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Abstract

We present Statool, a software tool for obtaining bounds on the distributions of sums, products, and various
other functions of random variables where the dependency relationship of the random variables need not
be specified. Statool implements the DEnv algorithm, which we have described previously [4] but not
implemented. Our earlier tool addressed only the much more elementary case of independent random
variables [3]. An existing tool, RiskCalc [13], also addresses the case of unknown dependency using a different
algorithm [33] based on copulas [23], while descriptions and implementations of still other algorithms for
similar problems will be reported soon [17] as the area proceeds through a phase of rapid development.

1 Introduction

The problem of determining derived distributions, the distributions of random variables whose samples are
a function of samples of other random variables, has received considerable attention. Springer’s monograph
[30] is fairly comprehensive up to its time of publication. Much of the subsequent work has focused on
copulas [23], which have motivated a number of conferences [1][11][12][27]. Much of the existing work
addresses analytical techniques. A shortcoming of the analytical approach is its tendency to produce results
applying to specific classes of distributions, such as normal, lognormal, etc. Numerical methods form an
alternative approach that tends to be applicable to a wider class of distributions. Monte Carlo is the classical
numerical method, but has some serious shortcomings [14], such as difficulties in safely handling problems
in which dependency relationships among random variables are unknown, or in which distributions are
not fully specified. Non-Monte Carlo numerical methods rely on discretization of distributions followed by
computation on the discretized forms.

Algorithms for non-Monte Carlo, numerical computation of derived distributions have been known since
at least as early as 1968 [18]. Early algorithms [10][18][19][22] assume that distributions whose samples are
summed, multiplied, etc., to yield the derived distribution of interest are independent. Furthermore they
rely on discretizations that approximate, as discretizations often do, implying that results are not validated.
Discretizations that enclose rather than approximate can lead to validated results, and also can lead to the
ability to compute a random variable derived from two others, one described with a distribution function and
the other described by an interval [2]. Algorithms cited in this paragraph are based on numerical convolution.

Algorithms for computing distributions of derived random variables face an additional challenge when
the dependency relationship of the input random variables is unknown, since a relatively straightforward
application of numerical convolution is no longer sufficient. This situation is important because often infor-
mation about the precise dependency relationship of two random variables is unknown, and while in practice
independence is often assumed for the sake of tractability, obviously it is better to avoid making unjustified
assumptions. When the dependency is unknown, it is not generally possible to describe the derived random
variable with a single distribution, since different plausible dependency relationships typically result in dif-
ferent derived distributions. However, the set of plausible derived distributions can be bounded. Williamson
and Downs describe a copula-based approach called Probabilistic Arithmetic [33] which was subsequently



implemented in RiskCalc [13]. A non-copula-based approach, Distribution Envelope Determination (DEnv),
has also been described [4]. An implementation of DEnv, which has not heretofore been published, is the fo-
cus of this paper. We describe Statool, a tool implementing DEnv and containing no code from our previous
tool [3].

Regan et al. [26] show that DEnv and Probabilistic Arithmetic are equivalent in important ways, and
the results produced by both methods on some standard problems [24] are consistent [5][15]. However, the
non-copula approach of DEnv is easier to understand for many people, and will likely remain so until copulas
become a standard part of the course curricula experienced by individuals subsequently needing an under-
standing of the algorithms. Recently other approaches have been presented by Fetz and Oberguggenberger
[16], Lodwick [21], Red-Horse [25], and Tonon [32].

Assuming independence on the one hand, and assuming nothing about dependency on the other, are
extremes of a continuum. Intermediate situations involve partial information about the dependency rela-
tionship between the input random variables contributing to a derived random variable. Currently Statool
supports the need to use partial information about dependency by allowing a value or range for the Pearson
correlation, the most common kind of correlation, between two input random variables to be specified [6].
Incorporating into algorithms various other useful information about dependency that may be available or
that application domain experts are likely to feel is reasonable to assume about some problems is a promising
area of investigation. We believe much opportunity remains for advances in this area.

2 The Tool

Statool has been applied to problems in electric power [7][29], value at risk [29], activity networks [9], and
reliability [8]. This section explains the new capabilities of Statool. Functionality that reimplements similar
functionality in our previously described tool [3] will only be mentioned as needed for clarity.

Figure 1 shows the Statool main screen. As in [3] the major portion of the screen shows three panes. The
top two, arbitrarily labeled X and Y, describe two random variables used as inputs to a derived random
variable, whose description appears in the bottom pane, labeled Z. All three variables are shown using left
and right envelopes that bound their cumulative distributions. Note that for the input variables X and Y,
the southeast corners of the left envelope touch northwest corners of the right envelope in order to express
the effects of discretization reliably by bounding rather than approximation (Figure 2).

2.1 Specifying the discretization

The internal representation of a random variable is in terms of intervals and probabilities associated with
them. This flexible representation is easily graphed with envelopes bounding the space through which the
random variable’s cumulative distribution function (CDF) may pass (Figure 2). It is also easily graphed as a
histogram (Figure 3) when, as in the case of PDFs (probability density functions) that have been discretized,
the intervals collectively partition the support of the random variable. However when intervals overlap, the
bars of the histogram would overlap as well, constituting a graphic representation more general than the
usual histogram concept.

Histograms are user-friendly in important ways, since they can clearly show regions of maximum density,
and shape properties like skewedness and bimodality. A serious deficiency of histograms is their inability to
express envelopes that do not touch at corners (Figure 1, 3rd pane). However, this is often not a problem
for input distributions. Thus Statool uses histograms as the basis of a graphical input distribution editor
(click on a histogram, click “edit,” then left click above the top of a bar to make it higher, below the top to
lower it, or right click above or below to widen or narrow it). Alternatively, files specifying a set of intervals
and their associated probabilities may be edited in a text editor and saved as plain text in a file with the
suffix “.idf” (for “intermediate distribution format”). Figure 4 shows an example.

2.2 Deriving Distributions from More than Two Inputs

Computing envelopes around a distribution derived from three random variables in Statool requires the user
to compute an intermediate result from two of them, then move the intermediate result from the result
pane into the top pane (by either saving it to a file and then reading the file in or by clicking “switch” in
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Figure 1: Statool main screen, showing the result (bottom panel) of a multiplication operation on operands
in the top and middle panels, when the dependency relationship between the operands is unknown.
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Figure 2: A portion of a cumulative distribution function and its enclosing discretization. The discretization
specifies that a cumulation of 0.02 occurs between horizontal axis values 9.1 and 9.2. In other words,
p([9.1,9.2]) = 0.02. The envelopes, a staircase-shaped left envelope above the curve and another (the right
envelope) below it, do not specify how the 0.02 mass is distributed within [9.1,9.2], unlike the curve itself.
The full discretization partitions the support (the region of the horizontal axis over which the height of the
curve is > 0 and < 1) into intervals and associates a probability with each interval.
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Figure 3: Portion of a histogram expressing the same information as in Figure 2. The flat top of the bars is
a graphical convention only and is not intended to imply anything about the distribution of the probability
mass (represented as the area) of a bar over its interval on the horizontal axis.

Figure 4: An .idf file which may be saved and read in, or created and edited, either graphically in Statool
or as a plain text file with a text editor. The numeral 4 in the first line states that there are 4 intervals
in the specification (implying 4 more lines in the file). The 0 in the first line is reserved for future use.
The remaining 4 lines contain three comma-separated numbers each. The first states an interval low bound,
the second the interval high bound, and the third the probability mass associated with the interval. This
example contains a gap between the first and second intervals, an overlap between the second and fourth,
and a narrow third interval which is inside the bounds of the fourth. (True impulses are specified using a
text editor and a .smp (“SaMPle”) format file.)



the top menu bar), then place the 3rd operand in the middle pane, and then invoke the computation that
gives the overall result. Some expressions in three variables need to be transformed into an algebraically
equivalent form that allows this. For example, (B*A+B*C) can be restated as B¥(A+C), allowing A+C
to be an intermediate result which is then multiplied with B. If A, B, and C are independent, or if their
dependency relationships are all unknown, this works. Certain cases of partially known dependency can also
be handled. For example, in computing C*(A+B), if A and B have a known correlation, but they are either
both independent of C or the dependency relationship between each of them and C is unknown, one can
compute A+B to give an intermediate result which is multiplied with C. Other cases of partially known
dependency cannot be so easily addressed. For example if the correlation between B and C is known and A
is independent of B, then C*(A+B) might be computed by computing (A*C+B*C), which in turn might
be addressed by computing D=A*C, E=B*C, and finally D+E with no assumption about the dependency
between D and E. However the problem structure does imply information about the dependency between D
and E although Statool does not use this knowledge, so the envelopes obtained may be too widely separated,
enclosing but weaker than the results that are potentially achievable.

Other expressions in three variables are even less tractable. A*B+B*C+C*A could be computed by
computing each term, then adding two of them, then adding that intermediate result to the third term.
However, the additions of terms would be done in Statool without assuming any dependency relationships
among the terms, despite their shared variables, because the correlations among the terms are not easily
obtainable and the only type of partial dependency information Statool can currently use is correlation.
The end result would be enclosing envelopes that are more widely separated than they would be if Statool
could use the dependency information available. In principle, a solution to these problems is to handle
expressions in three variables directly, rather than decomposing them into sequences of computations on two
variables. This would add a third dimension to the joint distribution tableaus used by the DEnv algorithm
(see Appendix), a generalization of the algorithm that we have not implemented. Taking this further, to
handle arbitrary functions of n distributions would require working with an n-dimensional joint distribution
tableau.

Fortunately many functions of multiple distributions can be evaluated without loss of information by
combining two of them, then combining that intermediate result with another to get a next-level intermediate
result, and continuing that way until all the distributions are accounted for. Using an intermediate result
as the input to a follow-on computation requires converting the intermediate result, which consists of left
and right envelopes, into a list of intervals and associated probabilities (the intermediate distribution format
described earlier). This is done by tiling the space between the envelopes with horizontal stripes. The
bottom and top edges of the stripes are positioned so that each stripe is a rectangle, for which one side is on
a vertical segment of the left envelope and the opposite side is on a vertical segment of the right envelope,
defining an interval. The bottom-to-top height defines a probability associated with that interval. A figure
and full description of this appears in [26].

2.3 Operations Used in Deriving Distributions

For distributions X, Y and Z, we write Z=X+Y to mean Z is the distribution of samples obtained by
summing samples of X and Y. Statool addresses the operations {+, —, %, /} on independent inputs, as did
our previous tool [3], but in addition, also addresses these operations on input distributions of unknown
dependency or with values or intervals given for their correlation. Statool also handles some new operations,
described next.

Z = maz(X,Y).

If z is a sample of distribution X and y is a sample of Y, the corresponding sample of Z is z = maz(x,y).
This can be useful for problems such as determining the time to complete a project consisting of two
concurrent tasks. (The completion time for the project is the later of the two individual completion times.)
Since Statool’s discretization process partitions the support of each input distribution into a set of intervals,
the definition for maz given above must be modified to the case of intervals. This is done by defining
maz(X,Y) for intervals X and Y to be [maz(X,Y), maxr(X,Y)]. This makes sense for the concurrent task
completion time problem and similar problems. Figure 5 shows examples of distributions Z derived using
Z = maz(X,Y).
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Figure 5: The max operation is invoked on the distributions in the 1st pane at top, X, and the 2nd pane, Y.
The result when their dependency is unknown is shown in the third pane. Assuming independence results
in envelopes that are closer together (fourth pane). The support for X is [6,9] and for Y is [7.4,7.6], so the
support for the results of the max operation is [7.4, 9], with Y dominating the results over [7.4,7.6] (hence
the relatively straight appearance over that range) and X dominating over (7.6,9].



Z = min(X,Y).

If z is a sample of X and y is a sample of Y, the corresponding sample of Z is z = min(z,y). This can be
useful for problems such as determining the time to failure of the first component to fail in a two-component,
system. This failure time is the earlier of the two individual failure times. For Statool, the definition for
min must be intervalized. Thus, we define min(X,Y’) for intervals X and Y to be [min(X,Y), min(X,Y)].
This makes sense for the two-component failure problem and similar problems. Figure 6 shows examples of
distributions Z derived using Z = min(X,Y).

Z=(X<Y).
This is defined such that if = is a sample of X and y is a sample of Y, the corresponding sample of Z is 1 if
z < y and 0 otherwise. This can be useful for problems such as determining the probability that a given one
of two events will occur first. For Statool, this definition must be intervalized. Similarly to Kazakov [20] we
define X <Y for intervals X and Y to be

0 if

1 if

[0,1] otherwise

slls

>Y
<Y

An alternative definition would assign the set {0,1} instead of the interval [0,1].

In Statool, distributions X and Y are discretized as sets of intervals and their associated probabilities.
Some intervals in the discretization of X might be less than some in the discretization of Y, others might
be greater, and still others might overlap. Minimizing the sum of the probabilities (see Appendix) of cases
where intervals in X are less than intervals in Y gives a low bound for p(z < y), and maximizing the sum
of the probabilities of cases where intervals in X are not > intervals in Y gives a high bound for p(z < y).
(The definition of > follows.)

Z=(X<Y),Z=X>Y),andZ=(X2>Y).
Definitions for these appear in the following chart.

Z=(X<Y) Z=(X>Y) Z=(X>Y)
Define X <Y for intervals as Define X > Y for intervals as Define X > Y for intervals as
0 if X>Y 0 if X<Y 0 if X<Y
1 if X<Y 1 if X>Y 1 if X>Y

[0,1] otherwise. [0,1] otherwise. [0,1] otherwise.

Z=fX)Y).

A function that combines X and Y by invoking a supported arithmetic operation one time may be invoked
easily in Statool as described earlier. Expressions that involve more than one operation can sometimes be
evaluated in more than one step, using the result of one step as an intermediate result to serve as the input
to the next step. This approach suffers from potential problems similar to those described in Section 2.2.
For example, consider the expression X(X + Y). Let W = X + Y be the intermediate result. The next
step is to calculate Z = X« W. However, if X and Y are independent, then X and W are not independent,
and their precise dependency relationship cannot currently be expressed in Statool. Statool can compute
Z = X W with no assumption at all about the dependency relationship between X and W, but this ignores
the fact that there is a partial dependency present, and so the computation of Z is likely to be weaker than
desired (that is, the envelopes for Z are more widely separated than they would be if the dependency was
taken into account). Similar arguments apply for other dependency relationships between X and Y besides
independence, and for the case where the dependency relationship is unknown.

Since operations on random variables in Statool are computed by discretizing distributions as sets of
intervals and performing the operation on those intervals (see Appendix), the solution in this case is to
compute, for intervals X; in the discretization of X and Yj in the discretization of Y, the intervals Z;; =
Xi(X; +7Y;) in one step, using an interval method that produces tight enclosures for each Z;;. Fortunately
this is trivial for expressions that are monotonic over the box defined by the interval-valued arguments.
Statool allows an expression in two variables z and y to be typed in (after clicking the “Parsing” button
shown in Figures 1, 5 & 6).



Figure 6: The min operation is invoked on the distributions shown in envelope form in the X pane (top),
and histogram form in the Y pane (2nd from top). The support for X is [6,9] as in the Figure for maz, but
unlike there the support for Y here is the same as for X, [6,9]. The result when the dependency between
X and Y is unknown is shown in the 3rd pane. Specifying that X and Y have a correlation in [—1,—0.97]
results in envelopes that are closer together (4th pane).



Figure 7: Envelopes produced by Statool enclose three distributions generated by Monte Carlo simulation
under three conditions: independence and correlations of 1 and —1. The inputs were normal curves with
mean and variance of 1, tail-trimmed to fit in [-3,—5] and with the trimmed mass evenly distributed over
the interval. The enclosing envelopes bound the space of possible result distributions for any dependency
relationship of the inputs. (Note that the MC-generated curves are not bounds because other dependency
relationships on the inputs can lead to result curves that, for example, travel to the right of the rightmost of
the three. The DEnv algorithm produces envelopes that are both rigorous and optimal in the sense of [4],
which ignores machine arithmetic error, and weakens results to account for input curve discretization but
only as much as necessary.)

2.4 The Software: Verification, Performance, and Platform

Statool’s results have been checked against results obtained elsewhere (Section 2.4.1) and its speed has
been measured for problems with various characteristics (Section 2.4.2). Statool is written using C for the
algorithmic core and Visual Basic for the user interface, and due to the use of Visual Basic runs only on
Windows systems. Statool may be downloaded free for non-commercial use [31].

2.4.1 Verification

Bugs are an ever-present danger in complex software. To help check the implementation of DEnv in Statool
we ran it on a number of benchmark problems [24] that were the focus of a recent workshop [28]. Results
produced by Statool verified those produced by RiskCalc [13] and vice versa in those cases where the results
of these systems could be directly compared.

A separate check was done using Monte Carlo simulation to compute the product of two normal dis-
tributions that straddle zero asymmetrically (i.e. with a non-zero mean). Results were generated for three
dependency assumptions. The three result distributions fit within the envelopes for this problem generated
by Statool, further verifying the implementation (Figure 7).

2.4.2 Performance

Independent operands. This is the simplest case. The algorithm involves numerical convolution. Since the
convolution process requires applying the requested arithmetic operation to the Cartesian product of the
intervals in the discretization of distribution X and the intervals in the discretization of distribution Y to the
get the joint distribution tableau (see Appendix), which is a discretized form of the joint distribution, the
solution times are dominated by the fineness of the discretizations. If both distributions are discretized using
histograms of n bars each, the joint distribution tableau will have n? intervals. In the worst case no intervals
share end points, so each interval contributes one value for which the height of the left envelope is computed
and one for which the height of the right envelope is computed. Each of the up to 2n? height computations
causes each of the n? joint distribution tableau entries to be examined to see if its mass contributes to the
height, so the time complexity is O(n?).

Empirical results for a PC running Windows with a 750 MHz Pentium III CPU for n = 64, Statool’s
current maximun n, using input distributions that were uniform over [1,10], showed that * and / took about 1



sec., and the other supported basic operations (+, —, min, maz, >, <, >, and <) about % sec. For expressions
composed of more than one operation, the empirical running time was 11 sec. plus 1 sec. for each operation
(evaluating X xY took 12 sec., X *Y + X *Y took 14 sec.,..., X * Y + X« Y +X*xY +X*xY + XY
took 20 sec., and summing 10 of those terms took 29.5 sec.)

Operands of unknown dependency. This condition requires that the probability mass associated with cells in
the joint distribution tableau be moved around among cells consistently with the marginal cells in such a way
as to minimize or maximize the summed probabilities of specific subsets of the cells to obtain corresponding
points on the right or left envelopes (see Appendix). A subset is defined by the value of the derived random
variable whose envelope heights are desired, by whether the linear programming is to minimize (for a point
on the right envelope) or maximize (for a point on the left envelope), and by the arithmetic operation.
Thus each point computed for each envelope requires all of the processing of the independent case, plus
the solution to a linear programming problem with approximately n? variables. For the case of unknown
dependency the structure of the linear programming problems is simpler than in the general case and allows
the transportation simplex algorithm to be used, which is faster than the simplex algorithm.

Using the same inputs as used for measuring run times for the independent case, the unknown dependency
case exhibited an empirical time complexity of O(n®), where n is the number of intervals in the discretization
of each distribution or, if the discretizations contain different numbers of intervals n,; and ns, n is the
geometric mean \/ni -nz. On a PC running Windows with a 750 MHz Pentium III CPU, solution times
for sums of two operands are about 2 seconds for n near 16, in the 1-2 minute range for n near 32, and 1-2
hours for n near 64. Statool currently has an upper limit on n of 64 for distributions to be used as operands.
This may be increased if applications are found that require it. Times are longer than predicted for small n
of about 16 or less. This is typical because algorithms often have complexities with lower order terms that
are significant for smaller problems but are not accounted for in the big-O complexity expression, which is
intended to capture complexity for large problems.

Correlated operands. When information about the correlation between input distributions is available, ad-
ditional constraints are implied that the linear programming (LP) calls can use [6]. These new constraints
result in LP problems that do not have the form required by the relatively efficient transportation simplex
algorithm, so they must be solved by another linear programming algorithm. In this case Statool uses
the simplex algorithm, a classical general purpose LP algorithm which, though not as fast as Karmarkar’s
method in principle, is simpler.

An empirical investigation of the computational complexity of the simplex algorithm calls that Statool
makes when correlation constraints are present was undertaken. The solution times for the different LP
problems occurring during computation of different points on an envelope can vary greatly, so the mean
solution time over all the LP problems solved during the computation of a pair of envelopes was determined.

These mean solution times were recorded three times for each of the +, —, %, /, max, and min operations.
Of these three, one was for correlation=0, one was for correlation=0.98, and one was for correlation=—0.98.
Six operations and three correlation conditions yield 18 mean LP solution times, for which the geometric
mean was computed. This geometric mean figure was calculated for different values of n. Results were
consistent with a time complexity of approximately O(n%) for the LP calls. Since the number of LP calls
increases with problem size at up to O(n?), when correlation is used Statool has an overall time complexity
of up to O(n%n?) = O(n®). Typical overall envelope computation times on a PC running Windows with a
1000 MHz Pentium IIT CPU are on the order of days for multiplication when n = 64, hours for addition when
n = 64, minutes for multiplication when n = 32, about a minute for addition when n = 32, and seconds for
n = 16. Solution time often varies significantly for different correlation values in problems that are otherwise
the same. Both the big-O complexity and empirical solution times could be significantly improved for larger
problems if some of the up to n? points on each envelope that need to be computed for best possible results
are in fact not computed, implying a tradeoff between speed and envelope quality.

3 Conclusion

A downloadable tool for arithmetic on random variables, Statool, has been described, and several applications
mentioned. Future advances in the theory and implementation will be driven by the needs of application
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problems. Such needs may include extending Statool to non-monotonic functions, using forms of partial
information about dependency other than Pearson correlation, extending the data structures to handle
discretizations of more than 64 intervals, and improving execution time for larger problems.
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Appendix: the DEnv Algorithm

The DEnv (Distribution Envelope Determination) algorithm was discussed formally elsewhere [4]. It is
reviewed here, for convenience informally but emphasizing the key intuitions.

DEnv finds envelopes between which the CDF of a derived distribution must be. By derived distribution
is meant the distribution of a random variable whose sample values are a function of sample values of other
random variables, termed inputs. Since different dependency relationships between inputs usually imply
different, derived distributions, if the dependency relationship is not fully specified then the derived CDF is
typically not fully specified. In such cases, DEnv computes envelopes around the derived CDF. DEnv may
be described in three major steps.

Step 1: construct a joint distribution tableauw and identify the constraints. Each input is discretized by
representing its PDF (probability density function) with intervals, each assigned an associated probability
mass. These discretized inputs form the marginals of a joint distribution tableau (Figure 8, top).

Although the interior cell probability masses are not determined, they are constrained by marginal con-
straints: the probabilities of the interior cells in each row or column must sum to the probability of the row
or column’s marginal cell (Figure 8, bottom).

Step 2: find bounds on the cumulative probability of the derived distribution at some value. Each interior cell
of a joint distribution tableau states a range over which its associated probability mass is distributed. Call
the distribution of the mass of a single interior cell its mini-distribution.

The tableau does not specify the shape of a mini-distribution, only that it has a specific mass distributed
somehow over a specific interval. We cannot assume more than that if we wish to obtain a solution that
makes no assumptions about the dependency relationship of the marginals and no assumptions about the
marginals themselves beyond what is stated by their descriptions in the tableau. Therefore even the most
extreme mini-distributions must be considered, in particular a spike at the low or high bound of an interior
cell interval. The cumulative probability of the derived distribution will rise fastest (giving its left envelope)
when all mini-distributions are spikes at the low bounds of their intervals, and will rise slowest (giving its
right envelope) when all mini-distributions are spikes at the high bounds of their intervals.

Once the subset of the interior cells contributing to the maximum or minimum cumulation at a given
value of the composite random variable’s distribution is identified (see Figure 9), the subset’s collective
probability mass must be maximized or minimized consistently with the marginal constraints. This may
be done with linear programming, or even by careful inspection for checking purposes. Figure 9 gives an
example based on Figure 8.

Step 8: construct the envelopes from results of calls to Step 2. Performing Step 2 for a given horizontal-
axis value of the derived distribution gives maximum and minimum values of the cumulation at that value,
which then become points on the left and right envelopes respectively. The envelopes may be constructed by
multiple executions of Step 2, each for a different value of the derived distribution. The set of values chosen
may be the low bounds of interior cell intervals to get the left envelope and the high bounds to get the right
envelope, as Statool does, if the narrowest possible envelopes are desired (Figure 10). Each envelope may
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Figure 8: A joint distribution tableau (top) and the constraints it implies (bottom). Two PDFs used as
inputs and forming the marginals f and g are each discretized into 4 intervals with associated probability
masses (bolded). If the dependency relationship between f and g is insufficiently specified, the joint distri-
bution is not known, so the derived distribution h = f * g described by the interior cells (not bolded) has
underdetermined probabilities p;;.

[1,3] (3,4] (4,5] (5,7] —~f g
p=20.2 p=20.3 p=20.3 p=20.2 4
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(8,27] (24,36] (32,45] (405,63] (8,9]
pa =0 pa2 =0 pi3=0 | pu=01] p=0.1

Figure 9: A joint distribution tableau and the interior cells (larger bolded font) whose intervals imply
that their probabilities contribute to the maximum possible cumulation of derived distribution h = f x g
at a value of 11, that is, to the maximum possible value of p(h < 11) where h is a sample of h. An interior
cell is bolded if its interval low bound is < 11, because if the mini-distributions of those cells were spikes at
their interval low bounds, then their probabilities would contribute to the cumulation at 11. To compute the
maximum cumulation at 11, the probabilities associated with the shaded cells must be maximized consistently
with the marginal (row and column) constraints listed in Figure 8. The interior cell probabilities shown here
are a solution to this maximization problem, and since their summed mass is 0.6, that is the maximum
cumulation at 11. The minimum cumulation is 0, since if all mini-distributions were spikes at their interval
high bounds, then none of the interior cells would contribute to the cumulation at 11 since every interior cell
interval has a high bound above 11.
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Figure 10: Envelopes around the derived distribution h described in the interior cells of the joint distribution
tableau of Figure 8, under the condition of no assumption about the dependency relationship between the
marginals f and g.

be safely interpolated between two computed points by two line segments at right angles, with the angle
pointing northwest for the left envelope and southeast for the right envelope. Simply drawing a straight line
between two computed points will result in smoother curves that may work well for many, most, or perhaps
nearly all potential applications but do not enclose the space of all cumulations mathematically consistent
with the joint distribution tableau. Finer discretizations will typically provide envelopes that are closer to
those resulting from drawing a straight line. Figure 10 shows the envelopes for the example.
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