorough genomic approach to identify the molecular 

changes responsible for childhood cancers. Its primary objective is to use this data to guide the 

development of safer and more effective treatments for children. TARGET operates through 

collaborative project teams, each dedicated to a specific disease. By comprehensively 

characterizing the molecular aspects of hard-to-treat childhood cancers, TARGET aims to 

provide valuable data to the research community, helping identify therapeutic targets and 
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prognostic markers and facilitating the development of innovative, improved treatment strategies 

for these conditions. Kidney and renal pelvis cancer subtypes included in the study are Wilms, 

clear cell sarcoma, and rhabdoid tumors. Myeloma subtypes are not currently included in this 

program (National Cancer Institute, 2022c). 

3. Methods 

General Methodology 

 Cause-specific analysis was conducted in SEER*Stat on all kidney and renal pelvis, lung 

and bronchus, myeloma, prostate, and breast cancer patients using November 2022 submission 

SEER 12 data. This dataset includes 12 registries throughout the United States and covers 12.2% 

of the United States population encompassing over 5 million registered cancer cases in the 

United States (National Cancer Institute, 2023b). Data was queried for all patients who were 

either diagnosed or passed away from the 5 specified cancers throughout the years 1992 to 2020.  

 

Figure 2: List of 12 registries included in SEER 12 Nov Sub (1992-2020) data 

 

To ascertain patient lifetimes, multiple variations were created based on two sets of 

variables. The first set of custom variables used the year of diagnosis, and went 5, 10, and 20 

years out from each specified year of diagnosis. The second set of custom variables used the year 
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of death as an anchor. Given that our data set contained data from the years 1992 to 2020, our 

minimum diagnosis year was 1992, and our maximum diagnosis year was 2015. This is because 

any year after 2015 would not lead to complete data for even as little as a 5-year horizon. On the 

other hand, in this data set our minimum year of death was 1997 (the earliest year that was at 

least 5 years out from 1992), and the maximum year of death was 2020. This allowed us to 

produce the groupings in Table 2:  

Lifetimes included in Dataset 

Survival 

Period   

Diagnosis 

Year 

Death  

Year 

5 Year 
Minimum 1992 1997 

Maximum 2015 2020 

10 Year  
Minimum 1992 2002 

Maximum 2010 2020 

20 Year  
Minimum 1992 2012 

Maximum 2000 2020 
Table 2: Combinations of lifetime data years to be included in this paper 

Using Microsoft Excel, data was grouped into 5-, 10-, and 20-year survival groups, and 

respective trends were obtained from Excel’s trend analysis functionality to assess the lifetimes 

of kidney and renal pelvis, lung and bronchus, myeloma, prostate, and breast cancer patients who 

died in each death year.  

Extracting from SEER 

 All lifetime data was extracted from SEER for cause-specific lifetime data. Steps are as 

follows using SEER*Stat 8.4.3: 

1. Create frequency session in SEER. 
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2. Select the Nov 2022 Sub (1992-2020) data set. 

 
3. No changes need to be made on the ‘Statistic’ tab.  
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4. Under the ‘Selection’ tab, select ‘Edit’. 

 

5. In this example, we want to pull the breast cancer patients that passed away specifically 

from breast cancer in the year 1997. To do so, the cancer type (Site and Morphology> 

Site recode ICD-O-3/WHO 2008), year of death of interest (Dates>Year of death recode), 

and cause-specific (Cause of Death (COD) and Follow-up>SEER cause-specific death 

classification) filters must be selected. 
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6. In the ‘Table’ section, add the specified death year into the column of the table, and add 

the lifetime variable into the row area of the table: 

 

a. An example of the custom merged Lifetime by 1997 year of death variable: 
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b. An example of the custom user-defined Death Year 1997 variable. 

 
 

7.  Under the ‘Output’ section, provide a meaningful title for the data set: 



45 
 

 
 

8. Execute the request: 

 
9. Review findings: 

  
Note: SEER provides the options to visualize the data in a graph format and export the 

results, as well as to save the query to edit in the future. Seer*Stat 9.0.30.0 in beta testing 

provides ever more enhanced visualizations than the previous version. 
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Curve Fitting 

 Logistic, linear, and exponential curves were all tested against 5-, 10- and 20-year cause-

specific cancer survival data. Base code for each respective model may be found in the Appendix 

section. Findings were reviewed by comparing the sum of squared residuals (SSRs). 

 

Predictions 

For death year data, prediction curves were created by graphing predictions calculated 

using HTML files with embedded JavaScript code to analyze actual data extracted from SEER. 

Predictions for each death year incorporated variables derived from best fit curves based on 5-

year, 10-year, and 20-year cancer survival data for cause-specific deaths.  

Improved diagnosis year prediction curves were created by defining their key parameters 

by: 

1. taking the trendline derived by Excel from diagnosis data extracted from SEER to 

determine a lifetime value at T0 (the y-intercept in the linear model, and the constant 

coefficient in the exponential model); 

2. obtaining the steepness variable (doubling time in the exponential model, and slope in 

the linear model from a curve fitted to death year data extracted from SEER. 

 

4. Results 

4.1 Preliminary Findings 

Preliminary findings were obtained for kidney and renal pelvis cancer. 
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Experiment 1 

Historical survival trends for kidney and renal pelvis cancer were produced based on patient 

death year. Average cause-specific lifetimes were found to be increasing as of the year 2019: 

 

Figure 3: 10-year Average Kidney and Renal Pelvis Cancer Lifetimes by Year of Death 

 

Experiment 2  

Regression analysis was conducted on the dataset above. Using equation 6, we attempt to test for 

the appropriate values for C and D in equation 6 and compare the performance of each respective 

parameter for best fit by doing a sum of squares regression (SSR) against the data points in 

Figure 2. The best C value was found at 2.201 and the best D was found at 45 years. See 

Experiment 2 Output in appendix, for more information.  

Experiment 3 

Cause-specific survival times were also produced based on year of diagnosis in Figure 3. Note 

that in this figure, the independent variable is the SEER calculated survival metric calculated for 

historical data by diagnosis year, with a value of 1.000 meaning that the survival rate was 100% 

for a given diagnosis year: 
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Figure 4: 10-Year Cause-specific Survival of Kidney and Renal Cancer by Year of Diagnosis 

Experiment 4 

We then use these best-calculated values for C (2.201) and D (45) and fit them into equation 3 

for average lifetime predictions by diagnosis year: 

 

Figure 5: Average Kidney and Renal Pelvis Cancer Survival Time Using Ideal Parameters 
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Experiment 5 

This allows us to determine a prediction model using equation (5) and year of death as the 

independent variable: 

 

Figure 6: Average Kidney and Renal Cancer Survival Model by Year of Death 

Using the findings above, we can easily plug in year of death to help us determine survival times. 

4.2 Detailed Findings 

4.2.1 Overall Trends 

Below in Table 3, “trend” in this particular instance is defined as the difference between the 

beginning survival time and the most recent survival time given the timeframe. If the ending 

survival time is less than the beginning survival time, the trend is considered ‘down’. If the 

ending survival time is greater than the beginning survival time, the trend is considered ‘up’. 

Cells highlighted in Table 3 reflect instances where a year of death trend does not follow the 

same trend when comparing the same cancer type and time series by year of diagnosis. Note 

that this initial trend indication might or might not be corroborated by a deeper analysis of the 

data using curve fitting later.  
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By Year of Death  By Year of Diagnosis 

Lifetim
e 
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Trend 
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5 Up Up Up Down Down  5 Up Up Up Down Down 

10 Up Up Up Down Down  10 Up Up Up Down Up 

20 Up Up Up Down Down  20 Up Up Up Up Up 

Table 3: Overall, cause-specific initial survival trend estimates by cancer type, by year of death or diagnosis 

4.2.2 Kidney and Renal Pelvis Cancer 

Curve Fitting Findings 

 

Table 4: Comparison of cause-specific curve models for kidney and renal pelvis cancer Patients by lifetime horizon 

 

4.2.3 Myeloma 

Curve Fitting Findings 

 

                   Table 5: Comparison of cause-specific curve models for myeloma patients by lifetime horizon 

 

4.2.4 Lung and Bronchus Cancer 

Curve Fitting Findings 

Doubling 

Time

Life at T0 = 

1990
Min. SSR

Mean 

Min. SSR 

per Year

Slope Life at T0 Min. SSR

Mean Min. 

SSR per 

Year

Midpoint Steepness Min. SSR

Mean Min. 

SSR per 

Year

5 70 1.090921 0.035631 0.001485 0.013150 1.070617 0.01603289 0.0006680 2086 0.013339 0.027979 0.0011658

10 43 1.576280 0.026003 0.001369 0.034891 1.486492 0.01173699 0.00061774 2074 0.019981 0.056484 0.0029728

20 35 2.252550 0.016400 0.001822 0.069082 1.966492 0.00765596 0.00085066 2076 0.024311 0.099427 0.0110474

MEAN (by model) 0.001558 0.000712 0.005062

Lifetime 

Horizon

Exponential Linear Logistic

Cause-Specific Curve Models of Kidney & Renal Cancer Patients By Lifetime

Doubling 

Time

Life at T0 

= 1990
Min. SSR

Mean 

Min. SSR 

per Year

Slope
Life at T0 

= 1990
Min. SSR

Mean 

Min. SSR 

per Year

Midpoint Steepness Min. SSR

Mean Min. 

SSR per 

Year

5 247 1.68695 0.0292150 0.001217 0.004956 1.68588 0.013480 0.000562 2146 0.004327 0.042798 0.0017833

10 43 1.998081 0.0113574 0.000598 0.042410 1.916484 0.005798 0.000305 2054 0.021908 0.038255 0.0020134

20 25 1.942755 0.0078895 0.000877 0.102066 1.337411 0.003402 0.000378 2058 0.033121 0.051726 0.005747

Mean (by model) 0.000897 0.000415 0.0031813

Lifetime 

Horizon

Exponential Linear Logistic

Cause-Specific Curve Models of Myeloma Patients By Survival Time
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Table 6: Comparison of cause-specific curve models for lung and bronchus cancer patients by lifetime horizon 

4.2.5 Prostate Cancer 

Curve Fitting Findings 

 

Table 7: Comparison of cause-specific Curve models for prostate cancer patients by lifetime horizon 

The following tables give a more detailed, alternative analysis of the prostate cancer domain. In 

this different analysis, average survival time is calculated using the percentages of patients 

surviving each post-diagnosis year, instead of the percentages dying each post-diagnosis year. 

Doubling 

Time
Life at T0 Min. SSR

Mean Min 

SSR per 

year

Slope Life at T0 Min. SSR

Mean 

Min SSR 

per year

Midpoint Steepness Min. SSR

Mean 

Min SSR 

per year

5 58 0.741584 0.013134 0.000547 0.010819 0.727833 0.00748 0.00031 2108 0.014889 0.006110 0.000255

10 38 0.833067 0.013044 0.000687 0.021420 0.776672 0.00783 0.00041 2103 0.021415 0.010578 0.000557

20 26 0.812333 0.003765 0.000418 0.040391 0.574211 0.00216 0.00024 2098 0.029569 0.004687 0.000521

MEAN (by model) 0.000551 0.00032 0.000148

Cause-Specific Curve Models of Lung & Bronchus Cancer Patients By Lifetime
Exponential Linear Logistic

Lifetime 

Horizon

Doubling 

Time
Life at T0 Min. SSR

Mean 

Min SSR 

per year

Slope Life at T0 Min. SSR

Mean 

Min SSR 

per year

Midpo

int
Steepness Min. SSR

Mean 

Min SSR 

per year

5 Future Work Future Work Future Work Future Work 0.000100 2.182541 0.109316 0.004555 4362 0.000105 0.592694 0.024696

10 Future Work Future Work Future Work Future Work 0.000100 4.05906 0.085267 0.004488 8800 0.000055 1.542348 0.081176

20 Future Work Future Work Future Work Future Work 0.000100 7.13288 0.013078 0.001453 4622 0.000416 0.295504 0.032834

MEAN (by model) 0.003499 0.046235

Lifetime 

Horizon

Cause-Specific Curve Models of Prostate Cancer Patients By Lifetime
Exponential Linear Logistic
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Table 8: Prostate Cancer Death Counts from Diagnosis Years 1992-2015 

Dx. Year # Dx'd Dx Year + 0 Dx Year + 1 Dx Year + 2 Dx Year + 3 Dx Year + 4 Dx Year + 5

1992 25,512 332 538 592 447 443 380

1993 23,029 340 493 493 432 348 323

1994 20,454 321 431 392 367 281 290

1995 19,680 297 442 403 306 282 219

1996 20,053 299 396 390 303 257 236

1997 21,100 291 356 358 288 240 266

1998 21,046 307 387 309 254 260 230

1999 22,964 302 371 320 291 267 228

2000 23,219 308 358 351 305 228 245

2001 23,926 312 323 295 263 238 193

2002 24,155 325 364 278 283 200 200

2003 23,192 282 345 316 231 234 217

2004 23,867 267 365 279 244 216 174

2005 23,098 347 337 323 251 216 190

2006 25,199 342 353 326 256 216 181

2007 26,424 341 321 270 235 226 204

2008 25,136 287 325 317 255 192 193

2009 25,496 321 392 277 258 206 172

2010 25,012 290 359 271 238 214 172

2011 24,643 301 370 292 239 192 195

2012 21,013 304 355 268 212 194 180

2013 20,848 332 400 308 301 201 179

2014 19,680 387 369 347 244 228 177

2015 21,061 379 446 336 338 233 203

Prostate Cancer Death Counts by Year of Diagnosis
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Table 9: Prostate Cancer Death Percentages from Diagnosis Years 1992-2015 

 

Dx. Year # Dx'd Dx Year + 0 % Dx Year + 1 % Dx Year + 2 % Dx Year + 3 % Dx Year + 4 % Dx Year + 5 %

1992 25,512 1.30% 2.11% 2.32% 1.75% 1.74% 1.49%

1993 23,029 1.48% 2.14% 2.14% 1.88% 1.51% 1.40%

1994 20,454 1.57% 2.11% 1.92% 1.79% 1.37% 1.42%

1995 19,680 1.51% 2.25% 2.05% 1.55% 1.43% 1.11%

1996 20,053 1.49% 1.97% 1.94% 1.51% 1.28% 1.18%

1997 21,100 1.38% 1.69% 1.70% 1.36% 1.14% 1.26%

1998 21,046 1.46% 1.84% 1.47% 1.21% 1.24% 1.09%

1999 22,964 1.32% 1.62% 1.39% 1.27% 1.16% 0.99%

2000 23,219 1.33% 1.54% 1.51% 1.31% 0.98% 1.06%

2001 23,926 1.30% 1.35% 1.23% 1.10% 0.99% 0.81%

2002 24,155 1.35% 1.51% 1.15% 1.17% 0.83% 0.83%

2003 23,192 1.22% 1.49% 1.36% 1.00% 1.01% 0.94%

2004 23,867 1.12% 1.53% 1.17% 1.02% 0.91% 0.73%

2005 23,098 1.50% 1.46% 1.40% 1.09% 0.94% 0.82%

2006 25,199 1.36% 1.40% 1.29% 1.02% 0.86% 0.72%

2007 26,424 1.29% 1.21% 1.02% 0.89% 0.86% 0.77%

2008 25,136 1.14% 1.29% 1.26% 1.01% 0.76% 0.77%

2009 25,496 1.26% 1.54% 1.09% 1.01% 0.81% 0.67%

2010 25,012 1.16% 1.44% 1.08% 0.95% 0.86% 0.69%

2011 24,643 1.22% 1.50% 1.18% 0.97% 0.78% 0.79%

2012 21,013 1.45% 1.69% 1.28% 1.01% 0.92% 0.86%

2013 20,848 1.59% 1.92% 1.48% 1.44% 0.96% 0.86%

2014 19,680 1.97% 1.88% 1.76% 1.24% 1.16% 0.90%

2015 21,061 1.80% 2.12% 1.60% 1.60% 1.11% 0.96%

Prostate Cancer Death Percentages by Year of Diagnosis
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Table 10: Prostate Cancer Average Years Lost Per Patient Years 1992-2015 

Dx. Year # Dx'd Dx+0 surv% Dx+1 surv% Dx+2 surv% Dx+3 surv% Dx+4 surv% Dx+5 surv%

Average Per 

Patient Years 

Lost by End of 

Year 5

1992 25,512 98.70% 96.59% 94.27% 92.52% 90.78% 89.29% 0.3250

1993 23,029 98.52% 96.38% 94.24% 92.37% 90.86% 89.45% 0.3290

1994 20,454 98.43% 96.32% 94.41% 92.61% 91.24% 89.82% 0.3208

1995 19,680 98.49% 96.24% 94.20% 92.64% 91.21% 90.10% 0.3217

1996 20,053 98.51% 96.53% 94.59% 93.08% 91.80% 90.62% 0.3018

1997 21,100 98.62% 96.93% 95.24% 93.87% 92.73% 91.47% 0.2686

1998 21,046 98.54% 96.70% 95.23% 94.03% 92.79% 91.70% 0.2685

1999 22,964 98.68% 97.07% 95.68% 94.41% 93.25% 92.25% 0.2479

2000 23,219 98.67% 97.13% 95.62% 94.31% 93.32% 92.27% 0.2481

2001 23,926 98.70% 97.35% 96.11% 95.01% 94.02% 93.21% 0.2221

2002 24,155 98.65% 97.15% 96.00% 94.83% 94.00% 93.17% 0.2279

2003 23,192 98.78% 97.30% 95.93% 94.94% 93.93% 92.99% 0.2262

2004 23,867 98.88% 97.35% 96.18% 95.16% 94.26% 93.53% 0.2140

2005 23,098 98.50% 97.04% 95.64% 94.55% 93.62% 92.80% 0.2425

2006 25,199 98.64% 97.24% 95.95% 94.93% 94.08% 93.36% 0.2248

2007 26,424 98.71% 97.49% 96.47% 95.58% 94.73% 93.96% 0.2003

2008 25,136 98.86% 97.57% 96.30% 95.29% 94.53% 93.76% 0.2058

2009 25,496 98.74% 97.20% 96.12% 95.11% 94.30% 93.62% 0.2172

2010 25,012 98.84% 97.41% 96.32% 95.37% 94.51% 93.83% 0.2063

2011 24,643 98.78% 97.28% 96.09% 95.12% 94.34% 93.55% 0.2161

2012 21,013 98.55% 96.86% 95.59% 94.58% 93.66% 92.80% 0.2436

2013 20,848 98.41% 96.49% 95.01% 93.57% 92.60% 91.75% 0.2805

2014 19,680 98.03% 96.16% 94.40% 93.16% 92.00% 91.10% 0.3071

2015 21,061 98.20% 96.08% 94.49% 92.88% 91.78% 90.81% 0.3116

Prostate Cancer Survival :  Years Lost Per Patient (Avg.)
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Figure 7: Prostate cancer rolling survival rate trend from diagnosis Years 1992-2015 (Diagnosis Year + 5 years horizon) 

 

 

Figure 8: Prostate cancer average per patient-years lost by the end of Year 5 for diagnosis Years 1992-2015 
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4.2.6 Breast Cancer 

Curve Fitting Findings 

 

Table 11: Comparison of cause-specific curve models for breast cancer patients by lifetime horizon 

4.3 Future Predictions 

4.3.1 Kidney and Renal Pelvis Cancer 

5-Year Survival Time Predictions 

 

 

Figure 9: 5-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Exponential Model Predictions by Year of Death 

Doubling 

Time

Life at T0 

=1990
Min. SSR

Mean 

Min SSR 

per year

Slope
Life at T0 = 

1990
Min. SSR

Mean Min 

SSR per 

year

Midpoint Steepness Min. SSR

Mean 

Min SSR 

per year

5 Future Work Future Work Future Work Future Work 0.000100 2.317437 0.010020 0.000418 3811 0.000080 0.055316 0.002305

10 Future Work Future Work Future Work Future Work 0.000100 3.828070 0.013957 0.000735 6480 0.000106 0.216551 0.011397

20 Future Work Future Work Future Work Future Work 0.000100 5.945966 0.002831 0.000315 3358 0.000637 0.109699 0.012189

MEAN (by model) 0.0004889 0.008630

Logistic

Cause-Specific Curve Models of Breast Cancer Patients By Lifetime

Lifetime 

Horizon

Exponential Linear
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Figure 10: 5-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Exponential Model Predictions by Year of Diagnosis 

 

Figure 11: 5-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Linear Model Predictions by Year of Death 
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Figure 12: 5-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Linear Model Predictions by Year of Diagnosis 

10-Year Survival Time Predictions 

 

 

Figure 13: 10-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Exponential Model Predictions by Year of Death 
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Figure 14: 10-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Exponential Model Predictions by Year of 
Diagnosis 

 

Figure 15: 10-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Linear Model Predictions by Year of Death 
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Figure 16: 10-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Linear Model Predictions by Year of Diagnosis 

 

20-Year Survival Time Predictions 
 

 

Figure 17: 20-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Exponential Model Predictions by Year of Death 
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Figure 18: 20-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Exponential Model Predictions by Year of 
Diagnosis 

 

Figure 19: 20-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Linear Model Predictions by Year of Death 
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Figure 20: 20-Year Cause-specific Kidney and Renal Cancer Avg. Survival Time Linear Model Predictions by Year of Diagnosis 

4.3.2 Myeloma 

5-Year Survival Time Predictions 
 

 

Figure 21: 5-Year Cause-specific Myeloma Avg. Survival Time Exponential Model Predictions by Year of Death 
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Figure 22: 5-Year Cause-specific Myeloma Avg. Survival Time Exponential Model Predictions by Year of Diagnosis 

 

Figure 23: 5-Year Cause-specific Myeloma Avg. Survival Time Linear Model Predictions by Year of Death 
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Figure 24: 5-Year Cause-specific Myeloma Avg. Survival Time Linear Model Predictions by Year of Diagnosis 

10-Year Survival Time Predictions 

 

 

Figure 25: 10-Year Cause-specific Myeloma Avg. Survival Time Exponential Model Predictions by Year of Death 
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Figure 26: 10-Year Cause-specific Myeloma Avg. Survival Time Exponential Model Predictions by Year of Diagnosis 

 

Figure 27: 10-Year Cause-specific Myeloma Avg. Survival Time Linear Model Predictions by Year of Death 
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Figure 28: 10-Year Cause-specific Myeloma Avg. Survival Time Linear Model Predictions by Year of Diagnosis 

 

20-Year Survival Time Predictions 

 

 

Figure 29: 20-Year Cause-specific Myeloma Avg. Survival Time Exponential Model Predictions by Year of Death 
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Figure 30: 20-Year Cause-specific Myeloma Avg. Survival Time Exponential Model Predictions by Year of Diagnosis 

 

Figure 31: 20-Year Cause-specific Myeloma Avg. Survival Time Linear Model Predictions by Year of Death 
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Figure 32: 20-Year Cause-specific Myeloma Avg. Survival Time Linear Model Predictions by Year of Diagnosis 

4.3.3 Lung and Bronchus Cancer 

5-Year Survival Time Predictions 

 

 

Figure 33: 5-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Exponential Model Predictions by Year of Death 
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Figure 34: 5-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Exponential Model Predictions by Year of 
Diagnosis 

 

Figure 35: 5-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Linear Model Predictions by Year of Death 
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Figure 36: 5-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Linear Model Predictions by Year of Diagnosis 

10-Year Survival Time Predictions 
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Figure 37: 10-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Exponential Model Predictions by Year of Death 

 

Figure 38: 10-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Exponential Model Predictions by Year of 
Diagnosis 

 

Figure 39: 10-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Linear Model Predictions by Year of Death 
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Figure 40: 10-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Linear Model Predictions by Year of Diagnosis 

 

20-Year Survival Time Predictions 

 

 

Figure 41: 20-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Exponential Model Predictions by Year of Death 
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Figure 42: 20-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Exponential Model Predictions by Year of 
Diagnosis 

 

Figure 43: 20-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Linear Model Predictions by Year of Death 
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Figure 44: 20-Year Cause-specific Lung and Bronchus Cancer Avg. Survival Time Linear Model Predictions by Year of Diagnosis 

 

5. Conclusions 

Summary 

Kidney and Renal Pelvis Cancer 

 When we compare all three survival timeframes, the 20-year survival time 

generally provides the best minimum SSR values across all models (table 4). The linear model 

provides the lowest SSR across all three survival times with a mean minimum SSR per year of 

0.000712. This is lower than the mean minimum SSR’s of the exponential and logistic models 

with SSRs of 0.001558 and 0.005062 per year respectively. 

5-year average survival times of kidney and renal pelvis cancer patients generally 

increased from 1997 to 2020 when focusing on year of death data (appendix A1). This increase is 

by just under 0.24 average years of survival during the 23 year-span. It must be noted that every 

few years these survival time gains decline as well, but generally follow a positive trend. 

Survival times that focus on diagnosis year data follow a similar trend, however during the 23 
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years from 1992 to 2015, survival rates by diagnosis year increased even less with a 0.167 

overall change (appendix A2).  

 5-year average survival predictions by year of death using the parameter regression-based 

approach generally increase over the years (figures 9, 11). Cause-specific survival times for 

exponential model predictions closely match actual values with minor deviations. Variability 

between predicted and actual values that is noticeable in specific years. Predictions by diagnosis 

year using the parameter regression-based and Excel hybrid approach provide slightly more 

optimistic survival time predictions with the difference in average survival time between the 

Excel predictions and the hybrid approach of approximately 0.05 average years of survival for 

both the linear and exponential survival models by year 2030 (figures 10, 12).  

 The 10-year average survival times for kidney and renal pelvis cancer had a smaller 

difference between the diagnosis and the death year curve findings. 10-year survival times by 

death year between the years 2002 to 2020 were 0.433 average years of survival, an even larger 

difference compared to the 5-year survival rate average prediction differences (appendix A1). On 

the other hand, 10-year actual survival times by diagnosis year between the years 1992 to 2010 

only increased by 0.323 average years of survival, relatively low, but still improved from the 5-

year actual survival rates of 0.167 average survival years (appendix A2). 

10-year average survival predictions by year of death using the parameter regression-

based approach generally increase using both the exponential and linear models using the 

parameter regression-based approach (figures 13, 15). Cause-specific survival times for 

exponential parameter regression-based predictions match actual values much closer than the 5-

year survival case. This causes less variability between predicted and actual values for both the 

linear and exponential models. Hybrid model predictions by diagnosis year data provide more 
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optimistic survival time predictions with differences of up to 0.25 average years of survival by 

year 2030 for cause-specific survival times using the exponential model. The linear model 

predicts an even greater survival time difference, with an increase of up to 0.40 average survival 

years by 2030 (figures 14, 16).  

The 20-year average survival times for kidney and renal pelvis cancer increased by 0.296 

average years of survival from diagnosis years 1992 to 2000 (appendix A2). This is worse than 

the 10-year survival time difference of 0.323 average survival years between 1992 and 2010, but 

better than the 5-year survival time difference of 0.167 average survival years between 1992 and 

2015. On the other hand, survival times by death year also decreased by 0.257 average years of 

survival from 2012 to 2020 (appendix A1). This is relatively close to the drop in 5-year average 

survival times by death year of 0.240 from 1997 to 2015, but significantly greater than the 10-

year average survival time difference of 0.433 by death year from 2002 to 2010. Both survival 

time metrics by diagnosis year and death year depict almost flat, but still positive survival trends. 

It is important to note that out of all the survival times, the 20-year data had the least number of 

data points with only nine survival years’ worth of data: 1992 to 2000 for diagnosis year data, 

and 2012 to 2020 for death year data.  

20-year average survival predictions by year of death increased at a generally higher rate 

compared to actuals, similar to 5-year and 10-year averages (figures 17, 19). Perhaps due to less 

data availability, we see slightly more temporary decreases in average survival time predictions 

compared to initial predictions of both the exponential and linear models using the parameter 

regression-based approach. When using diagnosis year data, both the linear and exponential 

hybrid models showed a decrease of approximately 0.05 average survival years by year 2030 

compared to the standard Excel approach (figures 18, 20).   
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We took SEER data and produced 5, 10, and 20-year survival parameter regression-based 

predictions with a maximum death year of 2030 for kidney and renal cancer patients. We 

compared these predictions to the new hybrid approach that we are investigating, in this case, 

using diagnosis year data. The hybrid approach utilizes both the parameter regression-based 

approach and Excel trend analysis functionality. The 5-year and 10-year survival predictions 

using the hybrid approach project a higher survival time than when we compare it to Excel 

projections for both linear and exponential models. The 20-year survival time predictions made 

by the hybrid approach predicts a lower survival time compared to projections using the Excel 

standard approach.  

In summary, the average survival time for kidney and renal pelvis cancer patients shows a 

generally positive trend for cause-specific survival times regardless of the timeframe. The 10-

year survival times seem to be the greatest followed by the 5-year survival times, and the 20-year 

lifetimes have the least survival time increases of the three. The linear model provides the best-fit 

curve describing kidney and renal pelvis survival times.  

All future prediction times show a gradual increase in cause-specific survival times 

although to different degrees. These improvements indicate progress in healthcare management, 

treatment approaches, and patient support. Nevertheless, kidney and renal pelvis cancer remains 

a major challenge, emphasizing the need for ongoing research, early detection, innovative 

treatments, and comprehensive care to enhance survival rates and the quality of life for kidney 

and renal pelvis cancer patients. 

Myeloma 

When comparing all three survival timeframes, the 20-year survival time provides the 

best minimum SSR value for both linear and exponential models, while the best minimum SSR 

for the logistic model is using the 10-year data (table 5). The linear model provides the lowest 
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SSR across all three survival times with a mean minimum SSR per year of 0.000414933. This is 

lower than the mean minimum SSR’s of the exponential and logistic models with SSRs of 

0.000897222 and 0.003181335 per year respectively.  

5-year average survival times by death year of myeloma patients have an interesting 

pattern that could be described as an irregular trend of increase in average survival times 

generally increase from 1997 to 2020 (appendix B1). When we focus particularly on death years 

2001 to 2004, we would be inclined to say that the survival times are declining over time. 

However, during the next few years, from 2004 to 2009, myeloma survival times are increasing. 

More recently, between death years 2009 to 2020, one might argue that survival time differences 

are negligible. Holistically, between death years 1997 to 2020, we can also say the same thing as 

the average survival years only increased by a net of 0.065 years over those 23 years. Differences 

by year of diagnosis are slightly higher with a survival time increase of 0.086 years over that 

same time frame (appendix B2). 

 High levels of variability are seen between 5-year parameter regression-based predictions 

and actual survival times using death year data (figures 21, 23). Particularly for the exponential 

model, the trend takes on a more linear shape in comparison to many exponential curves. We 

might even say that the exponential predictions made by the parameter regression-based 

approach has a similar shape to the linear predictive model using the same approach. When 

looking at predictive models by year of diagnosis, we see similarly shaped trend lines, however, 

the predictions using the hybrid approach project slightly more positive future survival times 

from both 5-year exponential and linear predictive trends (figures 22, 24).  

 The 10-year average survival times of myeloma depict a slow but positive trend between 

death years 2002 to 2020 with a net difference in average survival time of 0.693 years (appendix 
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B1). Although that improvement does not seem like a lot, this is a 28.95% survival improvement 

within 18 years which is good. The average 10-year survival times by diagnosis year differ 

slightly in that from diagnosis years 1992 to 2001, the trend is very slightly positive, if not flat 

(appendix B2). However, from diagnosis years 2001 to 2010 survival times began to increase 

noticeably more year over year. This constitutes a net survival time increase of 0.87 years 

between diagnosis years 1997 and 2010. The majority of this average survival time increase 

happened after 2001. Once again, it is important to note that this is an overall average survival 

year increase of 36.55% in 13 years which is very positive given the relatively short time.   

10-year average survival parameter regression-based predictions by year of death for the 

exponential model match 10-year actual values much closer than in the 5-year case, causing less 

variability between predicted and actual values for both the linear and the exponential models 

(figures 25, 27). The exponential curve is very steep but begins to show a visible curvature, while 

the linear model counterpart is steep as well. Predictions using the hybrid approach provide more 

optimistic survival times for both the exponential and linear models compared to the Excel 

extrapolation of the diagnosis year model (figures 26, 28).  

The 20-year average myeloma survival times by death year gradually increase with a 

difference of 0.632 years or 19.66% between death years 1992 to 2000 (appendix B1). Unlike the 

5-year and 10-year survival times, there are no decreases year over year even though some of the 

increases are almost negligible. Although we see fluctuations when looking at survival times by 

year of diagnosis, it is still a positive trend as well, with an average survival time increase of 

0.520 years or 19.05% between the diagnosis years 1992 to 2000 (appendix B2). 

20-year average survival parameter regression-based predictions by year of death 

increase at a rate similar to the 10-year averages (figures 29, 31). Due to less data availability, the 
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variability does increase for both the exponential and linear model predictions. Predictions made 

using the hybrid approach provide lower predicted survival times for both the exponential and 

linear models (figures 30, 32).  

We took SEER data and produced 5, 10, and 20-year survival parameter regression-based 

predictions with a maximum death year of 2030 for myeloma patients. We compared these 

predictions to the new hybrid approach that we are investigating, in this case, using diagnosis 

year data. The hybrid approach utilizes both the parameter regression-based approach and Excel 

trend analysis functionality. The 5-year and 10-year survival parameter regression-based 

predictions projected higher survival times compared to actual data for both the linear and 

exponential models. The 20-year survival time parameter regression-based model predictions 

followed a lower survival time trend in comparison to actual data, although still positive.  In 

summary, the current average survival times for myeloma patients by death year show a 

generally positive trend for 5-year, 10-year, and 20-year cause-specific survival times.  

Survival time predictions by diagnosis year using the hybrid approach of both the 

parameter regression-based and Excel approach illustrated a more positive survival time for the 

5-year and 10-year survival times, while the 20-year survival times predict a decrease over time 

using the hybrid. The 20-year survival times seem to be the greatest followed by the 10-year 

survival times, and the 5-year lifetimes have the worst survival time of the three. The linear 

model provides the best-fit curve for myeloma survival times.  

The analyses of myeloma survival times using exponential, linear, and logistic models 

suggest a slower improvement in survival rates with increasing doubling times. This slow 

improvement in survival rates for myeloma indicates a need for further research and 

development of innovative treatments. Various factors such as disease complexity, late diagnosis, 
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genetic factors, coexisting conditions, treatment resistance, access to care, and limited treatment 

options may need investigation to understand if they may be contributing to this trend. 

Approaches for improving the prognosis and survival outcomes for myeloma patients are crucial. 

Lung and Bronchus Cancer 

When we compare all three survival timeframes, the 20-year survival time provides the 

best minimum SSR value for exponential, linear, and logistic models (table 6). The logistic 

model provides the lowest SSR across all three survival times with a mean minimum SSR per 

year of 0.000148. This is lower than the mean minimum SSR’s of the exponential and linear 

models with SSRs of 0.0005507 and 0.000321 per year respectively.  

5-year average survival times for lung and bronchus cancer patients have a visible 

positive trend for both data by death year and by diagnosis year. By diagnosis year we see an 

increase of 0.146 average years of survival or, in other words, a 17.34 % increase in 5-year 

average survival times between 1992 and 2015 (appendix C2). By death year we see a greater 

difference of 0.285 average years of survival, or 35.36% average survival time increase between 

1997 and 2020 (appendix C1). That could be described as an irregular trend, although average 

survival times generally increased from 1997 to 2020.  

 5-year average survival predictions by year of death generally increase over the years. 

Low levels of variability are seen between parameter regression-based predictions and actual 

values (figures 33, 35). The exponential trend curve can be observed taking on a slight curvature. 

When we look at the hybrid predictive models by diagnosis year we see that both exponential 

and linear models using the hybrid approach project more positive survival times when 

compared to Excel trend projections (figures 34, 36).  

 The 10-year average survival times for lung and bronchus cancer patients also have a 

visible positive trend for both data by death year and diagnosis year. By death year we see an 
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increase of 0.448 average years of survival, in other words, a 44.00 % increase in 10-year 

average survival times between 2002 and 2020 (appendix C1). This is quite a significant increase 

in a relatively short amount of time. By diagnosis year, we see a slightly smaller difference of 

0.205 average years of survival or 19.86% average survival time increase between the years 1997 

to 2015 (appendix C2).  

10-year average survival parameter regression-based predictions by year of death 

generally increase over the years (figures 37, 39). Similar to 5-year data, low levels of variability 

are once again seen between predicted and actual values. The exponential trend curve can be 

observed taking on a steeper curvature compared to the 5-year data. When we look at the 

predictive models by diagnosis year, we see that both exponential and linear models using the 

hybrid have significantly more positive survival times, compared to standard Excel projections 

(figures 38, 40).  

The 20-year average survival times for lung and bronchus cancer survival times gradually 

increase between death years 2012 to 2020 (appendix C1). The only year a decrease is observed 

is between death years 2015 to 2016. For the other years, we observe a consistent increase in 

average survival time year over year. Overall, we see a survival time increase of 0.346 average 

years of survival or 24.30%. Actual survival times by diagnosis year slowly increase appearing 

almost stagnant as the survival time increases by only 0.058 years or 5.62% between diagnosis 

years 1992 to 2000 (appendix C2). 

20-year average survival parameter regression-based predictions by year of death 

increase at rates similar to 10-year predictions (figures 41, 43). Variability does increase for both 

the exponential and linear model predictions likely due to less 20-year data availability. 

Predictions by diagnosis year using the hybrid approach provide significantly higher predicted 
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survival times compared to both exponential and linear models, similar to 10-year predictions 

(figures 42, 44).  

We took SEER data and produced 5, 10, and 20-year survival parameter regression-based 

predictions with a maximum death year of 2030 for lung and bronchus cancer patients. We 

compared these predictions to the new hybrid approach that we are investigating, in this case, 

using diagnosis year data. The hybrid approach utilizes both the parameter regression-based 

approach and Excel trend analysis functionality. The 5-year and 10-year survival predictions by 

diagnosis using the hybrid approach all project higher survival times compared to the Excel 

method for both linear and exponential models. It was observed that the 20-year survival time 

predictions using the new approach project the highest predicted average survival time.  

In summary, the average survival time for lung and bronchus cancer patients shows a 

generally positive trend for 5-year, 10-year, and 20-year cause-specific survival times over time. 

Survival times by death year show the most significant increase in survival times, while data by 

diagnosis year display a less dramatic, yet positive trend in survival times using the standard 

Excel method. Although the logistic model provides the best-fit curve for lung and bronchus 

cancer survival times, of the two models we use for comparing with the traditional method using 

Excel, the linear model fits best to the lung and bronchus data. 

Analysis for lung and bronchus cancer survival times using exponential, linear, and 

logistic models suggest survival times for lung and bronchus cancer have been gradually 

improving over time. This perhaps may be due to advancements in early detection, better 

treatment options, and enhanced patient care. To continue this progress, it is essential to increase 

awareness and prevention measures, such as anti-smoking campaigns, and to invest in research 

for new and more effective treatments. Enhancing early detection methods through improved 
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screening programs, providing better access to healthcare, and supporting personalized medicine 

tailored to individual patient needs are also crucial steps in further improving survival rates. 

Prostate Cancer 

 5-year average survival times for prostate cancer patient survival projections are not 

provided here. Prostate cancer was found to have decreasing average survival times, which was 

not anticipated for this study. The code created to support the methodology of the new approach 

does not search for negative slope values, and so the analysis was out of scope for this paper. 

Regardless, we investigated further to better understand what the prostate cancer data may tell 

us.  

We learned a few things. For example, in Table 8 we see that although the number of 

patients diagnosed each year is relatively high, the proportion of them who pass away annually is 

relatively low. Table 9 further tells us that the proportion of deaths have generally dropped from 

diagnosis years 1992 to 2009, however beginning 2010 to 2015 there has been an increase in 

prostate cancer deaths. This finding is quite interesting as prostate cancer is frequently screened 

for in at-risk populations and is generally considered a treatable disease when diagnosed early. 

 We produced Table 10 to help us further understand these findings. This table takes those 

death percentages and allows us to see the average lost years of life by the fifth year after 

diagnosis year. Figure 7 helps us visualize the fifth year and other years. The difference in 

survival rates is used to mathematically determine the average per patient-years lost by the end 

of year five following initial diagnosis, illustrated in Figure 8.  

Breast Cancer 

 Similar to prostate cancer, breast cancer findings are distinct from other cancers in this 

study as the survival times suggest a potential stagnation or decline in more recent periods that 

could be explored further like we did prostate cancer. In addition to breast cancer having high 
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incidence and low death rates, these findings could correlate with external factors such as 

economic downturns, public health crises, or changes in healthcare policy affecting mortality. 

Further analysis could explore the specific causes underlying the cause-specific rates and 

investigate additional factors influencing the observed trends. 

 

Future Works 

Although this paper produces useful insights there is more work to be done. The SEER 

data that was extracted was by year of death and year of diagnosis, but it does not consider 

months or days. For example, if a patient were diagnosed in December 2012, and passed away in 

February 2013, this would be counted as a survival time of 1 year, when it was much less than 

that at 2 months, possibly less if counting by days. If we were able to account for such times 

more accurately, this would give a more accurate picture of cancer patient deaths although there 

is little reason to believe it would have a significant impact on results.  

It would also be useful to analyze and predict survival times for cancers or other entities 

that have decreasing survival times. Unfortunately, although it is generally assumed that all 

cancer types have increasing survival times over time due to increasing knowledge and 

technological innovations, this is not necessarily always the case. We saw indications of this 

possibility with breast and prostate cancers. The methodologies used in this study are currently 

unable to handle this scenario, which caused some cancer types to be left not fully analyzed.  

Given the methodologies used in this paper, logistic model predictions were not 

computed. It would be not only interesting, but valuable as well to have and assess logistic model 

predictions and compare those findings with linear and exponential predictive findings. To do so, 

we would need to use the Solver plug-in from Microsoft Excel or some other similar software. 
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Other models currently found in the Excel trend analysis functionality could also be tested on our 

data set. 

As we saw with prostate cancer, the survival time calculation we use in this study may 

need to be updated to reflect similar cancers that have high incidence rates, but low death rates. 

For cancers such as these, the survival metric we use is misleading and often understated which 

could lead to clinicians and patients being misinformed on how these cancers are truly trending. 

Having a more reliable calculation will help drive recommended treatment plans, as well as 

patient treatment plan decision-making.  

 

Discussion 

 This paper explores survival times using SEER 12 data. This dataset includes 12 

registries throughout the United States and covers 12.2% of the United States population 

encompassing over five million registered cancer cases in the United States between the years 

1992 and 2020. Using SEER data, average survival time trends were produced using the year of 

diagnosis and year of death data and compared across linear and exponential curves to identify 

and explain the survival times and trends for each respective cancer. 

The average survival time for kidney and renal pelvis cancer patients shows a generally 

positive trend for cause-specific survival times regardless of the timeframe. The linear model 

best describes the survival times of kidney and renal pelvis cancer patients. Both linear and 

exponential hybrid models predict increased average survival times for 5 and 10-year survival 

horizons compared to Excel models. 20-year predictive survival  using the hybrid method 

forecasts lower average years of survival times compared to Excel for both the linear and 

exponential models.  
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The average survival time for myeloma patients shows a positive trend for cause-specific 

survival times regardless of the timeframe. The linear model best describes the survival lifetime 

of myeloma. Similar to kidney and renal pelvis cancer, both hybrid linear and exponential 

predictive models that incorporate more recent year of death data predict increased average 

survival times for 5-year and 10-year survival horizons compared to the Excel method. 20-year 

predictive survival times using the hybrid method forecasts lower average years of survival times 

compared to Excel for both the linear and exponential models.  

The average survival times for lung and bronchus cancer patients shows a generally 

positive trend for 5-year, 10-year, and 20-year cause-specific observation periods over time. 

Although the logistic model provides the best-fit curve to lung and bronchus cancer survival 

times, the linear model fits best to the lung and bronchus data. The 5-year and 10-year survival 

predictions by diagnosis year using the hybrid approach all project higher survival times 

compared to Excel for both the linear and exponential models. It was observed that the 20-year 

survival time predictions using the hybrid approach project the highest average predicted 

survival time. 

Although the prostate and breast cancer findings were unexpected, they provided us with 

the opportunity to see that there is a group of cancer types that have unusual survival time 

characteristics. These may be temporary, but still need further investigation.   

This paper explores survival times of kidney and renal, myeloma, lung and bronchus, 

prostate and breast cancer patients using November 2022 submission SEER 12 data. We 

discovered that our hybrid model may help us better understand the survival trends of cancers 

with high incidence and high death rates such as kidney and renal cancer, myeloma, as well as 

lung and bronchus cancers. Other cancers with high incidences and low death rates led to 
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unexpected results, however, they could be addressed using our method by choosing to use more 

informative data as well as by extending our method to handle trends of decrease as well as 

logistic modeling. 
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Appendix 

A. Kidney and Renal Pelvis Cancer Raw Data 
 

1. By Death Year 

Number of Cause-Specific Deaths 
of Kidney and Renal Cancer 
Patients in 1997 - 5 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1992 5 1997 39 

1993 4 1997 56 

1994 3 1997 66 

1995 2 1997 151 

1996 1 1997 328 

1997 0 1997 438 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
1998 - 5 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1993 5 1998 47 

1994 4 1998 58 

1995 3 1998 74 

1996 2 1998 144 

1997 1 1998 362 

1998 0 1998 472 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
1999 - 5 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1994 5 1999 53 

1995 4 1999 67 

1996 3 1999 85 

1997 2 1999 139 

1998 1 1999 338 
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1999 0 1999 469 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2000 - 5 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1995 5 2000 40 

1996 4 2000 54 

1997 3 2000 96 

1998 2 2000 152 

1999 1 2000 333 

2000 0 2000 452 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2001 - 5 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1996 5 2001 38 

1997 4 2001 40 

1998 3 2001 87 

1999 2 2001 142 

2000 1 2001 340 

2001 0 2001 451 

 
The remaining 5-year tables are embedded in the tables below. 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2002 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1992 10 2002 23 

1993 9 2002 26 

1994 8 2002 26 

1995 7 2002 32 

1996 6 2002 30 

1997 5 2002 48 

1998 4 2002 63 

1999 3 2002 84 

2000 2 2002 158 
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2001 1 2002 327 

2002 0 2002 473 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2003 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1993 10 2003 14 

1994 9 2003 31 

1995 8 2003 18 

1996 7 2003 25 

1997 6 2003 36 

1998 5 2003 47 

1999 4 2003 63 

2000 3 2003 101 

2001 2 2003 177 

2002 1 2003 341 

2003 0 2003 474 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2004 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1994 10 2004 19 

1995 9 2004 26 

1996 8 2004 26 

1997 7 2004 32 

1998 6 2004 40 

1999 5 2004 51 

2000 4 2004 60 

2001 3 2004 95 

2002 2 2004 149 

2003 1 2004 367 

2004 0 2004 463 
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Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2005 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1995 10 2005 26 

1996 9 2005 21 

1998 8 2005 26 

1999 7 2005 33 

2000 6 2005 40 

2001 5 2005 64 

2002 4 2005 73 

2003 3 2005 74 

2004 2 2005 172 

2005 1 2005 323 

2006 0 2005 466 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2006 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1996 10 2006 21 

1997 9 2006 17 

1998 8 2006 19 

1999 7 2006 32 

2000 6 2006 39 

2001 5 2006 48 

2002 4 2006 71 

2003 3 2006 92 

2004 2 2006 163 

2005 1 2006 337 

2006 0 2006 454 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2007 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 
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1997 10 2007 19 

1998 9 2007 30 

1999 8 2007 28 

2000 7 2007 37 

2001 6 2007 40 

2002 5 2007 53 

2003 4 2007 99 

2004 3 2007 129 

2005 2 2007 152 

2006 1 2007 353 

2007 0 2007 497 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2008 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1998 10 2008 21 

1999 9 2008 24 

2000 8 2008 29 

2001 7 2008 30 

2002 6 2008 62 

2003 5 2008 53 

2004 4 2008 65 

2005 3 2008 93 

2006 2 2008 189 

2007 1 2008 366 

2008 0 2008 477 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2009 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1999 10 2009 26 

2000 9 2009 23 

2001 8 2009 26 

2002 7 2009 39 

2003 6 2009 48 

2004 5 2009 60 
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2005 4 2009 63 

2006 3 2009 93 

2007 2 2009 156 

2008 1 2009 377 

2009 0 2009 440 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2010 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

2000 10 2010 28 

2001 9 2010 24 

2002 8 2010 43 

2003 7 2010 34 

2004 6 2010 61 

2005 5 2010 48 

2006 4 2010 81 

2007 3 2010 96 

2008 2 2010 178 

2009 1 2010 387 

2010 0 2010 447 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2011 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

2001 10 2011 31 

2002 9 2011 22 

2003 8 2011 27 

2004 7 2011 50 

2005 6 2011 63 

2006 5 2011 64 

2007 4 2011 97 

2008 3 2011 113 

2009 2 2011 179 

2010 1 2011 384 

2011 0 2011 450 

 
The remaining 5-year and 10-year tables are embedded in the tables below. 
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Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2012 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1992 20 2012 9 

1993 19 2012 6 

1994 18 2012 21 

1995 17 2012 12 

1996 16 2012 9 

1997 15 2012 12 

1998 14 2012 21 

1999 13 2012 13 

2000 12 2012 18 

2001 11 2012 34 

2002 10 2012 20 

2003 9 2012 41 

2004 8 2012 54 

2005 7 2012 43 

2006 6 2012 51 

2007 5 2012 75 

2008 4 2012 94 

2009 3 2012 120 

2010 2 2012 161 

2011 1 2012 403 

2012 0 2012 469 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2013 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1993 20 2013 7 

1994 19 2013 7 

1995 18 2013 7 

1996 17 2013 6 

1997 16 2013 13 

1998 15 2013 17 

1999 14 2013 9 

2000 13 2013 21 

2001 12 2013 28 

2002 11 2013 23 

2003 10 2013 31 
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2004 9 2013 30 

2005 8 2013 41 

2006 7 2013 44 

2007 6 2013 55 

2008 5 2013 84 

2009 4 2013 61 

2010 3 2013 103 

2011 2 2013 170 

2012 1 2013 399 

2013 0 2013 428 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2014 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1994 20 2014 4 

1995 19 2014 8 

1996 18 2014 10 

1997 17 2014 9 

1998 16 2014 10 

1999 15 2014 14 

2000 14 2014 16 

2001 13 2014 27 

2002 12 2014 28 

2003 11 2014 27 

2004 10 2014 23 

2005 9 2014 40 

2006 8 2014 43 

2007 7 2014 50 

2008 6 2014 47 

2009 5 2014 71 

2010 4 2014 94 

2011 3 2014 130 

2012 2 2014 171 

2013 1 2014 393 

2014 0 2014 494 

 
 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2015 - 20 Year 
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Dx. 
Year 

Lifetime Death Year N 

1995 20 2015 7 

1996 19 2015 11 

1997 18 2015 7 

1998 17 2015 12 

1999 16 2015 14 

2000 15 2015 14 

2001 14 2015 14 

2002 13 2015 18 

2003 12 2015 26 

2004 11 2015 32 

2005 10 2015 44 

2006 9 2015 27 

2007 8 2015 48 

2008 7 2015 66 

2009 6 2015 71 

2010 5 2015 84 

2011 4 2015 100 

2012 3 2015 128 

2013 2 2015 204 

2014 1 2015 393 

2015 0 2015 514 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2016 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1996 20 2016 10 

1997 19 2016 10 

1998 18 2016 8 

1999 17 2016 17 

2000 16 2016 22 

2001 15 2016 14 

2002 14 2016 14 

2003 13 2016 26 

2004 12 2016 31 

2005 11 2016 42 

2006 10 2016 47 

2007 9 2016 40 

2008 8 2016 48 

2009 7 2016 35 
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2010 6 2016 49 

2011 5 2016 62 

2012 4 2016 100 

2013 3 2016 121 

2014 2 2016 195 

2015 1 2016 373 

2016 0 2016 508 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2017 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1997 20 2017 8 

1998 19 2017 7 

1999 18 2017 15 

2000 17 2017 16 

2001 16 2017 15 

2002 15 2017 16 

2003 14 2017 17 

2004 13 2017 21 

2005 12 2017 26 

2006 11 2017 34 

2007 10 2017 38 

2008 9 2017 40 

2009 8 2017 35 

2010 7 2017 53 

2011 6 2017 54 

2012 5 2017 69 

2013 4 2017 102 

2014 3 2017 127 

2015 2 2017 184 

2016 1 2017 373 

2017 0 2017 459 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2018 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1998 20 2018 8 
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1999 19 2018 14 

2000 18 2018 17 

2001 17 2018 11 

2002 16 2018 16 

2003 15 2018 15 

2004 14 2018 27 

2005 13 2018 25 

2006 12 2018 26 

2007 11 2018 43 

2008 10 2018 34 

2009 9 2018 44 

2010 8 2018 36 

2011 7 2018 61 

2012 6 2018 60 

2013 5 2018 66 

2014 4 2018 92 

2015 3 2018 131 

2016 2 2018 179 

2017 1 2018 405 

2018 0 2018 433 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2019 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1999 20 2019 15 

2000 19 2019 7 

2001 18 2019 13 

2002 17 2019 14 

2003 16 2019 15 

2004 15 2019 22 

2005 14 2019 30 

2006 13 2019 28 

2007 12 2019 24 

2008 11 2019 34 

2009 10 2019 34 

2010 9 2019 33 

2011 8 2019 65 

2012 7 2019 52 

2013 6 2019 72 
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2014 5 2019 73 

2015 4 2019 91 

2016 3 2019 121 

2017 2 2019 193 

2018 1 2019 319 

2019 0 2019 473 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients in 
2020 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

2000 20 2020 15 

2001 19 2020 8 

2002 18 2020 8 

2003 17 2020 13 

2004 16 2020 12 

2005 15 2020 25 

2006 14 2020 25 

2007 13 2020 27 

2008 12 2020 28 

2009 11 2020 29 

2010 10 2020 35 

2011 9 2020 36 

2012 8 2020 53 

2013 7 2020 53 

2014 6 2020 60 

2015 5 2020 68 

2016 4 2020 101 

2017 3 2020 130 

2018 2 2020 191 

2019 1 2020 365 

2020 0 2020 492 

 

2. By Diagnosis Year 
 
5-year and 10-year tables are embedded in the tables below. 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 1992 - 20 Year 

Death  
Yr. 

Lifetime Dx. 
Year 

N 

1992 0 1992 377 
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1993 1 1992 312 

1994 2 1992 129 

1995 3 1992 72 

1996 4 1992 42 

1997 5 1992 39 

1998 6 1992 34 

1999 7 1992 30 

2000 8 1992 25 

2001 9 1992 22 

2002 10 1992 23 

2003 11 1992 16 

2004 12 1992 15 

2005 13 1992 17 

2006 14 1992 6 

2007 15 1992 17 

2008 16 1992 10 

2009 17 1992 12 

2010 18 1992 7 

2011 19 1992 7 

2012 20 1992 9 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 1993 - 20 Year 

Death  
Yr. 

Lifetime Dx. 
Year 

N 

1993 0 1993 376 

1994 1 1993 322 

1995 2 1993 132 

1996 3 1993 101 

1997 4 1993 56 

1998 5 1993 47 

1999 6 1993 21 

2000 7 1993 29 

2001 8 1993 24 

2002 9 1993 26 

2003 10 1993 14 

2004 11 1993 16 

2005 12 1993 19 

2006 13 1993 17 

2007 14 1993 11 

2008 15 1993 6 

2009 16 1993 11 

2010 17 1993 5 
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2011 18 1993 8 

2012 19 1993 6 

2013 20 1993 7 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 1994 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1994 0 1994 395 

1995 1 1994 298 

1996 2 1994 117 

1997 3 1994 66 

1998 4 1994 58 

1999 5 1994 53 

2000 6 1994 38 

2001 7 1994 28 

2002 8 1994 26 

2003 9 1994 31 

2004 10 1994 19 

2005 11 1994 12 

2006 12 1994 15 

2007 13 1994 20 

2008 14 1994 17 

2009 15 1994 10 

2010 16 1994 10 

2011 17 1994 11 

2012 18 1994 21 

2013 19 1994 7 

2014 20 1994 4 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 1995 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1995 0 1995 401 

1996 1 1995 323 

1997 2 1995 151 

1998 3 1995 74 

1999 4 1995 67 

2000 5 1995 40 

2001 6 1995 38 

2002 7 1995 32 
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2003 8 1995 18 

2004 9 1995 26 

2005 10 1995 26 

2006 11 1995 19 

2007 12 1995 18 

2008 13 1995 7 

2009 14 1995 11 

2010 15 1995 11 

2011 16 1995 11 

2012 17 1995 12 

2013 18 1995 7 

2014 19 1995 8 

2015 20 1995 7 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 1996 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1996 0 1996 441 

1997 1 1996 328 

1998 2 1996 144 

1999 3 1996 85 

2000 4 1996 54 

2001 5 1996 38 

2002 6 1996 30 

2003 7 1996 25 

2004 8 1996 26 

2005 9 1996 21 

2006 10 1996 21 

2007 11 1996 13 

2008 12 1996 18 

2009 13 1996 12 

2010 14 1996 18 

2011 15 1996 7 

2012 16 1996 9 

2013 17 1996 6 

2014 18 1996 10 

2015 19 1996 11 

2016 20 1996 10 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 1997 - 20 Year 
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Death 
Yr. 

Lifetime Dx. 
Year 

N 

1997 0 1997 438 

1998 1 1997 362 

1999 2 1997 139 

2000 3 1997 96 

2001 4 1997 40 

2002 5 1997 48 

2003 6 1997 36 

2004 7 1997 32 

2005 8 1997 26 

2006 9 1997 17 

2007 10 1997 19 

2008 11 1997 15 

2009 12 1997 21 

2010 13 1997 13 

2011 14 1997 18 

2012 15 1997 12 

2013 16 1997 13 

2014 17 1997 9 

2015 18 1997 7 

2016 19 1997 10 

2017 20 1997 8 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 1998 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1998 0 1998 472 

1999 1 1998 338 

2000 2 1998 152 

2001 3 1998 87 

2002 4 1998 63 

2003 5 1998 47 

2004 6 1998 40 

2005 7 1998 33 

2006 8 1998 19 

2007 9 1998 30 

2008 10 1998 21 

2009 11 1998 15 

2010 12 1998 12 

2011 13 1998 18 

2012 14 1998 21 
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2013 15 1998 17 

2014 16 1998 10 

2015 17 1998 12 

2016 18 1998 8 

2017 19 1998 7 

2018 20 1998 8 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 1999 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1999 0 1999 469 

2000 1 1999 333 

2001 2 1999 142 

2002 3 1999 84 

2003 4 1999 63 

2004 5 1999 51 

2005 6 1999 40 

2006 7 1999 32 

2007 8 1999 28 

2008 9 1999 24 

2009 10 1999 26 

2010 11 1999 12 

2011 12 1999 20 

2012 13 1999 13 

2013 14 1999 9 

2014 15 1999 14 

2015 16 1999 14 

2016 17 1999 17 

2017 18 1999 15 

2018 19 1999 14 

2019 20 1999 15 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2000 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2000 0 2000 452 

2001 1 2000 340 

2002 2 2000 158 

2003 3 2000 101 

2004 4 2000 60 
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2005 5 2000 64 

2006 6 2000 39 

2007 7 2000 37 

2008 8 2000 29 

2009 9 2000 23 

2010 10 2000 28 

2011 11 2000 20 

2012 12 2000 18 

2013 13 2000 21 

2014 14 2000 16 

2015 15 2000 14 

2016 16 2000 22 

2017 17 2000 16 

2018 18 2000 17 

2019 19 2000 7 

2020 20 2000 15 

 
5-year tables are embedded in the tables below. 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2001 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2001 0 2001 451 

2002 1 2001 327 

2003 2 2001 177 

2004 3 2001 95 

2005 4 2001 73 

2006 5 2001 48 

2007 6 2001 40 

2008 7 2001 30 

2009 8 2001 26 

2010 9 2001 24 

2011 10 2001 31 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2002 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2002 0 2002 473 

2003 1 2002 341 

2004 2 2002 149 
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2005 3 2002 74 

2006 4 2002 71 

2007 5 2002 53 

2008 6 2002 62 

2009 7 2002 39 

2010 8 2002 43 

2011 9 2002 22 

2012 10 2002 20 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2003 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2003 0 2003 474 

2004 1 2003 367 

2005 2 2003 172 

2006 3 2003 92 

2007 4 2003 99 

2008 5 2003 53 

2009 6 2003 48 

2010 7 2003 34 

2011 8 2003 27 

2012 9 2003 41 

2013 10 2003 31 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2004 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2004 0 2004 463 

2005 1 2004 323 

2006 2 2004 163 

2007 3 2004 129 

2008 4 2004 65 

2009 5 2004 60 

2010 6 2004 61 

2011 7 2004 50 

2012 8 2004 54 

2013 9 2004 30 

2014 10 2004 23 
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Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2005 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2005 0 2005 466 

2006 1 2005 337 

2007 2 2005 152 

2008 3 2005 93 

2009 4 2005 63 

2010 5 2005 48 

2011 6 2005 63 

2012 7 2005 43 

2013 8 2005 41 

2014 9 2005 40 

2015 10 2005 44 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2006 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2006 0 2006 454 

2007 1 2006 353 

2008 2 2006 189 

2009 3 2006 93 

2010 4 2006 81 

2011 5 2006 64 

2012 6 2006 51 

2013 7 2006 44 

2014 8 2006 43 

2015 9 2006 27 

2016 10 2006 47 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2007 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2007 0 2007 497 

2008 1 2007 366 

2009 2 2007 156 

2010 3 2007 96 

2011 4 2007 97 

2012 5 2007 75 
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2013 6 2007 55 

2014 7 2007 50 

2015 8 2007 48 

2016 9 2007 40 

2017 10 2007 38 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2008 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2008 0 2008 477 

2009 1 2008 377 

2010 2 2008 178 

2011 3 2008 113 

2012 4 2008 94 

2013 5 2008 84 

2014 6 2008 47 

2015 7 2008 66 

2016 8 2008 48 

2017 9 2008 40 

2018 10 2008 34 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2009 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2009 0 2009 440 

2010 1 2009 387 

2011 2 2009 179 

2012 3 2009 120 

2013 4 2009 61 

2014 5 2009 71 

2015 6 2009 71 

2016 7 2009 35 

2017 8 2009 35 

2018 9 2009 44 

2019 10 2009 34 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2010 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 
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2010 0 2010 447 

2011 1 2010 384 

2012 2 2010 161 

2013 3 2010 103 

2014 4 2010 94 

2015 5 2010 84 

2016 6 2010 49 

2017 7 2010 53 

2018 8 2010 36 

2019 9 2010 33 

2020 10 2010 35 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2011 - 5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2011 0 2011 450 

2012 1 2011 403 

2013 2 2011 170 

2014 3 2011 130 

2015 4 2011 100 

2016 5 2011 62 

 
 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2012 - 5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2012 0 2012 469 

2013 1 2012 399 

2014 2 2012 171 

2015 3 2012 128 

2016 4 2012 100 

2017 5 2012 69 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2013 - 5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2013 0 2013 428 

2014 1 2013 393 

2015 2 2013 204 
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2016 3 2013 121 

2017 4 2013 102 

2018 5 2013 66 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2014 - 5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2014 0 2014 494 

2015 1 2014 393 

2016 2 2014 195 

2017 3 2014 127 

2018 4 2014 92 

2019 5 2014 73 

 

Number of Cause-Specific Deaths of 
Kidney and Renal Cancer Patients 
Diagnosed in 2015 - 5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2015 0 2015 514 

2016 1 2015 373 

2017 2 2015 184 

2018 3 2015 131 

2019 4 2015 91 

2020 5 2015 68 

 

B. Myeloma Cancer Raw Data 
 

1. By Death Year 

Number of Cause-specific Deaths of 
Myeloma Patients in 1997 - 5 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1992 5 1997 59 

1993 4 1997 94 

1994 3 1997 124 

1995 2 1997 153 

1996 1 1997 216 

1997 0 1997 244 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 1998 - 5 Year  
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Dx. 
Year 

Lifetime Death 
Year 

N 

1993 5 1998 59 

1994 4 1998 82 

1995 3 1998 108 

1996 2 1998 170 

1997 1 1998 240 

1998 0 1998 238 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 1999 - 5 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1994 5 1999 77 

1995 4 1999 84 

1996 3 1999 123 

1997 2 1999 186 

1998 1 1999 246 

1999 0 1999 271 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2000 - 5 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1995 5 2000 74 

1996 4 2000 76 

1997 3 2000 141 

1998 2 2000 151 

1999 1 2000 214 

2000 0 2000 260 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2001 - 5 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1996 5 2001 74 

1997 4 2001 106 

1998 3 2001 150 

1999 2 2001 177 

2000 1 2001 236 
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2001 0 2001 291 

 
The remaining 5-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths of 
Myeloma Patients in 2002 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1992 10 2002 13 

1993 9 2002 14 

1994 8 2002 18 

1995 7 2002 40 

1996 6 2002 44 

1997 5 2002 62 

1998 4 2002 85 

1999 3 2002 157 

2000 2 2002 195 

2001 1 2002 253 

2002 0 2002 250 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2003 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1993 10 2003 16 

1994 9 2003 16 

1995 8 2003 20 

1996 7 2003 37 

1997 6 2003 53 

1998 5 2003 64 

1999 4 2003 91 

2000 3 2003 122 

2001 2 2003 167 

2002 1 2003 258 

2003 0 2003 270 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2004 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1994 10 2004 9 
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1995 9 2004 15 

1996 8 2004 22 

1997 7 2004 34 

1998 6 2004 59 

1999 5 2004 61 

2000 4 2004 87 

2001 3 2004 99 

2002 2 2004 160 

2003 1 2004 232 

2004 0 2004 279 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2005 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1995 10 2005 15 

1996 9 2005 22 

1997 8 2005 23 

1998 7 2005 27 

1999 6 2005 44 

2000 5 2005 85 

2001 4 2005 88 

2002 3 2005 119 

2003 2 2005 158 

2004 1 2005 217 

2005 0 2005 309 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2006 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1996 10 2006 20 

1997 9 2006 21 

1998 8 2006 20 

1999 7 2006 33 

2000 6 2006 54 

2001 5 2006 74 

2002 4 2006 77 

2003 3 2006 126 
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2004 2 2006 144 

2005 1 2006 229 

2006 0 2006 283 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2007 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1997 10 2007 12 

1998 9 2007 15 

1999 8 2007 27 

2000 7 2007 44 

2001 6 2007 37 

2002 5 2007 76 

2003 4 2007 90 

2004 3 2007 132 

2005 2 2007 147 

2006 1 2007 239 

2007 0 2007 269 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2008 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

1998 10 2008 15 

1999 9 2008 21 

2000 8 2008 27 

2001 7 2008 39 

2002 6 2008 45 

2003 5 2008 79 

2004 4 2008 97 

2005 3 2008 106 

2006 2 2008 125 

2007 1 2008 215 

2008 0 2008 266 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2009 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 
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1999 10 2009 11 

2000 9 2009 20 

2001 8 2009 26 

2002 7 2009 36 

2003 6 2009 63 

2004 5 2009 90 

2005 4 2009 79 

2006 3 2009 128 

2007 2 2009 135 

2008 1 2009 211 

2009 0 2009 238 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2010 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

2000 10 2010 8 

2001 9 2010 19 

2002 8 2010 35 

2003 7 2010 52 

2004 6 2010 64 

2005 5 2010 89 

2006 4 2010 81 

2007 3 2010 107 

2008 2 2010 175 

2009 1 2010 241 

2010 0 2010 239 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2011 - 10 Year  

Dx. 
Year 

Lifetime Death 
Year 

N 

2001 10 2011 20 

2002 9 2011 29 

2003 8 2011 38 

2004 7 2011 50 

2005 6 2011 60 

2006 5 2011 75 

2007 4 2011 110 

2008 3 2011 133 

2009 2 2011 179 

2010 1 2011 257 
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2011 0 2011 254 

 
The remaining 5-year and 10-year tables are embedded in the tables below. 

Number of Cause-specific Deaths of 
Myeloma Patients in 2012 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1992 20 2012 1 

1993 19 2012 2 

1994 18 2012 3 

1995 17 2012 2 

1996 16 2012 5 

1997 15 2012 3 

1998 14 2012 10 

1999 13 2012 3 

2000 12 2012 19 

2001 11 2012 16 

2002 10 2012 14 

2003 9 2012 30 

2004 8 2012 34 

2005 7 2012 64 

2006 6 2012 79 

2007 5 2012 86 

2008 4 2012 107 

2009 3 2012 140 

2010 2 2012 188 

2011 1 2012 253 

2012 0 2012 299 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2013 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1993 20 2013 0 

1994 19 2013 5 

1995 18 2013 4 

1996 17 2013 6 

1997 16 2013 4 

1998 15 2013 5 

1999 14 2013 7 

2000 13 2013 10 

2001 12 2013 16 

2002 11 2013 13 

2003 10 2013 25 
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2004 9 2013 25 

2005 8 2013 39 

2006 7 2013 46 

2007 6 2013 62 

2008 5 2013 93 

2009 4 2013 113 

2010 3 2013 137 

2011 2 2013 154 

2012 1 2013 237 

2013 0 2013 272 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2014 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1994 20 2014 0 

1995 19 2014 5 

1996 18 2014 3 

1997 17 2014 6 

1998 16 2014 11 

1999 15 2014 8 

2000 14 2014 5 

2001 13 2014 13 

2002 12 2014 12 

2003 11 2014 18 

2004 10 2014 23 

2005 9 2014 29 

2006 8 2014 34 

2007 7 2014 53 

2008 6 2014 67 

2009 5 2014 84 

2010 4 2014 104 

2011 3 2014 138 

2012 2 2014 172 

2013 1 2014 253 

2014 0 2014 289 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2015 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1995 20 2015 3 

1996 19 2015 2 
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1997 18 2015 3 

1998 17 2015 5 

1999 16 2015 2 

2000 15 2015 9 

2001 14 2015 9 

2002 13 2015 8 

2003 12 2015 14 

2004 11 2015 18 

2005 10 2015 29 

2006 9 2015 32 

2007 8 2015 40 

2008 7 2015 54 

2009 6 2015 77 

2010 5 2015 89 

2011 4 2015 111 

2012 3 2015 106 

2013 2 2015 180 

2014 1 2015 230 

2015 0 2015 291 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2016 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1996 20 2016 4 

1997 19 2016 2 

1998 18 2016 4 

1999 17 2016 3 

2000 16 2016 6 

2001 15 2016 15 

2002 14 2016 10 

2003 13 2016 16 

2004 12 2016 17 

2005 11 2016 28 

2006 10 2016 20 

2007 9 2016 47 

2008 8 2016 37 

2009 7 2016 48 

2010 6 2016 70 

2011 5 2016 104 

2012 4 2016 100 

2013 3 2016 111 

2014 2 2016 148 
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2015 1 2016 239 

2016 0 2016 289 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2017 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1997 20 2017 1 

1998 19 2017 7 

1999 18 2017 5 

2000 17 2017 4 

2001 16 2017 7 

2002 15 2017 8 

2003 14 2017 10 

2004 13 2017 13 

2005 12 2017 22 

2006 11 2017 20 

2007 10 2017 22 

2008 9 2017 38 

2009 8 2017 56 

2010 7 2017 60 

2011 6 2017 79 

2012 5 2017 81 

2013 4 2017 117 

2014 3 2017 131 

2015 2 2017 149 

2016 1 2017 232 

2017 0 2017 271 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2018 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1998 20 2018 2 

1999 19 2018 3 

2000 18 2018 5 

2001 17 2018 5 

2002 16 2018 7 

2003 15 2018 12 

2004 14 2018 14 

2005 13 2018 16 

2006 12 2018 14 

2007 11 2018 27 

2008 10 2018 32 
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2009 9 2018 33 

2010 8 2018 61 

2011 7 2018 55 

2012 6 2018 59 

2013 5 2018 88 

2014 4 2018 103 

2015 3 2018 118 

2016 2 2018 167 

2017 1 2018 218 

2018 0 2018 278 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2019 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1999 20 2019 3 

2000 19 2019 2 

2001 18 2019 3 

2002 17 2019 6 

2003 16 2019 11 

2004 15 2019 12 

2005 14 2019 13 

2006 13 2019 16 

2007 12 2019 15 

2008 11 2019 36 

2009 10 2019 30 

2010 9 2019 47 

2011 8 2019 46 

2012 7 2019 73 

2013 6 2019 69 

2014 5 2019 90 

2015 4 2019 101 

2016 3 2019 118 

2017 2 2019 147 

2018 1 2019 213 

2019 0 2019 285 

 

Number of Cause-specific Deaths of 
Myeloma Patients in 2020 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

2000 20 2020 1 

2001 19 2020 2 

2002 18 2020 4 
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2003 17 2020 6 

2004 16 2020 10 

2005 15 2020 9 

2006 14 2020 9 

2007 13 2020 15 

2008 12 2020 17 

2009 11 2020 24 

2010 10 2020 36 

2011 9 2020 40 

2012 8 2020 49 

2013 7 2020 77 

2014 6 2020 74 

2015 5 2020 89 

2016 4 2020 105 

2017 3 2020 129 

2018 2 2020 146 

2019 1 2020 237 

2020 0 2020 271 

 
 
 

2. By Diagnosis Year 

 
5-year and 10-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 1992 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1992 0 1992 252 

1993 1 1992 228 

1994 2 1992 161 

1995 3 1992 115 

1996 4 1992 76 

1997 5 1992 59 

1998 6 1992 33 

1999 7 1992 30 

2000 8 1992 23 

2001 9 1992 21 

2002 10 1992 13 

2003 11 1992 8 
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2004 12 1992 5 

2005 13 1992 5 

2006 14 1992 2 

2007 15 1992 2 

2008 16 1992 6 

2009 17 1992 1 

2010 18 1992 1 

2011 19 1992 1 

2012 20 1992 1 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 1993 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1993 0 1993 223 

1994 1 1993 215 

1995 2 1993 166 

1996 3 1993 130 

1997 4 1993 94 

1998 5 1993 59 

1999 6 1993 42 

2000 7 1993 42 

2001 8 1993 17 

2002 9 1993 14 

2003 10 1993 16 

2004 11 1993 8 

2005 12 1993 9 

2006 13 1993 8 

2007 14 1993 7 

2008 15 1993 3 

2009 16 1993 2 

2010 17 1993 2 

2011 18 1993 2 

2012 19 1993 2 

2013 20 1993 0 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 1994 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 
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1994 0 1994 250 

1995 1 1994 223 

1996 2 1994 174 

1997 3 1994 124 

1998 4 1994 82 

1999 5 1994 77 

2000 6 1994 46 

2001 7 1994 34 

2002 8 1994 18 

2003 9 1994 16 

2004 10 1994 9 

2005 11 1994 13 

2006 12 1994 4 

2007 13 1994 5 

2008 14 1994 6 

2009 15 1994 6 

2010 16 1994 6 

2011 17 1994 1 

2012 18 1994 3 

2013 19 1994 5 

2014 20 1994 0 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 1995 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1995 0 1995 235 

1996 1 1995 240 

1997 2 1995 153 

1998 3 1995 108 

1999 4 1995 84 

2000 5 1995 74 

2001 6 1995 38 

2002 7 1995 40 

2003 8 1995 20 

2004 9 1995 15 

2005 10 1995 15 

2006 11 1995 14 

2007 12 1995 8 

2008 13 1995 5 

2009 14 1995 5 
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2010 15 1995 10 

2011 16 1995 3 

2012 17 1995 2 

2013 18 1995 4 

2014 19 1995 5 

2015 20 1995 3 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 1996 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1996 0 1996 257 

1997 1 1996 216 

1998 2 1996 170 

1999 3 1996 123 

2000 4 1996 76 

2001 5 1996 74 

2002 6 1996 44 

2003 7 1996 37 

2004 8 1996 22 

2005 9 1996 22 

2006 10 1996 20 

2007 11 1996 16 

2008 12 1996 9 

2009 13 1996 16 

2010 14 1996 9 

2011 15 1996 2 

2012 16 1996 5 

2013 17 1996 6 

2014 18 1996 3 

2015 19 1996 2 

2016 20 1996 4 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 1997 - 20 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

1997 0 1997 244 

1998 1 1997 240 

1999 2 1997 186 

2000 3 1997 141 
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2001 4 1997 106 

2002 5 1997 62 

2003 6 1997 53 

2004 7 1997 34 

2005 8 1997 23 

2006 9 1997 21 

2007 10 1997 12 

2008 11 1997 17 

2009 12 1997 8 

2010 13 1997 8 

2011 14 1997 4 

2012 15 1997 3 

2013 16 1997 4 

2014 17 1997 6 

2015 18 1997 3 

2016 19 1997 2 

2017 20 1997 1 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 1998 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1998 0 1998 238 

1999 1 1998 246 

2000 2 1998 151 

2001 3 1998 150 

2002 4 1998 85 

2003 5 1998 64 

2004 6 1998 59 

2005 7 1998 27 

2006 8 1998 20 

2007 9 1998 15 

2008 10 1998 15 

2009 11 1998 15 

2010 12 1998 15 

2011 13 1998 4 

2012 14 1998 10 

2013 15 1998 5 

2014 16 1998 11 

2015 17 1998 5 

2016 18 1998 4 
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2017 19 1998 7 

2018 20 1998 2 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 1999 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

1999 0 1999 271 

2000 1 1999 214 

2001 2 1999 177 

2002 3 1999 157 

2003 4 1999 91 

2004 5 1999 61 

2005 6 1999 44 

2006 7 1999 33 

2007 8 1999 27 

2008 9 1999 21 

2009 10 1999 11 

2010 11 1999 10 

2011 12 1999 6 

2012 13 1999 3 

2013 14 1999 7 

2014 15 1999 8 

2015 16 1999 2 

2016 17 1999 3 

2017 18 1999 5 

2018 19 1999 3 

2019 20 1999 3 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2000 - 20 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2000 0 2000 260 

2001 1 2000 236 

2002 2 2000 195 

2003 3 2000 122 

2004 4 2000 87 

2005 5 2000 85 

2006 6 2000 54 

2007 7 2000 44 
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2008 8 2000 27 

2009 9 2000 20 

2010 10 2000 8 

2011 11 2000 19 

2012 12 2000 19 

2013 13 2000 10 

2014 14 2000 5 

2015 15 2000 9 

2016 16 2000 6 

2017 17 2000 4 

2018 18 2000 5 

2019 19 2000 2 

2020 20 2000 1 

 
5-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2001 - 10 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2001 0 2001 291 

2002 1 2001 253 

2003 2 2001 167 

2004 3 2001 99 

2005 4 2001 88 

2006 5 2001 74 

2007 6 2001 37 

2008 7 2001 39 

2009 8 2001 26 

2010 9 2001 19 

2011 10 2001 20 

 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2002 - 10 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2002 0 2002 250 

2003 1 2002 258 

2004 2 2002 160 

2005 3 2002 119 

2006 4 2002 77 

2007 5 2002 76 



129 
 

2008 6 2002 45 

2009 7 2002 36 

2010 8 2002 35 

2011 9 2002 29 

2012 10 2002 14 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2003 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2003 0 2003 270 

2004 1 2003 232 

2005 2 2003 158 

2006 3 2003 126 

2007 4 2003 90 

2008 5 2003 79 

2009 6 2003 63 

2010 7 2003 52 

2011 8 2003 38 

2012 9 2003 30 

2013 10 2003 25 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2004 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2004 0 2004 279 

2005 1 2004 217 

2006 2 2004 144 

2007 3 2004 132 

2008 4 2004 97 

2009 5 2004 90 

2010 6 2004 64 

2011 7 2004 50 

2012 8 2004 34 

2013 9 2004 25 

2014 10 2004 23 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2005 - 10 Year 
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Death Yr. Lifetime Dx. 
Year 

N 

2005 0 2005 309 

2006 1 2005 229 

2007 2 2005 147 

2008 3 2005 106 

2009 4 2005 79 

2010 5 2005 89 

2011 6 2005 60 

2012 7 2005 64 

2013 8 2005 39 

2014 9 2005 29 

2015 10 2005 29 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2006 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2006 0 2006 283 

2007 1 2006 239 

2008 2 2006 125 

2009 3 2006 128 

2010 4 2006 81 

2011 5 2006 75 

2012 6 2006 79 

2013 7 2006 46 

2014 8 2006 34 

2015 9 2006 32 

2016 10 2006 20 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2007 - 10 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2007 0 2007 269 

2008 1 2007 215 

2009 2 2007 135 

2010 3 2007 107 

2011 4 2007 110 

2012 5 2007 86 

2013 6 2007 62 
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2014 7 2007 53 

2015 8 2007 40 

2016 9 2007 47 

2017 10 2007 22 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2008 - 10 Year 

Death Yr. Lifetime Dx. 
Year 

N 

2008 0 2008 266 

2009 1 2008 211 

2010 2 2008 175 

2011 3 2008 133 

2012 4 2008 107 

2013 5 2008 93 

2014 6 2008 67 

2015 7 2008 54 

2016 8 2008 37 

2017 9 2008 38 

2018 10 2008 32 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2009 - 10 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2009 0 2009 238 

2010 1 2009 241 

2011 2 2009 179 

2012 3 2009 140 

2013 4 2009 113 

2014 5 2009 84 

2015 6 2009 77 

2016 7 2009 48 

2017 8 2009 56 

2018 9 2009 33 

2019 10 2009 30 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2010 - 10 Year 
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Death Yr. Lifetime Dx. 
Year 

N 

2010 0 2010 239 

2011 1 2010 257 

2012 2 2010 188 

2013 3 2010 137 

2014 4 2010 104 

2015 5 2010 89 

2016 6 2010 70 

2017 7 2010 60 

2018 8 2010 61 

2019 9 2010 47 

2020 10 2010 36 

 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2011 - 5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2011 0 2011 254 

2012 1 2011 253 

2013 2 2011 154 

2014 3 2011 138 

2015 4 2011 111 

2016 5 2011 104 

 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2012 - 5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2012 0 2012 299 

2013 1 2012 237 

2014 2 2012 172 

2015 3 2012 106 

2016 4 2012 100 

2017 5 2012 81 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2013 - 10 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 
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2013 0 2013 272 

2014 1 2013 253 

2015 2 2013 180 

2016 3 2013 111 

2017 4 2013 117 

2018 5 2013 88 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2014 - 5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2014 0 2014 289 

2015 1 2014 230 

2016 2 2014 148 

2017 3 2014 131 

2018 4 2014 103 

2019 5 2014 90 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Myeloma 
Patients in 2015 - 5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2015 0 2015 291 

2016 1 2015 239 

2017 2 2015 149 

2018 3 2015 118 

2019 4 2015 101 

2020 5 2015 89 

 
 
 

C. Lung and Bronchus Cancer Raw Data 
 

1. By Death Year 
 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 1997 - 5 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1992 5 1997 169 

1993 4 1997 251 

1994 3 1997 519 



134 
 

1995 2 1997 1,413 

1996 1 1997 4,722 

1997 0 1997 6,518 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 1998 - 5 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1993 5 1998 161 

1994 4 1998 293 

1995 3 1998 525 

1996 2 1998 1,366 

1997 1 1998 4,802 

1998 0 1998 6,434 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 1999 - 5 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1994 5 1999 167 

1995 4 1999 299 

1996 3 1999 598 

1997 2 1999 1,391 

1998 1 1999 4,828 

1999 0 1999 6,462 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2000 - 5 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1995 5 2000 188 

1996 4 2000 306 

1997 3 2000 561 

1998 2 2000 1,521 

1999 1 2000 4,823 

2000 0 2000 6,477 

 



135 
 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2001 - 5 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1996 5 2001 183 

1997 4 2001 310 

1998 3 2001 585 

1999 2 2001 1,463 

2000 1 2001 4,615 

2001 0 2001 6,520 

 
The remaining 5-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2002 - 10 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1992 10 2002 45 

1993 9 2002 67 

1994 8 2002 61 

1995 7 2002 78 

1996 6 2002 123 

1997 5 2002 175 

1998 4 2002 345 

1999 3 2002 584 

2000 2 2002 1,432 

2001 1 2002 4,594 

2002 0 2002 6,528 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2003 - 10 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1993 10 2003 57 

1994 9 2003 50 

1995 8 2003 74 

1996 7 2003 123 

1997 6 2003 123 
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1998 5 2003 232 

1999 4 2003 330 

2000 3 2003 594 

2001 2 2003 1,418 

2002 1 2003 4,728 

2003 0 2003 6,448 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2004 - 10 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1994 10 2004 39 

1995 9 2004 72 

1996 8 2004 78 

1997 7 2004 94 

1998 6 2004 149 

1999 5 2004 189 

2000 4 2004 330 

2001 3 2004 630 

2002 2 2004 1,402 

2003 1 2004 4,708 

2004 0 2004 6,443 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2005 - 10 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1995 10 2005 49 

1996 9 2005 65 

1997 8 2005 100 

1998 7 2005 104 

1999 6 2005 175 

2000 5 2005 212 

2001 4 2005 324 

2002 3 2005 634 

2003 2 2005 1,498 

2004 1 2005 4,546 

2005 0 2005 6,526 
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Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2006 - 10 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1996 10 2006 60 

1997 9 2006 56 

1998 8 2006 80 

1999 7 2006 108 

2000 6 2006 150 

2001 5 2006 209 

2002 4 2006 334 

2003 3 2006 670 

2004 2 2006 1,401 

2005 1 2006 4,593 

2006 0 2006 6,275 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2007 - 10 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1997 10 2007 52 

1998 9 2007 58 

1999 8 2007 80 

2000 7 2007 110 

2001 6 2007 146 

2002 5 2007 229 

2003 4 2007 387 

2004 3 2007 685 

2005 2 2007 1,462 

2006 1 2007 4,554 

2007 0 2007 6,390 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2008 - 10 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1998 10 2008 49 

1999 9 2008 74 

2000 8 2008 82 

2001 7 2008 103 

2002 6 2008 159 
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2003 5 2008 232 

2004 4 2008 374 

2005 3 2008 663 

2006 2 2008 1,484 

2007 1 2008 4,449 

2008 0 2008 6,085 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2009 - 10 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

1999 10 2009 51 

2000 9 2009 58 

2001 8 2009 93 

2002 7 2009 103 

2003 6 2009 179 

2004 5 2009 250 

2005 4 2009 399 

2006 3 2009 700 

2007 2 2009 1,516 

2008 1 2009 4,390 

2009 0 2009 6,218 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2010 - 10 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

2000 10 2010 53 

2001 9 2010 53 

2002 8 2010 99 

2003 7 2010 123 

2004 6 2010 190 

2005 5 2010 252 

2006 4 2010 408 

2007 3 2010 708 

2008 2 2010 1,560 

2009 1 2010 4,533 

2010 0 2010 6,112 
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Number of Cause-specific Deaths of 
Lung and Bronchus Cancer 
Patients in 2011- 10 Year 

Dx. 
Year 

Lifetime Death 
Year 

N 

2001 10 2011 59 

2002 9 2011 75 

2003 8 2011 111 

2004 7 2011 135 

2005 6 2011 169 

2006 5 2011 254 

2007 4 2011 414 

2008 3 2011 755 

2009 2 2011 1,608 

2010 1 2011 4,245 

2011 0 2011 5,859 

 
The remaining 5-year and 10-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer Patients in 
2012 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1992 20 2012 8 

1993 19 2012 13 

1994 18 2012 9 

1995 17 2012 16 

1996 16 2012 8 

1997 15 2012 28 

1998 14 2012 27 

1999 13 2012 44 

2000 12 2012 43 

2001 11 2012 52 

2002 10 2012 56 

2003 9 2012 73 

2004 8 2012 97 

2005 7 2012 116 

2006 6 2012 147 

2007 5 2012 264 

2008 4 2012 434 
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2009 3 2012 778 

2010 2 2012 1,483 

2011 1 2012 4,215 

2012 0 2012 5,909 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer Patients in 
2013 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1993 20 2013 9 

1994 19 2013 17 

1995 18 2013 18 

1996 17 2013 17 

1997 16 2013 20 

1998 15 2013 28 

1999 14 2013 29 

2000 13 2013 34 

2001 12 2013 44 

2002 11 2013 51 

2003 10 2013 52 

2004 9 2013 71 

2005 8 2013 110 

2006 7 2013 115 

2007 6 2013 195 

2008 5 2013 263 

2009 4 2013 415 

2010 3 2013 726 

2011 2 2013 1,493 

2012 1 2013 4,310 

2013 0 2013 5,875 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer Patients in 
2014 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1994 20 2014 4 

1995 19 2014 17 

1996 18 2014 14 

1997 17 2014 10 

1998 16 2014 13 

1999 15 2014 14 

2000 14 2014 31 
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2001 13 2014 36 

2002 12 2014 35 

2003 11 2014 51 

2004 10 2014 72 

2005 9 2014 83 

2006 8 2014 114 

2007 7 2014 139 

2008 6 2014 191 

2009 5 2014 263 

2010 4 2014 414 

2011 3 2014 756 

2012 2 2014 1,548 

2013 1 2014 4,087 

2014 0 2014 5,726 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer Patients in 
2015 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1995 20 2015 9 

1996 19 2015 11 

1997 18 2015 14 

1998 17 2015 22 

1999 16 2015 22 

2000 15 2015 35 

2001 14 2015 33 

2002 13 2015 21 

2003 12 2015 39 

2004 11 2015 57 

2005 10 2015 61 

2006 9 2015 97 

2007 8 2015 108 

2008 7 2015 169 

2009 6 2015 190 

2010 5 2015 313 

2011 4 2015 435 

2012 3 2015 735 

2013 2 2015 1,543 

2014 1 2015 4,191 

2015 0 2015 5,822 
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Number of Cause-specific Deaths of 
Lung and Bronchus Cancer Patients in 
2016 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1996 20 2016 11 

1997 19 2016 11 

1998 18 2016 11 

1999 17 2016 26 

2000 16 2016 21 

2001 15 2016 28 

2002 14 2016 25 

2003 13 2016 43 

2004 12 2016 40 

2005 11 2016 51 

2006 10 2016 49 

2007 9 2016 86 

2008 8 2016 111 

2009 7 2016 152 

2010 6 2016 175 

2011 5 2016 261 

2012 4 2016 430 

2013 3 2016 712 

2014 2 2016 1,487 

2015 1 2016 3,948 

2016 0 2016 5,602 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer Patients in 
2017 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1997 20 2017 10 

1998 19 2017 8 

1999 18 2017 17 

2000 17 2017 20 

2001 16 2017 15 

2002 15 2017 20 

2003 14 2017 26 

2004 13 2017 49 

2005 12 2017 44 

2006 11 2017 63 

2007 10 2017 79 

2008 9 2017 87 
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2009 8 2017 133 

2010 7 2017 147 

2011 6 2017 201 

2012 5 2017 276 

2013 4 2017 414 

2014 3 2017 720 

2015 2 2017 1,429 

2016 1 2017 3,842 

2017 0 2017 5,321 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer Patients in 
2018 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1998 20 2018 9 

1999 19 2018 19 

2000 18 2018 14 

2001 17 2018 14 

2002 16 2018 19 

2003 15 2018 27 

2004 14 2018 32 

2005 13 2018 41 

2006 12 2018 39 

2007 11 2018 55 

2008 10 2018 79 

2009 9 2018 102 

2010 8 2018 101 

2011 7 2018 145 

2012 6 2018 194 

2013 5 2018 292 

2014 4 2018 450 

2015 3 2018 784 

2016 2 2018 1,411 

2017 1 2018 3,673 

2018 0 2018 5,117 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer Patients in 
2019 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

1999 20 2019 9 

2000 19 2019 11 
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2001 18 2019 15 

2002 17 2019 22 

2003 16 2019 16 

2004 15 2019 18 

2005 14 2019 42 

2006 13 2019 38 

2007 12 2019 41 

2008 11 2019 55 

2009 10 2019 67 

2010 9 2019 101 

2011 8 2019 121 

2012 7 2019 150 

2013 6 2019 200 

2014 5 2019 297 

2015 4 2019 472 

2016 3 2019 751 

2017 2 2019 1,451 

2018 1 2019 3,470 

2019 0 2019 4,908 

 

Number of Cause-specific Deaths of 
Lung and Bronchus Cancer Patients in 
2020 - 20 Year 

Dx. 
Year 

Lifetime Death Year N 

2000 20 2020 9 

2001 19 2020 18 

2002 18 2020 16 

2003 17 2020 18 

2004 16 2020 16 

2005 15 2020 17 

2006 14 2020 38 

2007 13 2020 44 

2008 12 2020 43 

2009 11 2020 67 

2010 10 2020 79 

2011 9 2020 100 

2012 8 2020 115 

2013 7 2020 160 

2014 6 2020 217 

2015 5 2020 314 

2016 4 2020 468 

2017 3 2020 778 
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2018 2 2020 1,329 

2019 1 2020 3,325 

2020 0 2020 4,567 

 

2. By Diagnosis Year 
 
5-year and 10-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 1992 - 20 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

1992 0 1992 6,219 

1993 1 1992 4,930 

1994 2 1992 1,474 

1995 3 1992 529 

1996 4 1992 288 

1997 5 1992 169 

1998 6 1992 128 

1999 7 1992 95 

2000 8 1992 80 

2001 9 1992 52 

2002 10 1992 45 

2003 11 1992 56 

2004 12 1992 33 

2005 13 1992 30 

2006 14 1992 18 

2007 15 1992 21 

2008 16 1992 12 

2009 17 1992 16 

2010 18 1992 24 

2011 19 1992 10 

2012 20 1992 8 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 1993 - 20 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

1993 0 1993 6,194 

1994 1 1993 4,877 

1995 2 1993 1,390 
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1996 3 1993 544 

1997 4 1993 251 

1998 5 1993 161 

1999 6 1993 131 

2000 7 1993 81 

2001 8 1993 73 

2002 9 1993 67 

2003 10 1993 57 

2004 11 1993 50 

2005 12 1993 32 

2006 13 1993 27 

2007 14 1993 24 

2008 15 1993 23 

2009 16 1993 22 

2010 17 1993 9 

2011 18 1993 13 

2012 19 1993 13 

2013 20 1993 9 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 1994 - 20 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

1994 0 1994 6,201 

1995 1 1994 4,769 

1996 2 1994 1,331 

1997 3 1994 519 

1998 4 1994 293 

1999 5 1994 167 

2000 6 1994 134 

2001 7 1994 93 

2002 8 1994 61 

2003 9 1994 50 

2004 10 1994 39 

2005 11 1994 43 

2006 12 1994 44 

2007 13 1994 34 

2008 14 1994 25 

2009 15 1994 18 

2010 16 1994 21 

2011 17 1994 16 

2012 18 1994 9 
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2013 19 1994 17 

2014 20 1994 4 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 1995 - 20 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

1995 0 1995 6,498 

1996 1 1995 4,713 

1997 2 1995 1,413 

1998 3 1995 525 

1999 4 1995 299 

2000 5 1995 188 

2001 6 1995 129 

2002 7 1995 78 

2003 8 1995 74 

2004 9 1995 72 

2005 10 1995 49 

2006 11 1995 34 

2007 12 1995 45 

2008 13 1995 48 

2009 14 1995 29 

2010 15 1995 18 

2011 16 1995 19 

2012 17 1995 16 

2013 18 1995 18 

2014 19 1995 17 

2015 20 1995 9 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 1996 - 20 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

1996 0 1996 6,496 

1997 1 1996 4,722 

1998 2 1996 1,366 

1999 3 1996 598 

2000 4 1996 306 

2001 5 1996 183 

2002 6 1996 123 

2003 7 1996 123 
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2004 8 1996 78 

2005 9 1996 65 

2006 10 1996 60 

2007 11 1996 56 

2008 12 1996 32 

2009 13 1996 26 

2010 14 1996 28 

2011 15 1996 33 

2012 16 1996 8 

2013 17 1996 17 

2014 18 1996 14 

2015 19 1996 11 

2016 20 1996 11 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 1997 - 
20 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

1997 0 1997 6,518 

1998 1 1997 4,802 

1999 2 1997 1,391 

2000 3 1997 561 

2001 4 1997 310 

2002 5 1997 175 

2003 6 1997 123 

2004 7 1997 94 

2005 8 1997 100 

2006 9 1997 56 

2007 10 1997 52 

2008 11 1997 48 

2009 12 1997 26 

2010 13 1997 35 

2011 14 1997 31 

2012 15 1997 28 

2013 16 1997 20 

2014 17 1997 10 

2015 18 1997 14 

2016 19 1997 11 

2017 20 1997 10 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
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Bronchus Cancer Patients in 1998 - 20 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

1998 0 1998 6,434 

1999 1 1998 4,828 

2000 2 1998 1,521 

2001 3 1998 585 

2002 4 1998 345 

2003 5 1998 232 

2004 6 1998 149 

2005 7 1998 104 

2006 8 1998 80 

2007 9 1998 58 

2008 10 1998 49 

2009 11 1998 40 

2010 12 1998 38 

2011 13 1998 31 

2012 14 1998 27 

2013 15 1998 28 

2014 16 1998 13 

2015 17 1998 22 

2016 18 1998 11 

2017 19 1998 8 

2018 20 1998 9 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 1999 - 20 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

1999 0 1999 6,462 

2000 1 1999 4,823 

2001 2 1999 1,463 

2002 3 1999 584 

2003 4 1999 330 

2004 5 1999 189 

2005 6 1999 175 

2006 7 1999 108 

2007 8 1999 80 

2008 9 1999 74 

2009 10 1999 51 

2010 11 1999 55 
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2011 12 1999 41 

2012 13 1999 44 

2013 14 1999 29 

2014 15 1999 14 

2015 16 1999 22 

2016 17 1999 26 

2017 18 1999 17 

2018 19 1999 19 

2019 20 1999 9 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2000 - 20 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2000 0 2000 6,477 

2001 1 2000 4,615 

2002 2 2000 1,432 

2003 3 2000 594 

2004 4 2000 330 

2005 5 2000 212 

2006 6 2000 150 

2007 7 2000 110 

2008 8 2000 82 

2009 9 2000 58 

2010 10 2000 53 

2011 11 2000 37 

2012 12 2000 43 

2013 13 2000 34 

2014 14 2000 31 

2015 15 2000 35 

2016 16 2000 21 

2017 17 2000 20 

2018 18 2000 14 

2019 19 2000 11 

2020 20 2000 9 

 
5-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2001 - 10 
Year 
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Death 
Yr. 

Lifetime Dx. 
Year 

N 

2001 0 2001 6,520 

2002 1 2001 4,594 

2003 2 2001 1,418 

2004 3 2001 630 

2005 4 2001 324 

2006 5 2001 209 

2007 6 2001 146 

2008 7 2001 103 

2009 8 2001 93 

2010 9 2001 53 

2011 10 2001 59 

 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2002 - 10 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2002 0 2002 6,528 

2003 1 2002 4,728 

2004 2 2002 1,402 

2005 3 2002 634 

2006 4 2002 334 

2007 5 2002 229 

2008 6 2002 159 

2009 7 2002 103 

2010 8 2002 99 

2011 9 2002 75 

2012 10 2002 56 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2003 - 10 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2003 0 2003 6,448 

2004 1 2003 4,708 

2005 2 2003 1,498 

2006 3 2003 670 

2007 4 2003 387 

2008 5 2003 232 
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2009 6 2003 179 

2010 7 2003 123 

2011 8 2003 111 

2012 9 2003 73 

2013 10 2003 52 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2004 - 10 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2004 0 2004 6,443 

2005 1 2004 4,546 

2006 2 2004 1,401 

2007 3 2004 685 

2008 4 2004 374 

2009 5 2004 250 

2010 6 2004 190 

2011 7 2004 135 

2012 8 2004 97 

2013 9 2004 71 

2014 10 2004 72 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2005 - 10 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2005 0 2005 6,526 

2006 1 2005 4,593 

2007 2 2005 1,462 

2008 3 2005 663 

2009 4 2005 399 

2010 5 2005 252 

2011 6 2005 169 

2012 7 2005 116 

2013 8 2005 110 

2014 9 2005 83 

2015 10 2005 61 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
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Bronchus Cancer Patients in 2006 - 10 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2006 0 2006 6,275 

2007 1 2006 4,554 

2008 2 2006 1,484 

2009 3 2006 700 

2010 4 2006 408 

2011 5 2006 254 

2012 6 2006 147 

2013 7 2006 115 

2014 8 2006 114 

2015 9 2006 97 

2016 10 2006 49 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2007 - 10 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2007 0 2007 6,390 

2008 1 2007 4,449 

2009 2 2007 1,516 

2010 3 2007 708 

2011 4 2007 414 

2012 5 2007 264 

2013 6 2007 195 

2014 7 2007 139 

2015 8 2007 108 

2016 9 2007 86 

2017 10 2007 79 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2008 - 10 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2008 0 2008 6,085 

2009 1 2008 4,390 

2010 2 2008 1,560 

2011 3 2008 755 

2012 4 2008 434 
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2013 5 2008 263 

2014 6 2008 191 

2015 7 2008 169 

2016 8 2008 111 

2017 9 2008 87 

2018 10 2008 79 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2009 - 10 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2009 0 2009 6,218 

2010 1 2009 4,533 

2011 2 2009 1,608 

2012 3 2009 778 

2013 4 2009 415 

2014 5 2009 263 

2015 6 2009 190 

2016 7 2009 152 

2017 8 2009 133 

2018 9 2009 102 

2019 10 2009 67 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2010 - 10 
Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2010 0 2010 6,112 

2011 1 2010 4,245 

2012 2 2010 1,483 

2013 3 2010 726 

2014 4 2010 414 

2015 5 2010 313 

2016 6 2010 175 

2017 7 2010 147 

2018 8 2010 101 

2019 9 2010 101 

2020 10 2010 79 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
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Bronchus Cancer Patients in 2011 - 
5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2011 0 2011 5,859 

2012 1 2011 4,215 

2013 2 2011 1,493 

2014 3 2011 756 

2015 4 2011 435 

2016 5 2011 261 

 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2012 - 
5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2012 0 2012 5,909 

2013 1 2012 4,310 

2014 2 2012 1,548 

2015 3 2012 735 

2016 4 2012 430 

2017 5 2012 276 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2013 - 
5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2013 0 2013 5,875 

2014 1 2013 4,087 

2015 2 2013 1,543 

2016 3 2013 712 

2017 4 2013 414 

2018 5 2013 292 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2014 - 
5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2014 0 2014 5,726 

2015 1 2014 4,191 
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2016 2 2014 1,487 

2017 3 2014 720 

2018 4 2014 450 

2019 5 2014 297 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Lung and 
Bronchus Cancer Patients in 2015 - 
5 Year 

Death 
Yr. 

Lifetime Dx. 
Year 

N 

2015 0 2015 5,822 

2016 1 2015 3,948 

2017 2 2015 1,429 

2018 3 2015 784 

2019 4 2015 472 

2020 5 2015 314 

 

E. Prostate Cancer Raw Data 
 

1. By Death Year 
 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 1997 
- 5 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1992 5 1997 380 

1992 4 1997 348 

1992 3 1997 367 

1992 2 1997 403 

1992 1 1997 396 

1992 0 1997 291 

 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 1998 
- 5 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1993 5 1998 323 

1994 4 1998 281 

1995 3 1998 306 

1996 2 1998 390 

1997 1 1998 356 

1998 0 1998 307 
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Number of Cause-specific Deaths 
of Prostate Cancer Patients in 1999 
- 5 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1994 5 1999 290 

1995 4 1999 282 

1996 3 1999 303 

1997 2 1999 358 

1998 1 1999 387 

1999 0 1999 302 

 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2000 
- 5 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1995 5 2000 219 

1996 4 2000 257 

1997 3 2000 288 

1998 2 2000 309 

1999 1 2000 371 

2000 0 2000 308 

 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2001 
- 5 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1996 5 2001 236 

1997 4 2001 240 

1998 3 2001 254 

1999 2 2001 320 

2000 1 2001 358 

2001 0 2001 312 

 
The remaining 5-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2002 
- 10 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1992 10 2002 277 

1993 9 2002 263 
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1994 8 2002 199 

1995 7 2002 219 

1996 6 2002 221 

1997 5 2002 266 

1998 4 2002 260 

1999 3 2002 291 

2000 2 2002 351 

2001 1 2002 323 

2002 0 2002 325 

 
 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2003 
- 10 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1993 10 2003 224 

1994 9 2003 199 

1995 8 2003 196 

1996 7 2003 187 

1997 6 2003 237 

1998 5 2003 230 

1999 4 2003 267 

2000 3 2003 305 

2001 2 2003 295 

2002 1 2003 364 

2003 0 2003 282 

 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2004 
- 10 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1994 10 2004 195 

1995 9 2004 163 

1996 8 2004 200 

1997 7 2004 194 

1998 6 2004 199 

1999 5 2004 228 

2000 4 2004 228 

2001 3 2004 263 

2002 2 2004 278 

2003 1 2004 345 

2004 0 2004 267 
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Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2005 
- 10 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1995 10 2005 187 

1996 9 2005 165 

1998 8 2005 167 

1999 7 2005 215 

2000 6 2005 213 

2001 5 2005 245 

2002 4 2005 238 

2003 3 2005 283 

2004 2 2005 316 

2005 1 2005 365 

2006 0 2005 347 

 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2006 
- 10 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1996 10 2006 166 

1997 9 2006 173 

1998 8 2006 197 

1999 7 2006 223 

2000 6 2006 202 

2001 5 2006 193 

2002 4 2006 200 

2003 3 2006 231 

2004 2 2006 279 

2005 1 2006 337 

2006 0 2006 342 

 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2007 
- 10 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1997 10 2007 152 

1998 9 2007 185 

1999 8 2007 185 

2000 7 2007 202 
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2001 6 2007 193 

2002 5 2007 200 

2003 4 2007 234 

2004 3 2007 244 

2005 2 2007 323 

2006 1 2007 353 

2007 0 2007 341 

 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2008 
- 10 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1998 10 2008 162 

1999 9 2008 177 

2000 8 2008 175 

2001 7 2008 202 

2002 6 2008 174 

2003 5 2008 217 

2004 4 2008 216 

2005 3 2008 251 

2006 2 2008 326 

2007 1 2008 321 

2008 0 2008 287 

 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2009 
- 10 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1999 10 2009 164 

2000 9 2009 164 

2001 8 2009 167 

2002 7 2009 168 

2003 6 2009 182 

2004 5 2009 174 

2005 4 2009 216 

2006 3 2009 256 

2007 2 2009 270 

2008 1 2009 325 

2009 0 2009 321 
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Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2010 
- 10 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

2000 10 2010 173 

2001 9 2010 177 

2002 8 2010 164 

2003 7 2010 182 

2004 6 2010 202 

2005 5 2010 190 

2006 4 2010 216 

2007 3 2010 235 

2008 2 2010 317 

2009 1 2010 392 

2010 0 2010 290 

 

Number of Cause-specific Deaths 
of Prostate Cancer Patients in 2011 
- 10 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

2001 10 2011 157 

2002 9 2011 139 

2003 8 2011 159 

2004 7 2011 171 

2005 6 2011 170 

2006 5 2011 181 

2007 4 2011 226 

2008 3 2011 255 

2009 2 2011 277 

2010 1 2011 359 

2011 0 2011 301 

 
The remaining 5-year and 10-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths of 
Prostate Cancer Patients in 2012 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1992 20 2012 92 

1993 19 2012 82 

1994 18 2012 91 
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1995 17 2012 96 

1996 16 2012 91 

1997 15 2012 109 

1998 14 2012 112 

1999 13 2012 120 

2000 12 2012 134 

2001 11 2012 122 

2002 10 2012 153 

2003 9 2012 147 

2004 8 2012 139 

2005 7 2012 156 

2006 6 2012 171 

2007 5 2012 204 

2008 4 2012 192 

2009 3 2012 258 

2010 2 2012 271 

2011 1 2012 370 

2012 0 2012 304 

 

Number of Cause-specific Deaths of 
Prostate Cancer Patients in 2013 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1993 20 2013 80 

1994 19 2013 62 

1995 18 2013 78 

1996 17 2013 89 

1997 16 2013 85 

1998 15 2013 103 

1999 14 2013 134 

2000 13 2013 128 

2001 12 2013 119 

2002 11 2013 151 

2003 10 2013 147 

2004 9 2013 159 

2005 8 2013 154 

2006 7 2013 149 

2007 6 2013 175 

2008 5 2013 193 

2009 4 2013 206 

2010 3 2013 238 

2011 2 2013 292 

2012 1 2013 355 
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2013 0 2013 332 

 

Number of Cause-specific Deaths of 
Prostate Cancer Patients in 2014 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1994 20 2014 67 

1995 19 2014 90 

1996 18 2014 80 

1997 17 2014 100 

1998 16 2014 109 

1999 15 2014 115 

2000 14 2014 120 

2001 13 2014 127 

2002 12 2014 125 

2003 11 2014 132 

2004 10 2014 133 

2005 9 2014 137 

2006 8 2014 157 

2007 7 2014 155 

2008 6 2014 168 

2009 5 2014 172 

2010 4 2014 214 

2011 3 2014 239 

2012 2 2014 268 

2013 1 2014 400 

2014 0 2014 387 

 

Number of Cause-specific Deaths of 
Prostate Cancer Patients in 2015 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1995 20 2015 78 

1996 19 2015 75 

1997 18 2015 93 

1998 17 2015 92 

1999 16 2015 128 

2000 15 2015 128 

2001 14 2015 144 

2002 13 2015 140 

2003 12 2015 130 

2004 11 2015 138 
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2005 10 2015 130 

2006 9 2015 154 

2007 8 2015 180 

2008 7 2015 150 

2009 6 2015 192 

2010 5 2015 172 

2011 4 2015 192 

2012 3 2015 212 

2013 2 2015 308 

2014 1 2015 369 

2015 0 2015 379 

 

Number of Cause-specific Deaths of 
Prostate Cancer Patients in 2016 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1996 20 2016 78 

1997 19 2016 85 

1998 18 2016 87 

1999 17 2016 109 

2000 16 2016 104 

2001 15 2016 111 

2002 14 2016 152 

2003 13 2016 137 

2004 12 2016 123 

2005 11 2016 142 

2006 10 2016 157 

2007 9 2016 187 

2008 8 2016 136 

2009 7 2016 156 

2010 6 2016 169 

2011 5 2016 195 

2012 4 2016 194 

2013 3 2016 301 

2014 2 2016 347 

2015 1 2016 446 

2016 0 2016 360 

 

Number of Cause-specific Deaths of 
Prostate Cancer Patients in 2017 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 
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1997 20 2017 90 

1998 19 2017 85 

1999 18 2017 97 

2000 17 2017 119 

2001 16 2017 124 

2002 15 2017 107 

2003 14 2017 113 

2004 13 2017 134 

2005 12 2017 127 

2006 11 2017 163 

2007 10 2017 136 

2008 9 2017 136 

2009 8 2017 164 

2010 7 2017 183 

2011 6 2017 181 

2012 5 2017 180 

2013 4 2017 201 

2014 3 2017 244 

2015 2 2017 336 

2016 1 2017 437 

2017 0 2017 394 

 

Number of Cause-specific Deaths of 
Prostate Cancer Patients in 2018 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1998 20 2018 86 

1999 19 2018 112 

2000 18 2018 99 

2001 17 2018 109 

2002 16 2018 122 

2003 15 2018 115 

2004 14 2018 131 

2005 13 2018 105 

2006 12 2018 145 

2007 11 2018 155 

2008 10 2018 159 

2009 9 2018 175 

2010 8 2018 163 

2011 7 2018 174 

2012 6 2018 169 

2013 5 2018 179 
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2014 4 2018 228 

2015 3 2018 338 

2016 2 2018 400 

2017 1 2018 460 

2018 0 2018 419 

 

Number of Cause-specific Deaths of 
Prostate Cancer Patients in 2019 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1999 20 2019 69 

2000 19 2019 85 

2001 18 2019 91 

2002 17 2019 99 

2003 16 2019 112 

2004 15 2019 113 

2005 14 2019 111 

2006 13 2019 134 

2007 12 2019 144 

2008 11 2019 135 

2009 10 2019 151 

2010 9 2019 131 

2011 8 2019 135 

2012 7 2019 163 

2013 6 2019 178 

2014 5 2019 177 

2015 4 2019 233 

2016 3 2019 317 

2017 2 2019 396 

2018 1 2019 472 

2019 0 2019 440 

 

Number of Cause-specific Deaths of 
Prostate Cancer Patients in 2020 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

2000 20 2020 64 

2001 19 2020 80 

2002 18 2020 91 

2003 17 2020 86 

2004 16 2020 89 

2005 15 2020 106 
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2006 14 2020 105 

2007 13 2020 139 

2008 12 2020 132 

2009 11 2020 132 

2010 10 2020 153 

2011 9 2020 145 

2012 8 2020 126 

2013 7 2020 154 

2014 6 2020 157 

2015 5 2020 203 

2016 4 2020 254 

2017 3 2020 295 

2018 2 2020 395 

2019 1 2020 477 

2020 0 2020 464 

 

2. By Diagnosis Year 
 
5-year and 10-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 1992 - 20 Year 

Death Yr Lifetime Dx Year N 

1992 0 1992 332 

1993 1 1992 538 

1994 2 1992 592 

1995 3 1992 447 

1996 4 1992 443 

1997 5 1992 380 

1998 6 1992 338 

1999 7 1992 303 

2000 8 1992 310 

2001 9 1992 255 

2002 10 1992 277 

2003 11 1992 216 

2004 12 1992 171 

2005 13 1992 154 

2006 14 1992 165 

2007 15 1992 157 

2008 16 1992 129 

2009 17 1992 121 

2010 18 1992 123 
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2011 19 1992 107 

2012 20 1992 92 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 1993 - 20 Year 

Death Yr Lifetime Dx Year N 

1993 0 1993 340 

1994 1 1993 493 

1995 2 1993 493 

1996 3 1993 432 

1997 4 1993 348 

1998 5 1993 323 

1999 6 1993 314 

2000 7 1993 273 

2001 8 1993 265 

2002 9 1993 263 

2003 10 1993 224 

2004 11 1993 199 

2005 12 1993 189 

2006 13 1993 159 

2007 14 1993 166 

2008 15 1993 144 

2009 16 1993 141 

2010 17 1993 115 

2011 18 1993 87 

2012 19 1993 82 

2013 20 1993 80 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 1994 - 20 Year 

Death Yr Lifetime Dx Year N 

1994 0 1994 321 

1995 1 1994 431 

1996 2 1994 392 

1997 3 1994 367 

1998 4 1994 281 

1999 5 1994 290 

2000 6 1994 236 

2001 7 1994 240 

2002 8 1994 199 

2003 9 1994 199 
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2004 10 1994 195 

2005 11 1994 193 

2006 12 1994 156 

2007 13 1994 153 

2008 14 1994 125 

2009 15 1994 118 

2010 16 1994 111 

2011 17 1994 102 

2012 18 1994 91 

2013 19 1994 62 

2014 20 1994 67 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 1995 - 20 Year 

Death Yr Lifetime Dx Year N 

1995 0 1995 297 

1996 1 1995 442 

1997 2 1995 403 

1998 3 1995 306 

1999 4 1995 282 

2000 5 1995 219 

2001 6 1995 224 

2002 7 1995 219 

2003 8 1995 196 

2004 9 1995 163 

2005 10 1995 187 

2006 11 1995 148 

2007 12 1995 159 

2008 13 1995 148 

2009 14 1995 126 

2010 15 1995 124 

2011 16 1995 102 

2012 17 1995 96 

2013 18 1995 78 

2014 19 1995 90 

2015 20 1995 78 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 1996 - 20 Year 

Death Yr Lifetime Dx Year N 
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1996 0 1996 299 

1997 1 1996 396 

1998 2 1996 390 

1999 3 1996 303 

2000 4 1996 257 

2001 5 1996 236 

2002 6 1996 221 

2003 7 1996 187 

2004 8 1996 200 

2005 9 1996 165 

2006 10 1996 166 

2007 11 1996 144 

2008 12 1996 147 

2009 13 1996 136 

2010 14 1996 120 

2011 15 1996 128 

2012 16 1996 91 

2013 17 1996 89 

2014 18 1996 80 

2015 19 1996 75 

2016 20 1996 78 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 1997 - 20 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

1997 0 1997 291 

1998 1 1997 356 

1999 2 1997 358 

2000 3 1997 288 

2001 4 1997 240 

2002 5 1997 266 

2003 6 1997 237 

2004 7 1997 194 

2005 8 1997 167 

2006 9 1997 173 

2007 10 1997 152 

2008 11 1997 138 

2009 12 1997 158 

2010 13 1997 153 

2011 14 1997 128 

2012 15 1997 109 
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2013 16 1997 85 

2014 17 1997 100 

2015 18 1997 93 

2016 19 1997 85 

2017 20 1997 90 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 1998 - 20 Year 

Death Yr Lifetime Dx Year N 

1998 0 1998 307 

1999 1 1998 387 

2000 2 1998 309 

2001 3 1998 254 

2002 4 1998 260 

2003 5 1998 230 

2004 6 1998 199 

2005 7 1998 215 

2006 8 1998 197 

2007 9 1998 185 

2008 10 1998 162 

2009 11 1998 149 

2010 12 1998 151 

2011 13 1998 130 

2012 14 1998 112 

2013 15 1998 103 

2014 16 1998 109 

2015 17 1998 92 

2016 18 1998 87 

2017 19 1998 85 

2018 20 1998 86 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 1999 - 20 Year 

Death Yr Lifetime Dx Year N 

1999 0 1999 302 

2000 1 1999 371 

2001 2 1999 320 

2002 3 1999 291 

2003 4 1999 267 

2004 5 1999 228 

2005 6 1999 213 
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2006 7 1999 223 

2007 8 1999 185 

2008 9 1999 177 

2009 10 1999 164 

2010 11 1999 143 

2011 12 1999 132 

2012 13 1999 120 

2013 14 1999 134 

2014 15 1999 115 

2015 16 1999 128 

2016 17 1999 109 

2017 18 1999 97 

2018 19 1999 112 

2019 20 1999 69 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2000 - 20 Year 

Death Yr Lifetime Dx Year N 

2000 0 2000 308 

2001 1 2000 358 

2002 2 2000 351 

2003 3 2000 305 

2004 4 2000 228 

2005 5 2000 245 

2006 6 2000 202 

2007 7 2000 202 

2008 8 2000 175 

2009 9 2000 164 

2010 10 2000 173 

2011 11 2000 155 

2012 12 2000 134 

2013 13 2000 128 

2014 14 2000 120 

2015 15 2000 128 

2016 16 2000 104 

2017 17 2000 119 

2018 18 2000 99 

2019 19 2000 85 

2020 20 2000 64 

 
5-year tables are embedded in the tables below. 
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Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2001 - 10 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2001 0 2001 312 

2002 1 2001 323 

2003 2 2001 295 

2004 3 2001 263 

2005 4 2001 238 

2006 5 2001 193 

2007 6 2001 193 

2008 7 2001 202 

2009 8 2001 167 

2010 9 2001 177 

2011 10 2001 157 

 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2002 - 10 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2002 0 2002 325 

2003 1 2002 364 

2004 2 2002 278 

2005 3 2002 283 

2006 4 2002 200 

2007 5 2002 200 

2008 6 2002 174 

2009 7 2002 168 

2010 8 2002 164 

2011 9 2002 139 

2012 10 2002 153 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2003 - 10 Year 

Death Yr Lifetime Dx Year N 

2003 0 2003 282 

2004 1 2003 345 

2005 2 2003 316 

2006 3 2003 231 

2007 4 2003 234 
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2008 5 2003 217 

2009 6 2003 182 

2010 7 2003 182 

2011 8 2003 159 

2012 9 2003 147 

2013 10 2003 147 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2004 - 10 Year 

Death Yr Lifetime Dx Year N 

2004 0 2004 267 

2005 1 2004 365 

2006 2 2004 279 

2007 3 2004 244 

2008 4 2004 216 

2009 5 2004 174 

2010 6 2004 202 

2011 7 2004 171 

2012 8 2004 139 

2013 9 2004 159 

2014 10 2004 133 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2005 - 10 Year 

Death Yr Lifetime Dx Year N 

2005 0 2005 347 

2006 1 2005 337 

2007 2 2005 323 

2008 3 2005 251 

2009 4 2005 216 

2010 5 2005 190 

2011 6 2005 170 

2012 7 2005 156 

2013 8 2005 154 

2014 9 2005 137 

2015 10 2005 130 

 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2006 - 10 Year 

Death Yr Lifetime Dx Year N 
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2006 0 2006 342 

2007 1 2006 353 

2008 2 2006 326 

2009 3 2006 256 

2010 4 2006 216 

2011 5 2006 181 

2012 6 2006 171 

2013 7 2006 149 

2014 8 2006 157 

2015 9 2006 154 

2016 10 2006 157 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2007 - 10 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2007 0 2007 341 

2008 1 2007 321 

2009 2 2007 270 

2010 3 2007 235 

2011 4 2007 226 

2012 5 2007 204 

2013 6 2007 175 

2014 7 2007 155 

2015 8 2007 180 

2016 9 2007 187 

2017 10 2007 136 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2008 - 10 Year 

Death Yr Lifetime Dx Year N 

2008 0 2008 287 

2009 1 2008 325 

2010 2 2008 317 

2011 3 2008 255 

2012 4 2008 192 

2013 5 2008 193 

2014 6 2008 168 

2015 7 2008 150 

2016 8 2008 136 

2017 9 2008 136 

2018 10 2008 159 
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Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2009 - 10 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2009 0 2009 321 

2010 1 2009 392 

2011 2 2009 277 

2012 3 2009 258 

2013 4 2009 206 

2014 5 2009 172 

2015 6 2009 192 

2016 7 2009 156 

2017 8 2009 164 

2018 9 2009 175 

2019 10 2009 151 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2010 - 10 Year 

Death Yr Lifetime Dx Year N 

2010 0 2010 290 

2011 1 2010 359 

2012 2 2010 271 

2013 3 2010 238 

2014 4 2010 214 

2015 5 2010 172 

2016 6 2010 169 

2017 7 2010 183 

2018 8 2010 163 

2019 9 2010 131 

2020 10 2010 153 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2011 - 5 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2011 0 2011 301 

2012 1 2011 370 

2013 2 2011 292 

2014 3 2011 239 

2015 4 2011 192 

2016 5 2011 195 
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Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2012 - 5 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2012 0 2012 304 

2013 1 2012 355 

2014 2 2012 268 

2015 3 2012 212 

2016 4 2012 194 

2017 5 2012 180 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2013 - 5 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2013 0 2013 332 

2014 1 2013 400 

2015 2 2013 308 

2016 3 2013 301 

2017 4 2013 201 

2018 5 2013 179 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2014 - 5 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2014 0 2014 387 

2015 1 2014 369 

2016 2 2014 347 

2017 3 2014 244 

2018 4 2014 228 

2019 5 2014 177 

 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Prostate 
Cancer Patients in 2015 - 5 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2015 0 2015 379 

2016 1 2015 446 
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2017 2 2015 336 

2018 3 2015 338 

2019 4 2015 233 

2020 5 2015 203 

 

D. Breast Cancer Raw Data 
 

1. By Death Year 
 

  

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 1998 - 
5 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1993 5 1998 388 

1994 4 1998 478 

1995 3 1998 575 

1996 2 1998 673 

1997 1 1998 680 

1998 0 1998 462 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 1999 - 
5 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1994 5 1999 359 

1995 4 1999 436 

1996 3 1999 542 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 1997 - 
5 Year  

Dx 
Year 

Lifetime Death 
Year 

N 

1992 5 1997 365 

1993 4 1997 443 

1994 3 1997 553 

1995 2 1997 624 

1996 1 1997 673 

1997 0 1997 453 
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1997 2 1999 623 

1998 1 1999 609 

1999 0 1999 442 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2000 - 
5 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1995 5 2000 345 

1996 4 2000 452 

1997 3 2000 531 

1998 2 2000 630 

1999 1 2000 593 

2000 0 2000 426 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2001 - 
5 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1996 5 2001 357 

1997 4 2001 447 

1998 3 2001 602 

1999 2 2001 600 

2000 1 2001 622 

2001 0 2001 483 

 
The remaining 5-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2002 - 
10 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1992 10 2002 158 

1993 9 2002 185 

1994 8 2002 225 

1995 7 2002 264 

1996 6 2002 287 

1997 5 2002 340 

1998 4 2002 438 

1999 3 2002 545 

2000 2 2002 589 
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2001 1 2002 599 

2002 0 2002 424 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2003 - 
10 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1993 10 2003 162 

1994 9 2003 202 

1995 8 2003 219 

1996 7 2003 266 

1997 6 2003 320 

1998 5 2003 358 

1999 4 2003 462 

2000 3 2003 503 

2001 2 2003 606 

2002 1 2003 584 

2003 0 2003 452 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2004 - 
10 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1994 10 2004 225 

1995 9 2004 213 

1996 8 2004 246 

1997 7 2004 255 

1998 6 2004 341 

1999 5 2004 408 

2000 4 2004 420 

2001 3 2004 524 

2002 2 2004 618 

2003 1 2004 591 

2004 0 2004 434 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2005 - 
10 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1995 10 2005 174 

1996 9 2005 207 
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1997 8 2005 239 

1998 7 2005 258 

1999 6 2005 335 

2000 5 2005 374 

2001 4 2005 427 

2002 3 2005 532 

2003 2 2005 577 

2004 1 2005 614 

2005 0 2005 450 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2006 - 
10 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1996 10 2006 178 

1997 9 2006 199 

1998 8 2006 257 

1999 7 2006 276 

2000 6 2006 324 

2001 5 2006 404 

2002 4 2006 426 

2003 3 2006 501 

2004 2 2006 613 

2005 1 2006 560 

2006 0 2006 405 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2007 - 
10 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1997 10 2007 183 

1998 9 2007 191 

1999 8 2007 234 

2000 7 2007 287 

2001 6 2007 291 

2002 5 2007 373 

2003 4 2007 398 

2004 3 2007 503 

2005 2 2007 564 

2006 1 2007 569 

2007 0 2007 462 
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Number of Cause-specific Deaths 
of Breast Cancer Patients in 2008 - 
10 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1998 10 2008 188 

1999 9 2008 203 

2000 8 2008 248 

2001 7 2008 294 

2002 6 2008 322 

2003 5 2008 354 

2004 4 2008 427 

2005 3 2008 485 

2006 2 2008 571 

2007 1 2008 580 

2008 0 2008 422 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2009 - 
10 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

1999 10 2009 208 

2000 9 2009 222 

2001 8 2009 263 

2002 7 2009 272 

2003 6 2009 303 

2004 5 2009 350 

2005 4 2009 408 

2006 3 2009 527 

2007 2 2009 566 

2008 1 2009 562 

2009 0 2009 443 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2010 - 
10 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

2000 10 2010 192 

2001 9 2010 190 

2002 8 2010 220 

2003 7 2010 230 
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2004 6 2010 296 

2005 5 2010 373 

2006 4 2010 414 

2007 3 2010 529 

2008 2 2010 623 

2009 1 2010 602 

2010 0 2010 453 

 

Number of Cause-specific Deaths 
of Breast Cancer Patients in 2011 - 
10 Year 

Dx 
Year 

Lifetime Death 
Year 

N 

2001 10 2011 156 

2002 9 2011 198 

2003 8 2011 234 

2004 7 2011 252 

2005 6 2011 294 

2006 5 2011 319 

2007 4 2011 423 

2008 3 2011 504 

2009 2 2011 605 

2010 1 2011 592 

2011 0 2011 453 

 
The remaining 5-year and 10-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths of 
Breast Cancer Patients in 2012 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1992 20 2012 72 

1993 19 2012 72 

1994 18 2012 72 

1995 17 2012 110 

1996 16 2012 101 

1997 15 2012 126 

1998 14 2012 127 

1999 13 2012 134 

2000 12 2012 131 

2001 11 2012 171 

2002 10 2012 173 
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2003 9 2012 182 

2004 8 2012 199 

2005 7 2012 276 

2006 6 2012 293 

2007 5 2012 355 

2008 4 2012 442 

2009 3 2012 534 

2010 2 2012 601 

2011 1 2012 564 

2012 0 2012 443 

 

Number of Cause-specific Deaths of 
Breast Cancer Patients in 2013 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1993 20 2013 69 

1994 19 2013 70 

1995 18 2013 72 

1996 17 2013 75 

1997 16 2013 95 

1998 15 2013 107 

1999 14 2013 115 

2000 13 2013 96 

2001 12 2013 140 

2002 11 2013 151 

2003 10 2013 178 

2004 9 2013 191 

2005 8 2013 184 

2006 7 2013 250 

2007 6 2013 303 

2008 5 2013 366 

2009 4 2013 430 

2010 3 2013 534 

2011 2 2013 610 

2012 1 2013 617 

2013 0 2013 477 

 

Number of Cause-specific Deaths of 
Breast Cancer Patients in 2014 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1994 20 2014 54 
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1995 19 2014 66 

1996 18 2014 94 

1997 17 2014 88 

1998 16 2014 96 

1999 15 2014 103 

2000 14 2014 103 

2001 13 2014 138 

2002 12 2014 156 

2003 11 2014 138 

2004 10 2014 141 

2005 9 2014 187 

2006 8 2014 216 

2007 7 2014 237 

2008 6 2014 299 

2009 5 2014 315 

2010 4 2014 411 

2011 3 2014 522 

2012 2 2014 631 

2013 1 2014 652 

2014 0 2014 528 

 

Number of Cause-specific Deaths of 
Breast Cancer Patients in 2015 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1995 20 2015 69 

1996 19 2015 82 

1997 18 2015 86 

1998 17 2015 96 

1999 16 2015 86 

2000 15 2015 92 

2001 14 2015 91 

2002 13 2015 120 

2003 12 2015 134 

2004 11 2015 159 

2005 10 2015 137 

2006 9 2015 200 

2007 8 2015 219 

2008 7 2015 281 

2009 6 2015 303 

2010 5 2015 352 

2011 4 2015 453 
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2012 3 2015 533 

2013 2 2015 576 

2014 1 2015 650 

2015 0 2015 506 

 

Number of Cause-specific Deaths of 
Breast Cancer Patients in 2016 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1996 20 2016 74 

1997 19 2016 89 

1998 18 2016 81 

1999 17 2016 89 

2000 16 2016 97 

2001 15 2016 119 

2002 14 2016 133 

2003 13 2016 127 

2004 12 2016 141 

2005 11 2016 167 

2006 10 2016 161 

2007 9 2016 195 

2008 8 2016 222 

2009 7 2016 251 

2010 6 2016 289 

2011 5 2016 398 

2012 4 2016 417 

2013 3 2016 535 

2014 2 2016 584 

2015 1 2016 627 

2016 0 2016 492 

 

Number of Cause-specific Deaths of 
Breast Cancer Patients in 2017 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1997 20 2017 71 

1998 19 2017 77 

1999 18 2017 84 

2000 17 2017 90 

2001 16 2017 98 

2002 15 2017 103 

2003 14 2017 100 
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2004 13 2017 117 

2005 12 2017 133 

2006 11 2017 142 

2007 10 2017 181 

2008 9 2017 196 

2009 8 2017 247 

2010 7 2017 269 

2011 6 2017 311 

2012 5 2017 385 

2013 4 2017 407 

2014 3 2017 516 

2015 2 2017 621 

2016 1 2017 676 

2017 0 2017 472 

 

Number of Cause-specific Deaths of 
Breast Cancer Patients in 2018 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1998 20 2018 77 

1999 19 2018 76 

2000 18 2018 88 

2001 17 2018 97 

2002 16 2018 76 

2003 15 2018 103 

2004 14 2018 114 

2005 13 2018 125 

2006 12 2018 123 

2007 11 2018 151 

2008 10 2018 166 

2009 9 2018 192 

2010 8 2018 218 

2011 7 2018 281 

2012 6 2018 285 

2013 5 2018 362 

2014 4 2018 445 

2015 3 2018 505 

2016 2 2018 588 

2017 1 2018 641 

2018 0 2018 519 
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Number of Cause-specific Deaths of 
Breast Cancer Patients in 2019 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

1999 20 2019 84 

2000 19 2019 53 

2001 18 2019 85 

2002 17 2019 71 

2003 16 2019 94 

2004 15 2019 118 

2005 14 2019 98 

2006 13 2019 121 

2007 12 2019 133 

2008 11 2019 183 

2009 10 2019 197 

2010 9 2019 204 

2011 8 2019 226 

2012 7 2019 229 

2013 6 2019 264 

2014 5 2019 358 

2015 4 2019 450 

2016 3 2019 482 

2017 2 2019 605 

2018 1 2019 630 

2019 0 2019 515 

 

Number of Cause-specific Deaths of 
Breast Cancer Patients in 2020 - 20 
Year 

Dx 
Year 

Lifetime Death Year N 

2000 20 2020 62 

2001 19 2020 92 

2002 18 2020 83 

2003 17 2020 76 

2004 16 2020 91 

2005 15 2020 97 

2006 14 2020 113 

2007 13 2020 117 

2008 12 2020 118 

2009 11 2020 160 

2010 10 2020 160 

2011 9 2020 180 
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2012 8 2020 254 

2013 7 2020 267 

2014 6 2020 276 

2015 5 2020 372 

2016 4 2020 418 

2017 3 2020 518 

2018 2 2020 576 

2019 1 2020 679 

2020 0 2020 519 

 

2. By Diagnosis Year 
 
5-year and 10-year tables are embedded in the tables below. 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 1992 - 20 Year 

Death Yr Lifetime Dx Year N 

1992 0 1992 408 

1993 1 1992 617 

1994 2 1992 638 

1995 3 1992 591 

1996 4 1992 446 

1997 5 1992 365 

1998 6 1992 307 

1999 7 1992 244 

2000 8 1992 205 

2001 9 1992 174 

2002 10 1992 158 

2003 11 1992 158 

2004 12 1992 120 

2005 13 1992 135 

2006 14 1992 116 

2007 15 1992 98 

2008 16 1992 99 

2009 17 1992 79 

2010 18 1992 79 

2011 19 1992 72 

2012 20 1992 72 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 1993 - 20 Year 

Death Yr Lifetime Dx Year N 
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1993 0 1993 418 

1994 1 1993 579 

1995 2 1993 661 

1996 3 1993 567 

1997 4 1993 443 

1998 5 1993 388 

1999 6 1993 309 

2000 7 1993 236 

2001 8 1993 241 

2002 9 1993 185 

2003 10 1993 162 

2004 11 1993 156 

2005 12 1993 120 

2006 13 1993 128 

2007 14 1993 120 

2008 15 1993 101 

2009 16 1993 98 

2010 17 1993 70 

2011 18 1993 67 

2012 19 1993 72 

2013 20 1993 69 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 1994 - 20 Year 

Death Yr Lifetime Dx Year N 

1994 0 1994 364 

1995 1 1994 646 

1996 2 1994 702 

1997 3 1994 553 

1998 4 1994 478 

1999 5 1994 359 

2000 6 1994 287 

2001 7 1994 223 

2002 8 1994 225 

2003 9 1994 202 

2004 10 1994 225 

2005 11 1994 157 

2006 12 1994 169 

2007 13 1994 120 

2008 14 1994 110 

2009 15 1994 96 

2010 16 1994 87 
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2011 17 1994 91 

2012 18 1994 72 

2013 19 1994 70 

2014 20 1994 54 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 1995 - 20 Year 

Death Yr Lifetime Dx Year N 

1995 0 1995 404 

1996 1 1995 667 

1997 2 1995 624 

1998 3 1995 575 

1999 4 1995 436 

2000 5 1995 345 

2001 6 1995 304 

2002 7 1995 264 

2003 8 1995 219 

2004 9 1995 213 

2005 10 1995 174 

2006 11 1995 174 

2007 12 1995 144 

2008 13 1995 105 

2009 14 1995 125 

2010 15 1995 104 

2011 16 1995 99 

2012 17 1995 110 

2013 18 1995 72 

2014 19 1995 66 

2015 20 1995 69 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 1996 - 20 Year 

Death Yr Lifetime Dx Year N 

1996 0 1996 412 

1997 1 1996 673 

1998 2 1996 673 

1999 3 1996 542 

2000 4 1996 452 

2001 5 1996 357 

2002 6 1996 287 
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2003 7 1996 266 

2004 8 1996 246 

2005 9 1996 207 

2006 10 1996 178 

2007 11 1996 152 

2008 12 1996 154 

2009 13 1996 135 

2010 14 1996 129 

2011 15 1996 103 

2012 16 1996 101 

2013 17 1996 75 

2014 18 1996 94 

2015 19 1996 82 

2016 20 1996 74 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast 
Cancer Patients in 1997 - 20 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

1997 0 1997 453 

1998 1 1997 680 

1999 2 1997 623 

2000 3 1997 531 

2001 4 1997 447 

2002 5 1997 340 

2003 6 1997 320 

2004 7 1997 255 

2005 8 1997 239 

2006 9 1997 199 

2007 10 1997 183 

2008 11 1997 161 

2009 12 1997 167 

2010 13 1997 153 

2011 14 1997 140 

2012 15 1997 126 

2013 16 1997 95 

2014 17 1997 88 

2015 18 1997 86 

2016 19 1997 89 

2017 20 1997 71 

 



193 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 1998 - 20 Year 

Death Yr Lifetime Dx Year N 

1998 0 1998 462 

1999 1 1998 609 

2000 2 1998 630 

2001 3 1998 602 

2002 4 1998 438 

2003 5 1998 358 

2004 6 1998 341 

2005 7 1998 258 

2006 8 1998 257 

2007 9 1998 191 

2008 10 1998 188 

2009 11 1998 160 

2010 12 1998 165 

2011 13 1998 123 

2012 14 1998 127 

2013 15 1998 107 

2014 16 1998 96 

2015 17 1998 96 

2016 18 1998 81 

2017 19 1998 77 

2018 20 1998 77 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 1999 - 20 Year 

Death Yr Lifetime Dx Year N 

1999 0 1999 442 

2000 1 1999 593 

2001 2 1999 600 

2002 3 1999 545 

2003 4 1999 462 

2004 5 1999 408 

2005 6 1999 335 

2006 7 1999 276 

2007 8 1999 234 

2008 9 1999 203 

2009 10 1999 208 

2010 11 1999 157 

2011 12 1999 146 
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2012 13 1999 134 

2013 14 1999 115 

2014 15 1999 103 

2015 16 1999 86 

2016 17 1999 89 

2017 18 1999 84 

2018 19 1999 76 

2019 20 1999 84 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 2000 - 20 Year 

Death Yr Lifetime Dx Year N 

2000 0 2000 426 

2001 1 2000 622 

2002 2 2000 589 

2003 3 2000 503 

2004 4 2000 420 

2005 5 2000 374 

2006 6 2000 324 

2007 7 2000 287 

2008 8 2000 248 

2009 9 2000 222 

2010 10 2000 192 

2011 11 2000 140 

2012 12 2000 131 

2013 13 2000 96 

2014 14 2000 103 

2015 15 2000 92 

2016 16 2000 97 

2017 17 2000 90 

2018 18 2000 88 

2019 19 2000 53 

2020 20 2000 62 

 
5-year tables are embedded in the tables below. 
 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast 
Cancer Patients in 2001 - 10 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2001 0 2001 483 
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2002 1 2001 599 

2003 2 2001 606 

2004 3 2001 524 

2005 4 2001 427 

2006 5 2001 404 

2007 6 2001 291 

2008 7 2001 294 

2009 8 2001 263 

2010 9 2001 190 

2011 10 2001 156 

 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast 
Cancer Patients in 2002 - 10 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2002 0 2002 424 

2003 1 2002 584 

2004 2 2002 618 

2005 3 2002 532 

2006 4 2002 426 

2007 5 2002 373 

2008 6 2002 322 

2009 7 2002 272 

2010 8 2002 220 

2011 9 2002 198 

2012 10 2002 173 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 2003 - 10 Year 

Death Yr Lifetime Dx Year N 

2003 0 2003 452 

2004 1 2003 591 

2005 2 2003 577 

2006 3 2003 501 

2007 4 2003 398 

2008 5 2003 354 

2009 6 2003 303 

2010 7 2003 230 

2011 8 2003 234 

2012 9 2003 182 
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2013 10 2003 178 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 2004 - 10 Year 

Death Yr Lifetime Dx Year N 

2004 0 2004 434 

2005 1 2004 614 

2006 2 2004 613 

2007 3 2004 503 

2008 4 2004 427 

2009 5 2004 350 

2010 6 2004 296 

2011 7 2004 252 

2012 8 2004 199 

2013 9 2004 191 

2014 10 2004 141 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 2005 - 10 Year 

Death Yr Lifetime Dx Year N 

2005 0 2005 450 

2006 1 2005 560 

2007 2 2005 564 

2008 3 2005 485 

2009 4 2005 408 

2010 5 2005 373 

2011 6 2005 294 

2012 7 2005 276 

2013 8 2005 184 

2014 9 2005 187 

2015 10 2005 137 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 2006 - 10 Year 

Death Yr Lifetime Dx Year N 

2006 0 2006 405 

2007 1 2006 569 

2008 2 2006 571 

2009 3 2006 527 

2010 4 2006 414 

2011 5 2006 319 
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2012 6 2006 293 

2013 7 2006 250 

2014 8 2006 216 

2015 9 2006 200 

2016 10 2006 161 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast 
Cancer Patients in 2007 - 10 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2007 0 2007 462 

2008 1 2007 580 

2009 2 2007 566 

2010 3 2007 529 

2011 4 2007 423 

2012 5 2007 355 

2013 6 2007 303 

2014 7 2007 237 

2015 8 2007 219 

2016 9 2007 195 

2017 10 2007 181 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 2008 - 10 Year 

Death Yr Lifetime Dx Year N 

2008 0 2008 422 

2009 1 2008 562 

2010 2 2008 623 

2011 3 2008 504 

2012 4 2008 442 

2013 5 2008 366 

2014 6 2008 299 

2015 7 2008 281 

2016 8 2008 222 

2017 9 2008 196 

2018 10 2008 166 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast 
Cancer Patients in 2009 - 10 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2009 0 2009 443 
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2010 1 2009 602 

2011 2 2009 605 

2012 3 2009 534 

2013 4 2009 430 

2014 5 2009 315 

2015 6 2009 303 

2016 7 2009 251 

2017 8 2009 247 

2018 9 2009 192 

2019 10 2009 197 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast Cancer 
Patients in 2010 - 10 Year 

Death Yr Lifetime Dx Year N 

2010 0 2020 453 

2011 1 2020 592 

2012 2 2020 601 

2013 3 2020 534 

2014 4 2020 411 

2015 5 2020 352 

2016 6 2020 289 

2017 7 2020 269 

2018 8 2020 218 

2019 9 2020 204 

2020 10 2020 160 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast 
Cancer Patients in 2011 - 5 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2011 0 2011 453 

2012 1 2011 564 

2013 2 2011 610 

2014 3 2011 522 

2015 4 2011 453 

2016 5 2011 398 

 
 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast 
Cancer Patients in 2012 - 5 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 
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2012 0 2012 443 

2013 1 2012 617 

2014 2 2012 631 

2015 3 2012 533 

2016 4 2012 417 

2017 5 2012 385 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast 
Cancer Patients in 2013 - 5 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2013 0 2013 477 

2014 1 2013 652 

2015 2 2013 576 

2016 3 2013 535 

2017 4 2013 407 

2018 5 2013 362 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast 
Cancer Patients in 2014 - 5 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2014 0 2014 528 

2015 1 2014 650 

2016 2 2014 584 

2017 3 2014 516 

2018 4 2014 445 

2019 5 2014 358 

 

Number of Cause-specific Deaths 
Based on Diagnoses of Breast 
Cancer Patients in 2015 - 5 Year 

Death 
Yr 

Lifetime Dx 
Year 

N 

2015 0 2015 506 

2016 1 2015 627 

2017 2 2015 621 

2018 3 2015 505 

2019 4 2015 450 

2020 5 2015 372 
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F. Sample Code 
 

Note, all sample code was developed by and obtained from Daniel Berleant, PhD. 
 

Exponential 
 
<!DOCTYPE html> 
<html> 
<head> 
<title>Exponential</title> 
</head> 
<body> 
 
<h1>Data from SEER Nov 2022 Sub (1992-2020) Database - 20 Year Cause-Specific Survival 
Time of Kidney & Renal Cancer Patients That Died in Years 2012-2020</h1> 
<h2>Exponential Model</h2> 
<h3>T0=<span id="T0">[Error 98: The value of T0 should appear here.]</span></h3> 
<h3>lifeAtT0            = <span id="lifeAtT0">Error 99: not yet initialized</span></h3> <!-If set 
manually, the number will be shown here-> 
<h3><i>Model update of 7/16/2024</i></h3> 
 
 
<button onclick='if (typeof lifeAtT0!=="number") 
                    alert(`lifeAtT0 is not a number. Set it to one to use this button. Hint: also set T0.`); 
     else{ 
                    document.getElementById("log").innerHTML="";  
                    searchDforMinSSR();}'> 
 Click to find the line with the value of <b>doubling time</b> yielding the best fit (lowest 
SSR) for a given lifeAtT0 
</button> 
<br><br> 
<button onclick='if (lifeAtT0!=="Determined algorithmically") 
                    alert(`lifeAtT0 is a number. Set it to the string "Determined algorithmically" 
instead.`); 
     else{ 
                    document.getElementById("log").innerHTML="";  
                    searchDforMinSSR();}'> 
 Click to find the line with the <b>doubling time</b> and <b>lifeAtT0</b> yielding the best 
fit (lowest SSR) 
</button> 
<br><br> 
 
<button onclick="document.getElementById('log').innerHTML='';  
                 searchCforMinSSRmultipass(parseInt(prompt('Type value for d:'), 10), 
                               cStart);"> 
 Click to find the exponential curve with a given doubling time d and the c yielding the 
best fit for that d 
</button> 
<br><br> 
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<button onclick="document.getElementById('log').innerHTML='';  
                 log('SSR = ' + fillInSSR(parseInt  (prompt('Type value for d:'), 10), 
                                          parseFloat(prompt('Type value for c:'), 10) 
                          ).SSR 
        );"> 
 Click to input the doubling time d and start value c, and find the SSR 
</button> 
 
<p id="log"></p> 
<script> 
let lifeAtT0 = "Determined algorithmically"; //Set it manually by changing this line to a number 
document.getElementById("lifeAtT0").innerHTML = lifeAtT0; 
const cIncrementFactor           = 2;     //Must be > 1. When searching for the c with minimum 
SSR, multiply c by this constant each iteration 
const cIncrementFactorRefinement = 5;     //Must be > 1. Make cIncrementFactor this many 
times closer to 1. 
const cIncrementFactorThreshold  = 1.001; //If cIncrementFactor decreases below the 
threshold, it is small enough to produce accurate enough results 
const cStart                     = 0.001; //0.001 undercuts the c with min SSR even for slope=1, but 
higher values will speed things up 
const T0 = 1990; 
document.getElementById("T0").innerHTML=T0; 
 
logLifetimeData      = {        name : "LogLifetimeData", 
                            populate : // Initialize dataTable's column of lifetime data log values 
("LogLifetimeData") 
   function(){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.lifetimeData.length; dataTableIndex++){ 
         
dataTable.logLifetimeData[dataTableIndex]=Math.log2(dataTable.lifetimeData[dataTableIndex]); 
      }      
   } 
}     
predictedLifetimes   = {        name : "PredictedLifetimes", 
                        doublingTime : 11,     //initial guess 
                                  T0 : T0,     //taken from the global constant 
         lifetimeAtT0 : 0.5,    //initial guess 
          populate : // Calculate dataTable's column of 
lifetime predictions from fail dates (predictedLifetimes) 
   function (){ 
      //alert("### "+predictedLifetimes.lifetimeAtT0); 
   for (dataTableIndex=0; dataTableIndex<dataTable.endYear.length; dataTableIndex++){ 
         dataTable.predictedLifetimes[dataTableIndex] 
            =lifetimeFromFaildateAnyT0(dataTable.endYear[dataTableIndex], 
                                    predictedLifetimes.doublingTime, 
                              predictedLifetimes.lifetimeAtT0, 
                                       predictedLifetimes.T0); 
      } 
   } 
} 



202 
 

logPredictedLifetimes= {        name : "LogPredictedLifetime", 
                            populate : // Calculate dataTable's column of logs of lifetime predictions 
("LogPredictedLifetimes") 
   function (){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.predictedLifetimes.length; 
dataTableIndex++){ 
         dataTable.logPredictedLifetimes[dataTableIndex] 
            =Math.log2(dataTable.predictedLifetimes[dataTableIndex]); 
      } 
   } 
} 
 
fittingErrors        = {        name: "FittingErrors", 
                           populate : // Calculate dataTable's column of fitting errors between lifetime data 
and lifetime model ("fittingErrors") 
   function calcFittingErrors(){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.logPredictedLifetimes.length; 
dataTableIndex++){ 
      dataTable.fittingErrors[dataTableIndex]   
         = dataTable.logPredictedLifetimes[dataTableIndex] < 
dataTable.logLifetimeData[dataTableIndex] 
             ? 
             (dataTable.logLifetimeData[dataTableIndex] - 
dataTable.logPredictedLifetimes[dataTableIndex])  
          : 
          (dataTable.logPredictedLifetimes[dataTableIndex] - 
dataTable.logLifetimeData[dataTableIndex])  
      } 
   } 
} 
squaredFittingErrors = {        name : "SquaredFittingErrors", 
                                 SSR : "uninitialized", 
          populate : // Calculate dataTable's column of 
squared fitting errors (squaredFittingErrors) 
   function (){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.fittingErrors.length; dataTableIndex++){ 
         dataTable.squaredFittingErrors[dataTableIndex] 
            =dataTable.fittingErrors[dataTableIndex]**2; 
      } 
   },                        calcSSR : // Calculate SSR 
   function (){ 
      squaredFittingErrors.SSR=0; 
      for (dataTableIndex=0; dataTableIndex<dataTable.squaredFittingErrors.length; 
dataTableIndex++){ 
    squaredFittingErrors.SSR += dataTable.squaredFittingErrors[dataTableIndex]; 
      } 
   } 
} 
predictedStartDates = {         name : "PredictedStartDates", 
                            populate : // Calculate dataTable's column of start dates 
("predictedStartDates") 
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   function (){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.predictedLifetimes.length; 
dataTableIndex++){ 
         dataTable.predictedStartDates[dataTableIndex] 
            = dataTable.endYear[dataTableIndex] - dataTable.predictedLifetimes[dataTableIndex]; 
      } 
   } 
} 
 
let dataTable = { 
   key                  : [2012 , 2013 , 2014 , 2015 , 2016 , 2017 , 2018 , 2019 , 2020], 
   endYear              : [2012 , 2013 , 2014 , 2015 , 2016 , 2017 , 2018 , 2019 , 2020], 
   lifetimeData         : [3.379 ,3.289 ,3.256 ,3.363 ,3.579 ,3.571 ,3.760 ,3.861 ,3.636], 
   logLifetimeData      : [], //to be initialized once 
   predictedLifetimes   : [], //to be calculated by the regression process 
   logPredictedLifetimes: [], //to be calculated by the regression process 
   fittingErrors        : [], //to be calculated by the regression process 
   squaredFittingErrors : [], //to be calculated by the regression process 
   predictedStartDates  : []  //to be calculated by the regression process 
} 
logLifetimeData.populate(); //Calculate once as part of initialization. 
 
function updateDataTableFromModelParams(){ 
   predictedLifetimes   .populate(); 
   logPredictedLifetimes.populate(); 
   fittingErrors        .populate(); 
   squaredFittingErrors .populate(); squaredFittingErrors.calcSSR(); 
   predictedStartDates  .populate(); 
} 
updateDataTableFromModelParams(); 
       
function fillInSSR(d, c){ 
   predictedLifetimes.doublingTime = d; 
   predictedLifetimes.lifetimeAtT0 = c; 
   updateDataTableFromModelParams(); 
   return({d : d, c : c, SSR : squaredFittingErrors.SSR}); 
} 
 
function searchCforSSRdip1pass(d, c, cIncrement){ 
   let dataPointLc, dataPointMc, dataPointHc, dataPointTemp;  
   dataPointLc = fillInSSR(d, c); 
   dataPointMc = fillInSSR(d, c*=cIncrement); 
   while(true){ 
  dataPointHc = fillInSSR(d, c*=cIncrement); 
     if (dataPointLc.SSR < dataPointMc.SSR) {log("<hr><b>Warning</b>, dataPointLc.SSR < 
dataPointMc.SSR in searchCforSSRdip1pass: d="+d+", 
cIncrement="+cIncrement+",<br>dataPointLc .c="+dataPointLc.c+", dataPointLc 
.SSR="+dataPointLc.SSR+"<br>dataPointMc.c="+dataPointMc.c+", 
dataPointMc.SSR="+dataPointMc.SSR);break;} 
        else if (dataPointMc.SSR < dataPointHc.SSR) {break;} //The min SSR occurs somewhere 
between L(ow) and H(igh) values of calcFittingErrors 
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        else {dataPointTemp = dataPointLc; 
           dataPointLc   = dataPointMc; 
              dataPointMc   = dataPointHc; 
        dataPointHc   = null; 
       } 
    } 
 fillInSSR(dataPointMc.d, dataPointMc.c); //Make dataTable reflect dip, not H after the dip 
 return({dataPointLc : dataPointLc, dataPointMc : dataPointMc, dataPointHc : 
dataPointHc}); 
} 
 
function searchCforMinSSRmultipass(d, loBoundC){ 
   let cIncrement = cIncrementFactor; 
             //if cIncrement is 2, and 
cIncrementFactorRefinement is 5, then the updated cIncrement is 1.2 
   for (cIncrement ; cIncrement>cIncrementFactorThreshold ; cIncrement=1+(cIncrement-
1)/cIncrementFactorRefinement){ 
     loBoundC = searchCforSSRdip1pass(d, loBoundC, cIncrement).dataPointLc.c;  
   } 
   let u = searchCforSSRdip1pass(d, loBoundC, cIncrement); //u is set to the three data points of 
the u-shaped dip 
   log("<hr>Here is the region of c giving lowest SSR for d="+d+":"); 
   log("For c="+u.dataPointLc.c+", SSR="+u.dataPointLc.SSR); 
   log("For c="+u.dataPointMc.c+", SSR="+u.dataPointMc.SSR+" <b>(best)</b>"); 
   log("For c="+u.dataPointHc.c+", SSR="+u.dataPointHc.SSR); 
   return(u.dataPointMc); 
} 
 
function getLifeAtT0byDispatch(d){ 
   if (lifeAtT0 === "Determined algorithmically") 
      return searchCforMinSSRmultipass(d, cStart); 
   else if (typeof lifeAtT0 === "number") 
   return fillInSSR(d, lifeAtT0); 
   else alert("Error 101: lifeAtT0 === " + lifeAtT0 + ": bad value"); 
} 
function searchDforMinSSR(){ 
   let dataPointLd = getLifeAtT0byDispatch(1); 
   let dataPointMd = getLifeAtT0byDispatch(2); 
   let dataPointHd = getLifeAtT0byDispatch(3); 
   let nextD; 
   if (dataPointLd.SSR < dataPointMd.SSR) { //Presumably, d=1 is not better than d=2, but check 
anyway 
      log("Probably an error, as d<2 seems unlikely."); 
   }; 
   for (nextD = dataPointHd.d+1 ; dataPointMd.SSR > dataPointHd.SSR ; nextD++){   
   dataPointLd = dataPointMd; 
   dataPointMd = dataPointHd; 
   dataPointHd = getLifeAtT0byDispatch(nextD);  //Could use a number above cStart for 
efficiency, since d<>1 here, I think 
   } 
   fillInSSR(dataPointMd.d, dataPointMd.c); //Make dataTable reflect the dip, not H after the dip 
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   log("<hr><hr><b>Summary: here is the region of best d (that is, the d with lowest SSR):</b>"); 
   log("For doubling time d just below the best value, d="+dataPointLd.d+",    c with lowest SSR 
is "+dataPointLd.c+" with SSR="+dataPointLd.SSR); 
   log('<span style="background-color: yellow;");><b>For doubling time d that is best, d=' + 
dataPointMd.d + ", c with lowest SSR is " + dataPointMd.c + " and SSR=" + dataPointMd.SSR + 
" (best d and c with lowest SSR!)</span>");    
   log(  '<span style="background-color: yellow;"><b>' 
       + "Equation of best fit curve is:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>" 
    + " x = " + T0 + " + y + " + dataPointMd.d + "*log2(y/" + dataPointMd.c + ")"  
    + "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; where x is the 
INdependent variable despite the form of the equation." 
    + "</span>"); 
   for (let i=0; i<dataTable.endYear.length; i++){ 
     log(  '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span style="background-color: 
yellow;"><b>' 
         + "For end year " + dataTable.endYear[i] + ", ave. lifetime = " + dataTable.lifetimeData[i] 
         + ", regressed model prediction = " + dataTable.predictedLifetimes[i] 
      + "</span>"); }; 
   log("&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Next line checks previous line: 
predictions should be equal."); 
   {let firstFutureYear = dataTable.endYear[dataTable.endYear.length-1]; 
    for (let i=firstFutureYear ; i<=firstFutureYear+50 ; i++){ 
         log(  '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span style="background-color: 
yellow;"><b>' 
              + "For end year " + i + ", ave. lifetime = (data not present), regressed model prediction 
= " 
              + lifetimeFromFaildateAnyT0(i, dataPointMd.d, dataPointMd.c, T0) 
              + "</span>"); 
    } 
   } 
   log("For doubling time d just above the best value, d="+dataPointHd.d+",    c with lowest SSR 
is "+dataPointHd.c+" with SSR="+dataPointHd.SSR); 
   // return(dataPointMd.d); //Not used, so why return it. 
} 
 
function log(messageLine){ 
   document.getElementById("log").innerHTML+=messageLine+"<br>"; 
} 
 
 
// *** Use bisection method *** 
function lifetimeFromFaildateAnyT0(failDate, doublingTime, lifetimeAtT0, yearOfT0) { 
  //alert("faildate="+failDate+"  doublingTime="+doublingTime+"  lifetimeAtT0="+lifetimeAtT0+"  
yearOfT0="+yearOfT0); 
  const minLife=.0005, maxLife=1000000, envelope=0.00001; 
  var loBound=minLife, hiBound=maxLife, guessedLife=(hiBound+loBound)/2; 
 
  if (doublingTime===0) return "Error, doubling time cannot be zero."; 
  if (doublingTime<0) return "Error, negative doubling times can lead to two answers, and this 
function doesn't do that."; 
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  if ((typeof failDate!=="number")||(typeof doublingTime!=="number")||(typeof 
lifetimeAtT0!=="number")) return "error, nonnumeric arg(s)"; 
 
  while ((hiBound-loBound)>envelope){ 
      ((yearOfT0+guessedLife+doublingTime*Math.log2(guessedLife/lifetimeAtT0)) //This is the 
eq. for lifetime given fail date 
        <  
        failDate 
      )  
        ? loBound=guessedLife 
        : hiBound=guessedLife; 
      guessedLife=(hiBound+loBound)/2; 
  } 
  if (guessedLife <= minLife+envelope) return "error, lifetime not found, approaching low bound"; 
  else if (guessedLife >= maxLife-envelope) return "error, lifetime not found, approaching high 
bound"; 
  else return guessedLife; //Has converged on the answer 
} 
</script> 
 
</body> 
</html> 
 

Linear 
 
<!DOCTYPE html> 
<html> 
<head> 
<title>KC Curve fitting</title> 
</head> 
<body> 
 
<h1>Data from SEER Nov 2022 Sub (1992-2020) Database - 20 Year Cause-Specific Survival 
Time of Kidney and Renal Pelvis Cancer Patients That Died in Years 2012-2020</h1> 
 
<h2><pre>  
<u>Linear Model</u>: 
lifetime(startTime) =  slope*(startTime - T0) + lifetimeAtT0 
lifetime(endTime)   = (slope*(  endTime - T0) + lifetimeAtT0)/(slope + 1) 
T0                  = <span id="T0">Error 98: The value of T0 should be shown here.</span> 
lifeAtT0            = <span id="lifeAtT0">Error 99: not yet initialized</span> <!-If set manually, the 
number will be shown here-> 
</pre> 
</h2> 
<h3><i>Model update of 7/16/2024</i></h3> 
 
 
<button onclick='if (typeof lifeAtT0!=="number") 
                    alert(`lifeAtT0 is not a number. Set it to one to use this button. Hint: also set T0.`); 
     else{ 



207 
 

                    document.getElementById("log").innerHTML="";  
                    searchSlopeforMinSSR();}'> 
 Click to find the line with the value of <b>slope</b> yielding the best fit (lowest SSR) for 
a given lifeAtT0 
</button> 
<br><br> 
<button onclick='if (lifeAtT0!=="Determined algorithmically") 
                    alert(`lifeAtT0 is a number. Set it to the string "Determined algorithmically" 
instead.`); 
     else{ 
                    document.getElementById("log").innerHTML="";  
                    searchSlopeforMinSSR();}'> 
 Click to find the line with the values of <b>slope</b> and <b>lifeAtT0</b> yielding the 
best fit (lowest SSR) 
</button> 
<br><br> 
 
<button onclick="document.getElementById('log').innerHTML='';  
                 searchLifeAtT0forMinSSRmultipass(parseFloat(prompt('Type value for slope:'), 10), 
                               lifeAtT0min);"> 
 Click to find the line with a given slope and the lifeAtT0 yielding the best fit for that slope 
</button> 
<br><br> 
 
<button onclick="document.getElementById('log').innerHTML='';  
                 log('SSR = ' + fillInSSR(parseFloat (prompt('Type value for slope:'), 10), 
                                          parseFloat (prompt('Type value for lifeAtT0:'), 10) 
                          ).SSR 
        );"> 
 Click to input the slope and start value lifeAtT0, and find the SSR 
</button> 
 
<p id="log"></p> 
 
<script> 
let lifeAtT0 = "Determined algorithmically"; //Set it manually by changing this line to a number 
document.getElementById("lifeAtT0").innerHTML = lifeAtT0; 
const lifeAtT0incrementFactor           = 2;     //Must be > 1. When searching for the c with 
minimum SSR, multiply c by this constant each iteration 
const lifeAtT0incrementFactorRefinement = 5;     //Must be > 1. Make lifeAtT0incrementFactor 
this many times closer to 1. 
const lifeAtT0incrementFactorMin        = 1.001; //If lifeAtT0incrementFactor decreases below the 
threshold, it is small enough to produce accurate enough results 
const lifeAtT0min                       = 0.001; //Should be low enough to undercut the lifeAtT0 values 
with min SSR for any slope, but higher values will speed things up  
const minPosSlope = 0.0001; 
const slopeIncrement = 1.05; //Is this so close to 1 that numerical error could cause a false 
trough in SSR? Hopefully not. 
const T0 = 1990; 
document.getElementById("T0").innerHTML=T0; 
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logLifetimeData      = {        name : "LogLifetimeData", 
                            populate : // Initialize dataTable's column of lifetime data log values 
("LogLifetimeData") 
   function(){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.lifetimeData.length; dataTableIndex++){ 
         
dataTable.logLifetimeData[dataTableIndex]=Math.log2(dataTable.lifetimeData[dataTableIndex]); 
      }      
   } 
}     
predictedLifetimes   = {        name : "PredictedLifetimes", 
                               slope : 0.1                 , //initial guess 
                                  T0 : T0                  , //taken from the global constant 
             lifeAtT0 : 0.5                 , //initial guess 
          populate : // Calculate dataTable's column of 
lifetime predictions from fail dates, 
                                       // i.e., predictedLifetimes 
   function (){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.endYear.length; dataTableIndex++){ 
         dataTable.predictedLifetimes[dataTableIndex] 
            =lifetimeFromFaildateAnyT0(dataTable.endYear[dataTableIndex], 
                                    predictedLifetimes.slope, 
                              predictedLifetimes.lifeAtT0, 
                                       predictedLifetimes.T0); 
      } 
   } 
} 
logPredictedLifetimes= {        name     : "LogPredictedLifetime", 
                                populate : // Calculate dataTable's column of logs of lifetime predictions 
("LogPredictedLifetimes") 
   function (){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.predictedLifetimes.length; 
dataTableIndex++){ 
  dataTable.logPredictedLifetimes[dataTableIndex] 
            =Math.log2(dataTable.predictedLifetimes[dataTableIndex]); 
      } 
   } 
} 
fittingErrors        = {        name: "FittingErrors", 
                           populate : // Calculate dataTable's column of fitting errors between lifetime data 
and lifetime model ("fittingErrors") 
   function calcFittingErrors(){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.logPredictedLifetimes.length; 
dataTableIndex++){ 
      dataTable.fittingErrors[dataTableIndex]   
         = dataTable.predictedLifetimes[dataTableIndex] < 
dataTable.lifetimeData[dataTableIndex] 
             ? 
             (dataTable.lifetimeData[dataTableIndex] - 
dataTable.predictedLifetimes[dataTableIndex])  
              / dataTable.lifetimeData[dataTableIndex] 
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          : 
          (dataTable.predictedLifetimes[dataTableIndex] - 
dataTable.lifetimeData[dataTableIndex])  
              / dataTable.predictedLifetimes[dataTableIndex] 
      } 
   } 
} 
squaredFittingErrors = {        name : "SquaredFittingErrors", 
                                 SSR : "uninitialized", 
          populate : // Calculate dataTable's column of 
squared fitting errors (squaredFittingErrors) 
   function (){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.fittingErrors.length; dataTableIndex++){ 
         dataTable.squaredFittingErrors[dataTableIndex] 
            =dataTable.fittingErrors[dataTableIndex]**2; 
      } 
   },                        calcSSR : // Calculate SSR 
   function (){ 
      squaredFittingErrors.SSR=0; 
      for (dataTableIndex=0; dataTableIndex<dataTable.squaredFittingErrors.length; 
dataTableIndex++){ 
          squaredFittingErrors.SSR += dataTable.squaredFittingErrors[dataTableIndex]; 
      } 
   } 
} 
predictedStartDates = {         name : "PredictedStartDates", 
                            populate : // Calculate dataTable's column of start dates 
("predictedStartDates") 
   function (){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.predictedLifetimes.length; 
dataTableIndex++){ 
         dataTable.predictedStartDates[dataTableIndex] 
            = dataTable.endYear[dataTableIndex] - dataTable.predictedLifetimes[dataTableIndex]; 
      } 
   } 
} 
 
let dataTable = { 
   key                  : [2012 , 2013 , 2014 , 2015 , 2016 , 2017 , 2018 , 2019 , 2020], 
   endYear              : [2012 , 2013 , 2014 , 2015 , 2016 , 2017 , 2018 , 2019 , 2020], 
   lifetimeData         : [3.379 ,3.289 ,3.256 ,3.363 ,3.579 ,3.571 ,3.760 ,3.861 ,3.636], 
   logLifetimeData      : [], //to be initialized once 
   predictedLifetimes   : [], //to be calculated by the regression process 
   logPredictedLifetimes: [], //to be calculated by the regression process 
   fittingErrors        : [], //to be calculated by the regression process 
   squaredFittingErrors : [], //to be calculated by the regression process 
   predictedStartDates  : []  //to be calculated by the regression process 
} 
logLifetimeData.populate(); //Calculate once as part of initialization. 
 
function updateDataTableFromModelParams(){ 
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   predictedLifetimes   .populate(); 
//alert("dataTable.predictedLifetimes="+dataTable.predictedLifetimes); 
   logPredictedLifetimes.populate(); 
 //  alert("dataTable.logPredictedLifetimes="+dataTable.logPredictedLifetimes); 
   fittingErrors        .populate(); 
   //   alert("dataTable.fittingErrors="+dataTable.fittingErrors); 
   squaredFittingErrors .populate(); squaredFittingErrors.calcSSR(); 
     // alert("dataTable.squaredFittingErrors="+dataTable.squaredFittingErrors); 
   predictedStartDates  .populate(); 
    //  alert("dataTable.predictedStartDates="+dataTable.predictedStartDates); 
} 
updateDataTableFromModelParams(); 
       
function fillInSSR(slope, lifeAtT0){ 
   predictedLifetimes.slope    = slope; 
   predictedLifetimes.lifeAtT0 = lifeAtT0; 
   updateDataTableFromModelParams(); 
   return({slope : slope, lifeAtT0 : lifeAtT0, SSR : squaredFittingErrors.SSR}); 
} 
 
function searchLifeAtT0forSSRdip1pass(slope, lifeAtT0, lifeAtT0increment){ 
   let dataPointLlifeAtT0, dataPointMlifeAtT0, dataPointHlifeAtT0, dataPointTemp;  
   dataPointLlifeAtT0 = fillInSSR(slope, lifeAtT0); 
   dataPointMlifeAtT0 = fillInSSR(slope, lifeAtT0*=lifeAtT0increment) 
   while(true){ 
     dataPointHlifeAtT0 = fillInSSR(slope, lifeAtT0*=lifeAtT0increment); 
     if (dataPointLlifeAtT0.SSR < dataPointMlifeAtT0.SSR) { 
     log("<hr><b>Error, no dip, possibly due to an unreasonable value for 
slope:</b><br>dataPointLlifeAtT0.SSR < dataPointMlifeAtT0.SSR in 
searchlifeAtT0forSSRdip1pass: slope=" 
      +slope+", lifeAtT0increment="+lifeAtT0increment+",<br>dataPointLlifeAtT0 
.lifeAtT0="+dataPointLlifeAtT0.lifeAtT0 
   +", dataPointLlifeAtT0 
.SSR="+dataPointLlifeAtT0.SSR+"<br>dataPointMlifeAtT0.lifeAtT0=" 
   +dataPointMlifeAtT0.lifeAtT0+", 
dataPointMlifeAtT0.SSR="+dataPointMlifeAtT0.SSR);break;} 
        else if (dataPointMlifeAtT0.SSR < dataPointHlifeAtT0.SSR) {break;} //The min SSR occurs 
somewhere between L(ow) and H(igh) values of calcFittingErrors 
        else {dataPointTemp        = dataPointLlifeAtT0; 
           dataPointLlifeAtT0   = dataPointMlifeAtT0; 
              dataPointMlifeAtT0   = dataPointHlifeAtT0; 
        dataPointHlifeAtT0   = null; 
       } 
    } 
 // Next, enforce that on exit, dataTable contains data from the dip (not rejected data from 
dataPointHlifeAtT0) fillInSSR(slope, dataPointMlifeAtT0.lifeAtT0); 
 return({dataPointLlifeAtT0 : dataPointLlifeAtT0, dataPointMlifeAtT0 : dataPointMlifeAtT0, 
dataPointHlifeAtT0 : dataPointHlifeAtT0}); 
} 
 
function searchLifeAtT0forMinSSRmultipass(slope, loBoundLifeAtT0){ 
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   let lifeAtT0increment = lifeAtT0incrementFactor;   //if lifeAtT0increment is 2, and 
lifeAtT0incrementFactorRefinement is 5,  
             //then the updated 
lifeAtT0increment is 1.2 
   for (lifeAtT0increment ; lifeAtT0increment>lifeAtT0incrementFactorMin ; 
lifeAtT0increment=1+(lifeAtT0increment-1)/lifeAtT0incrementFactorRefinement){ 
  loBoundLifeAtT0 = searchLifeAtT0forSSRdip1pass(slope, loBoundLifeAtT0, 
lifeAtT0increment).dataPointLlifeAtT0.lifeAtT0;  
   } 
   let u = searchLifeAtT0forSSRdip1pass(slope, loBoundLifeAtT0, lifeAtT0increment); //u is set 
to the three data points of the u-shaped dip 
   log("<hr>Here is the region of lifeAtT0 giving lowest SSR for slope="+slope+":"); 
   log("For lifeAtT0="+u.dataPointLlifeAtT0.lifeAtT0+", SSR="+u.dataPointLlifeAtT0.SSR); 
   log("For lifeAtT0="+u.dataPointMlifeAtT0.lifeAtT0+", SSR="+u.dataPointMlifeAtT0.SSR+" 
<b>(best)</b>"); 
   log("For lifeAtT0="+u.dataPointHlifeAtT0.lifeAtT0+", SSR="+u.dataPointHlifeAtT0.SSR); 
   return(u.dataPointMlifeAtT0); 
} 
 
function getLifeAtT0byDispatch(slope){ 
   if (lifeAtT0 === "Determined algorithmically") 
      return searchLifeAtT0forMinSSRmultipass(slope, lifeAtT0min); 
   else if (typeof lifeAtT0 === "number") 
   return fillInSSR(slope, lifeAtT0); 
   else alert("Error 101: lifeAtT0 === " + lifeAtT0 + ": bad value"); 
} 
 
function searchSlopeforMinSSR(){ 
   let dataPointLslope; 
   let dataPointMslope; 
   let dataPointHslope; 
   let nextSlope; 
   dataPointLslope = getLifeAtT0byDispatch(0                         ); 
   dataPointMslope = getLifeAtT0byDispatch(minPosSlope               ); 
   dataPointHslope = getLifeAtT0byDispatch(minPosSlope*slopeIncrement); 
   if (dataPointLslope.SSR < dataPointMslope.SSR) {  
      log("Possibly an error."); 
   }; 
 
   for (nextSlope = dataPointHslope.slope*slopeIncrement  
                  ; dataPointMslope.SSR > dataPointHslope.SSR   //";" is not a statement separator 
here 
                  ; nextSlope *= slopeIncrement){ 
   dataPointLslope = dataPointMslope; 
   dataPointMslope = dataPointHslope; 
      dataPointHslope = getLifeAtT0byDispatch(nextSlope); 
   } 
 
   fillInSSR(dataPointMslope.slope, dataPointMslope.lifeAtT0); // Reset dataTable to dip  
   log("<hr><hr><b>Summary: here is the region of best slope (that is, the slope with lowest 
SSR):</b>"); 
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   log("Slope just below the best slope: slope = "+dataPointLslope.slope+",    lifeAtT0 with lowest 
SSR is "+dataPointLslope.lifeAtT0+" with SSR="+dataPointLslope.SSR); 
   log('<span style="background-color: violet;");><b>Best slope: slope = ' + 
dataPointMslope.slope + ", lifeAtT0 is " + dataPointMslope.lifeAtT0 + " and SSR=" + 
dataPointMslope.SSR + " (lowest SSR found.)</span>"); 
   log(  '<span style="background-color: violet;"><b>' 
       + "Equation of best fit curve is:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>" 
    + "lifetime(endTime) = y = ["+dataPointMslope.slope+"*(x - " + T0 + ") + " + 
dataPointMslope.lifeAtT0 + "]" 
       + " / " 
       + "[1 + " + dataPointMslope.slope + "]"  
    + "</span>"); 
   for (let i=0; i<dataTable.endYear.length; i++){ 
     log(  '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span style="background-color: 
violet;"><b>' 
         + "For end year " + dataTable.endYear[i] + ", ave. lifetime = " + dataTable.lifetimeData[i] 
         + ", regressed model prediction = " + dataTable.predictedLifetimes[i] 
  + "</span>"); }; 
   log("&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Next line checks previous line: 
predictions should be equal."); 
   {let firstFutureYear = dataTable.endYear[dataTable.endYear.length-1]  // +1; 
    for (let i=firstFutureYear ; i<=firstFutureYear+50 ; i++){ 
         log(  '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span style="background-color: 
violet;"><b>' 
              + "For end year " + i + ", ave. lifetime = (data not present), regressed model prediction 
= " 
              + lifetimeFromFaildateAnyT0(i, dataPointMslope.slope, dataPointMslope.lifeAtT0, T0) 
              + "</span>"); 
    }  
   } 
   log("Slope just above best slope: slope = "+dataPointHslope.slope+",    lifeAtT0 with lowest 
SSR is "+dataPointHslope.lifeAtT0+" with SSR="+dataPointHslope.SSR); 
   // return(dataPointMslope.slope); //not used, so why have it 
} 
 
function log(messageLine){ 
   document.getElementById("log").innerHTML+=messageLine+"<br>"; 
} 
 
function lifetimeFromFaildateAnyT0(failDate, slope, lifeAtT0, yearOfT0) { 
   return((slope*(failDate-yearOfT0)+lifeAtT0)/(1+slope)); 
} 
    
 
</script> 
 
</body> 
</html> 
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Logistic 
 
<!DOCTYPE html> 
<html> 
<head> 
<title>KC Curve Fitting</title> 
</head> 
<body> 
 
<h1>Data from SEER Nov 2022 Sub (1992-2020) Database - 20 Year Cause-Specific Survival 
Time of Kidney and Renal Pelvis Cancer Patients That Died in Years 2012-2020</h1> 
<h2>Logistic Model with Survival Time Set to:&nbsp;&nbsp;&nbsp; <kbd>const supremum = 
<span id="supremum">ERROR</span>;</kbd> 
<br>(this should be set in the code to match the data)</h2> 
<h3><i>Model update of 7/12/2024</i></h3> 
 
<button onclick="document.getElementById('log').innerHTML='';  
                 searchtMidForMinSSR(steepnessMultiplier);"> 
 Click to find the logistic curve with the midpoint year and steepness yielding the best fit 
(lowest SSR) 
</button> 
<br><br> 
 
<button onclick="document.getElementById('log').innerHTML='';  
                 searchSteepnessForMinSSR(parseFloat(prompt('Type year of midpoint:'), 10), 
steepnessMultiplier);"> 
 Click to find the logistic curve with the best fit steepness for a given midpoint year 
</button> 
<br><br> 
 
<button onclick="document.getElementById('log').innerHTML='';  
                 log('SSR = ' + fillInSSR(parseFloat(prompt('Type value for steepness:'    ), 10), 
                                          parseFloat(prompt('Type value for midpoint year:'), 10) 
                          ).SSR 
        );"> 
 Click to input the steepness and midpoint year, and find the SSR 
</button> 
<br><br> 
 
<button id="tMidStart" 
  onclick="tMidStart=parseInt(prompt('What year would you like to search upward 
from?'));  
           document.getElementById('tMidStart').innerHTML  
        =   'Midpoint year search will now start from <mark><b>' 
       + tMidStart 
       + '</b></mark>. Consider changing it in the code. Click to 
try another value.'; "> 
 Error 17 
</button> 
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<p id="log"></p> 
 
* Asterisk indicates suspected floating point roundoff error during steepness bisection. It is 
probably alright if steepnesses are closely spaced and middle SSR is lowest. If middle SSR 
equals another one, that actually was connected in one case to incorrect determination of the 
steepness with minimum SSR, probably due to another instance of roundoff error connected to 
a steepnessMultiplier being too close to 1. 
 
<script> 
const supremum = 20; //If the survival period for the data is 10 years, then the maximum 
average survival time is 10. 
   document.getElementById("supremum").innerHTML = "<mark>"+supremum+"</mark>"; 
//Write the supremum prominently on the web page 
let   tMidStart = 2015; //year to begin searching upward for midpoint of the logistic curve.  
                        //Should undercut the midpoint, or it will lead to a non-termination condition. 
   document.getElementById("tMidStart").innerHTML 
      = "Midpoint search will start at year <mark><b>"+tMidStart+"</b></mark>. Click to change."; 
       
const minPositiveSteepness = 0.000001; //0.000001 seems smaller than necessary. 0.0001 is 
probably plenty small. 
const steepnessMultiplier=2; //1.01 led to longer execution times, as well as  
                             //errors in finding the minimum for very small steepnesses,  
                             //possibly due to getting stuck at false local minima 
        //caused by bumpiness from roundoff error 
due to large bisection   Epsilon=0.00001. 
        //2 is good because the initial steepnesses 
tested 
        //are 0, minPositiveSteepness and 
2*minPositiveSteepness which are evenly spaced. 
const minDeltaSSR = 0.00000001; 
const bisectionEpsilon=0.0000001; //This turns out to matter in cases where steepness is close 
to zero. 
 
predictedLifetimes   = {        name : "PredictedLifetimes", 
                           steepness : 1,             //initial guess 
                                tMid : 2025,          //initial guess 
          populate : // Calculate dataTable's column of 
lifetime predictions from fail dates (predictedLifetimes) 
   function (){ 
   if (!isFinite(predictedLifetimes.steepness)||!isFinite(predictedLifetimes.tMid)) 
      alert("Error in predictedLifetimes.populate(): non-numeric arg(s)!"); //make sure they 
are int or float 
   for (dataTableIndex=0; dataTableIndex<dataTable.endYear.length; dataTableIndex++){ 
         dataTable.predictedLifetimes[dataTableIndex] 
            =lifetimeFromFaildate(dataTable.endYear[dataTableIndex], 
                               predictedLifetimes.steepness, 
                                  predictedLifetimes.tMid, 
          supremum); 
      } 
//if (!isFinite(predictedLifetimes.steepness)) alert(dataTable.predictedLifetimes); //reports actual 
numbers. Scary. 
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   } 
} 
 
fittingErrors        = {       name : "FittingErrors", 
                           populate : // Calculate dataTable's column of fitting errors between lifetime data 
and lifetime model ("fittingErrors") 
   function calcFittingErrors(){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.predictedLifetimes.length; 
dataTableIndex++){ 
      dataTable.fittingErrors[dataTableIndex] = 
Math.abs(dataTable.predictedLifetimes[dataTableIndex] - 
dataTable.lifetimeData[dataTableIndex]); 
//if (dataTableIndex==0) alert("dataTable.fittingErrors[0] is 
"+dataTable.fittingErrors[dataTableIndex] ); 
      } 
   } 
} 
squaredFittingErrors = {        name : "SquaredFittingErrors", 
                                 SSR : "uninitialized", 
          populate : // Calculate dataTable's column of 
squared fitting errors (squaredFittingErrors) 
   function (){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.fittingErrors.length; dataTableIndex++){ 
         dataTable.squaredFittingErrors[dataTableIndex] 
            =dataTable.fittingErrors[dataTableIndex]**2; 
      } 
   },                        calcSSR : // Calculate SSR 
   function (){ 
      squaredFittingErrors.SSR=0; 
      for (dataTableIndex=0; dataTableIndex<dataTable.squaredFittingErrors.length; 
dataTableIndex++){ 
    squaredFittingErrors.SSR += dataTable.squaredFittingErrors[dataTableIndex]; 
      } 
   } 
} 
predictedStartDates = {         name : "PredictedStartDates", 
                            populate : // Calculate dataTable's column of start dates 
("predictedStartDates") 
   function (){ 
      for (dataTableIndex=0; dataTableIndex<dataTable.predictedLifetimes.length; 
dataTableIndex++){ 
         dataTable.predictedStartDates[dataTableIndex] 
            = dataTable.endYear[dataTableIndex] - dataTable.predictedLifetimes[dataTableIndex]; 
      } 
   } 
} 
 
let dataTable = { 
   key                  : [2012 ,2013 ,2014 ,2015 ,2016 ,2017 ,2018 ,2019 ,2020], 
   endYear              : [2012 ,2013 ,2014 ,2015 ,2016 ,2017 ,2018 ,2019 ,2020], 
   lifetimeData         : [3.379 ,3.289 ,3.256 ,3.363 ,3.579 ,3.571 ,3.760 ,3.861 ,3.636], 
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   predictedLifetimes   : [], //to be calculated by the regression process 
   fittingErrors        : [], //to be calculated by the regression process 
   squaredFittingErrors : [], //to be calculated by the regression process 
   predictedStartDates  : []  //to be calculated by the regression process 
} 
//logLifetimeData.populate(); //Calculate once as part of initialization. 
 
function updateDataTableFromModelParams(){ 
   predictedLifetimes   .populate(); 
   fittingErrors        .populate(); 
//alert("dataTable.fittingErrors is "+dataTable.fittingErrors); 
   squaredFittingErrors .populate(); squaredFittingErrors.calcSSR(); 
   predictedStartDates  .populate(); 
} 
updateDataTableFromModelParams(); 
 
function fillInSSR(steepness, tMid){ 
//alert(steepness + " " + tMid); 
   if (!isFinite(tMid)||!isFinite(steepness)) alert("Error in fillInSSR: steepness, 
tMid="+steepness+","+tMid); 
   predictedLifetimes.steepness = steepness; 
   predictedLifetimes.tMid = tMid; 
   updateDataTableFromModelParams(); 
   return({steepness : steepness, tMid : tMid, SSR : squaredFittingErrors.SSR}); 
} 
//alert("fillInSSR(1, 2040).SSR returns "+fillInSSR(1, 2040).SSR); 
 
//returns a string: "positive",           "negative",             "zero or near zero", 
//                  "positive edge case", "negative edge case" or "anomaly". 
function getSteepnessSign(tMid){ 
   let SSR0              =fillInSSR(0                    , tMid).SSR; //SSR for zero     steepness 
   let SSRminPosSteepness=fillInSSR( minPositiveSteepness, tMid).SSR; //SSR for positive 
steepness nearest 0 
   let SSRmaxNegSteepness=fillInSSR(-minPositiveSteepness, tMid).SSR; //SSR for negative 
steepness nearest 0 
//alert("in getSteepnessSign, SSRs: 0="+SSR0+" SSRminPosSteepness="+ 
//    SSRminPosSteepness+" SSRmaxNegSteepness="+SSRmaxNegSteepness); 
   if      (SSRminPosSteepness< SSR0) return "positive"; 
   else if (SSRmaxNegSteepness< SSR0) return "negative"; 
   else if (SSRminPosSteepness> SSR0 && SSRmaxNegSteepness> SSR0) 
        return "zero or near zero"; 
   else if (SSRminPosSteepness> SSR0 && SSRmaxNegSteepness==SSR0) 
        return "negative edge case"; 
   else if (SSRminPosSteepness==SSR0 && SSRmaxNegSteepness> SSR0) 
        return "positive edge case"; 
   else return "anomaly"; 
} 
function searchSteepnessForMinSSR(tMid, steepnessMultiplier){ 
   if (!isFinite(tMid)||!isFinite(steepnessMultiplier)) alert("Error in searchSteepnessForMinSSR: 
non-numeric arg(s)"); 
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   //Initialize for steepnesses by getting ready to crawl upward or downward from 0, unless 0 is 
already optimal  
   let dataPointLsteepness, dataPointMsteepness, dataPointHsteepness; //L,M,H for low, middle, 
high absolute value. 
   let dataPointTemp;  
   let dataPointLMsteepness, dataPointMHsteepness; //Midway between L&M, M&H, used to 
focus in on the min. 
   let steepness=getSteepnessSign(tMid); //Make it more precise later. 
   if      (steepness=="positive") {dataPointLsteepness = fillInSSR(steepness= 0, tMid); 
                                    dataPointMsteepness = fillInSSR(steepness= minPositiveSteepness, 
tMid); 
         dataPointHsteepness = 
fillInSSR(steepness= minPositiveSteepness*steepnessMultiplier, tMid); 
           } 
   else if (steepness=="negative") {dataPointLsteepness = fillInSSR(steepness= 0, tMid); 
                                    dataPointMsteepness = fillInSSR(steepness=-minPositiveSteepness, 
tMid); 
            dataPointHsteepness = 
fillInSSR(steepness=-minPositiveSteepness*steepnessMultiplier, tMid); 
           } 
   else if (steepness=="zero or near zero")  
                                   {dataPointLsteepness = fillInSSR(steepness=-minPositiveSteepness, 
tMid); 
            dataPointMsteepness = 
fillInSSR(steepness=0, tMid); 
         dataPointHsteepness = 
fillInSSR(steepness= minPositiveSteepness, tMid); 
           } 
   else alert("Unhandled return value from getSteepnessSign: "+steepness); 
   if (dataPointLsteepness.SSR < dataPointMsteepness.SSR) {alert("Error #3"); return "Error 
#3";} 
   //Crawl upward or downward searching for a steepness interval containing the minimum SSR 
   while((dataPointMsteepness.SSR>=dataPointHsteepness.SSR)){ //exit when min SSR occurs 
between steepnesses L and H 
   //alert("starting while"); 
   if ((dataPointLsteepness.SSR == dataPointMsteepness.SSR) 
       && 
    (dataPointMsteepness.SSR == dataPointHsteepness.SSR)) 
   {log("<b>SSR appears to be asymptoting as steepness magnitude increases for" 
+ 
        ": year="      + tMid      + 
     ", steepness=" + steepness + 
     ", SSR="       + dataPointHsteepness.SSR + "</b><br>"); 
          break; 
   } 
   dataPointLsteepness = dataPointMsteepness; 
   dataPointMsteepness = dataPointHsteepness; 
      dataPointHsteepness = fillInSSR(steepness*=steepnessMultiplier, tMid); 
   } 
/* 
alert( dataPointLsteepness.steepness 
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   +"," 
   +dataPointMsteepness.steepness 
   +"," 
   +dataPointHsteepness.steepness); 
alert( dataPointLsteepness.SSR 
   +"," 
   +dataPointMsteepness.SSR 
   +"," 
   +dataPointHsteepness.SSR); 
*/ 
//alert("before for"); 
   //Subdivide steepness interval containing minimum SSR until a sufficiently accurate best 
steepness is found 
   for (var deltaSSR=dataPointLsteepness.SSR-dataPointMsteepness.SSR;  
        !(deltaSSR<minDeltaSSR)                                     ; //2/15/24: unlikely to trigger before the 
final else's break 
  deltaSSR    =dataPointLsteepness.SSR-dataPointMsteepness.SSR 
    ){ 
       //alert("deltaSSR is "+deltaSSR+", !(deltaSSR<minDeltaSSR) is 
"+!(deltaSSR<minDeltaSSR)); 
       dataPointLMsteepness = 
fillInSSR((dataPointLsteepness.steepness+dataPointMsteepness.steepness)/2, tMid); 
       dataPointMHsteepness = 
fillInSSR((dataPointMsteepness.steepness+dataPointHsteepness.steepness)/2, tMid); 
       
//alert(dataPointLsteepness.SSR+","+dataPointLMsteepness.SSR+","+dataPointMsteepness.S
SR+"," 
       //      +dataPointMHsteepness.SSR+","+dataPointHsteepness.SSR); 
       if (  dataPointLsteepness.SSR>dataPointLMsteepness.SSR && 
dataPointLMsteepness.SSR>dataPointMsteepness.SSR 
    && dataPointMsteepness.SSR<=dataPointMHsteepness.SSR && 
dataPointMHsteepness.SSR<dataPointHsteepness.SSR) 
       {dataPointLsteepness=dataPointLMsteepness;    //M  is lowest, so trim L and H 
     dataPointHsteepness=dataPointMHsteepness;} 
       else if  
       (  dataPointLsteepness.SSR>dataPointLMsteepness.SSR && 
dataPointLMsteepness.SSR>dataPointMsteepness.SSR 
       && dataPointMsteepness.SSR>dataPointMHsteepness.SSR && 
dataPointMHsteepness.SSR<dataPointHsteepness.SSR) 
       {dataPointLsteepness=dataPointMsteepness ;    //MH is lowest, so trim L and LM 
     dataPointMsteepness=dataPointMHsteepness;} 
       else if  
       (  dataPointLsteepness.SSR>dataPointLMsteepness.SSR && 
dataPointLMsteepness.SSR<dataPointMsteepness.SSR 
       && dataPointMsteepness.SSR<dataPointMHsteepness.SSR && 
dataPointMHsteepness.SSR<dataPointHsteepness.SSR) 
       {dataPointHsteepness=dataPointMsteepness ;    //LM is lowest, so trim H and MH 
     dataPointMsteepness=dataPointLMsteepness;} 
       else{//alert("Error in searchSteepnessForMinSSR; anomalous SSR pattern "+tMid); 
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//alert(dataPointLsteepness.SSR+","+dataPointLMsteepness.SSR+","+dataPointMsteepness.S
SR+"," 
            //      +dataPointMHsteepness.SSR+","+dataPointHsteepness.SSR); 
            
//alert(dataPointLsteepness.steepness+","+dataPointLMsteepness.steepness+","+dataPointMst
eepness.steepness+"," 
            //      +dataPointMHsteepness.steepness+","+dataPointHsteepness.steepness); 
      log("* "); break; //The point here is to keep looping until floating point roundoff 
error starts creating anomalies 
           } 
   } 
   //print out region of steepness with lowest SSR 
   log("For midpoint year " + tMid + ":<br>"  
       + "steepness " + dataPointLsteepness.steepness + " has SSR " + 
dataPointLsteepness.SSR + "<br>" 
    + "steepness " + dataPointMsteepness.steepness + " has SSR " + 
dataPointMsteepness.SSR + "<br>" 
    + "steepness " + dataPointHsteepness.steepness + " has SSR " + 
dataPointHsteepness.SSR + "<hr>" 
   ); 
   //return data steepness with lowest SSR 
   fillInSSR(dataPointMsteepness.steepness, dataPointMsteepness.tMid); //Make dataTable 
reflect the dip, not H after the dip 
   return(dataPointMsteepness); 
} 
 
function searchtMidForMinSSR(steepnessMultiplier){ 
   if (!isFinite(steepnessMultiplier)) alert("Error in searchtMidForMinSSR: steepnessMultiplier is 
non-numeric!"); 
   let nexttMid = tMidStart; 
   let dataPointLtMid = searchSteepnessForMinSSR(nexttMid  , steepnessMultiplier); 
   let dataPointMtMid = searchSteepnessForMinSSR(nexttMid+1, steepnessMultiplier); //search 
one year at a time 
   let dataPointHtMid = searchSteepnessForMinSSR(nexttMid+2, steepnessMultiplier);                                                      
   if ((dataPointLtMid.SSR < dataPointMtMid.SSR)) { //Why the steepness check? 
      {log("<b>Warning: no improvement in SSR detected. Try giving start year tMidStart a 
different value.</b><br>"); return;} 
   }; 
   for (  nexttMid=dataPointHtMid.tMid+1 ;  
          dataPointMtMid.SSR >= dataPointHtMid.SSR; 
    nexttMid+=1){ 
       //alert(nexttMid); 
    if (  (dataPointLtMid.SSR==dataPointMtMid.SSR) 
          && 
    (dataPointMtMid.SSR==dataPointLtMid.SSR)){ 
          log("<b>SSR appears to be asymptotic with increasing midpoint year, so ending the 
search.</b></br>"); 
          break; 
       } 
       dataPointLtMid = dataPointMtMid; 
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       dataPointMtMid = dataPointHtMid; 
       dataPointHtMid = searchSteepnessForMinSSR(nexttMid, steepnessMultiplier);  
       //log("For midpoint year "+dataPointLtMid.tMid+", steepness with lowest SSR is " 
    //    +dataPointLtMid.steepness+" with SSR "+dataPointLtMid.SSR); 
   } 
   fillInSSR(dataPointMtMid.steepness, dataPointMtMid.tMid); //Make dataTable reflect the dip, 
not H after the dip. 
   log("<b>Summary: here is the region of best tMid (that is, the midpoint time with lowest SSR) 
found:</b><br>"); 
   log("Midpoint just below the best one: midpoint year = "+dataPointLtMid.tMid+", steepness 
with lowest SSR is "+dataPointLtMid.steepness+" with SSR " 
        +dataPointLtMid.SSR+"<br>"); 
   log('<span style="background-color: yellow;"><b>Best midpoint year: midpoint = '  
        + dataPointMtMid.tMid  
  + ", steepness with lowest SSR is "  
  + dataPointMtMid.steepness  
  + " and SSR "  
  + dataPointMtMid.SSR  
  + "<br>&nbsp;&nbsp;&nbsp;&nbsp;This is the best midpoint time and steepness 
with lowest SSR (unless asymptoting)!</b></span><br>" 
   ); 
   log(  '<span style="background-color: yellow;"><b>' 
       + "Equation of best fit curve is:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>" 
    + "x = ln(y)/" + dataPointMtMid.steepness + " + y + " + dataPointMtMid.tMid   
           + " - ln(" + supremum + " - y)/" + dataPointMtMid.steepness 
    + "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; where x is the 
INdependent variable despite the form of the equation." 
    + "</span><br>"); 
   for (let i=0 ; i<dataTable.endYear.length ; i++){ 
     log(  '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span style="background-color: 
yellow;"><b>' 
         + "For end year " + dataTable.endYear[i] + ", ave. lifetime = " + dataTable.lifetimeData[i] 
         + ", regressed model prediction = " + dataTable.predictedLifetimes[i] 
      + "</span><br>"); }; 
   log("&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Next line checks previous line: 
predictions should be equal.<br>"); 
   {let firstFutureYear = dataTable.endYear[dataTable.endYear.length-1]; 
    for (let i=firstFutureYear ; i<=firstFutureYear+50 ; i++){ 
         log(  '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span style="background-color: 
yellow;"><b>' 
              + "For end year " + i + ", ave. lifetime = (data not present), regressed model prediction 
= " 
              + lifetimeFromFaildate(i, dataPointMtMid.steepness, dataPointMtMid.tMid, supremum) 
              + "</span><br>"); 
    } 
   } 
   log("Midpoint just above the best one: midpoint year = "+dataPointHtMid.tMid+", steepness 
with lowest SSR is "+dataPointHtMid.steepness+" with SSR " 
        +dataPointHtMid.SSR+"<hr>"); 
} 
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function log(messageLine){ 
   document.getElementById("log").innerHTML+=messageLine+""; 
} 
 
//alert(Math.sign(-7)); 
 
// *** Use bisection method *** 
function lifetimeFromFaildate(failDate, steepness, tMid, supremum) {  
  const envelope=bisectionEpsilon; //0.0000001 worked, while 0.00001 led to noticeable issues 
  var loBound=0, hiBound=supremum, guessedLife=(hiBound+loBound)/2; 
  if (!isFinite(failDate)||!isFinite(steepness)||!isFinite(tMid)) alert("Error in lifetimeFromFaildate, 
nonnumeric arg(s)"); 
  if (steepness==0) return(supremum/2); //Special treatment needed since the general formula  
                                        //used in the loop is undefined for steepness 0 
  else  
     while ((hiBound-loBound)>envelope){ 
       ( Math.log(guessedLife)/steepness + guessedLife + tMid - Math.log(supremum - 
guessedLife)/steepness 
        < 
           failDate 
   == 
   steepness>0 
    ) 
       ? loBound=guessedLife 
       : hiBound=guessedLife; 
       guessedLife=(hiBound+loBound)/2; 
     } 
  return guessedLife; //Has converged on the answer 
} 
//alert(lifetimeFromFaildate(2036, -.01, 2031,10)); 
 
//alert("Javascript code loaded"); 
 
</script> 
</body> 
</html> 
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