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Abstract

In many real-life situations, we only have partial information about
probabilities. This information is usually described by bounds on mo-
ments, on probabilities of certain events, etc. – i.e., by characteristics
c(p) which are linear in terms of the unknown probabilities pj . If we know
interval bounds on some such characteristics ai ≤ ci(p) ≤ ai, and we are
interested in a characteristic c(p), then we can find the bounds on c(p) by
solving a linear programming problem.

In some situations, we also have additional conditions on the proba-
bility distribution – e.g., we may know that the two variables x1 and x2

are independent, or that the joint distribution of x1 and x2 is unimodal.
We show that adding each of these conditions makes the corresponding
interval probability problem NP-hard.

1 Introduction

Interval probability problems can be often reduced to linear program-
ming (LP). In many real-life situations, in addition to the intervals [xi, xi]
of possible values of the unknowns x1, . . . , xn, we also have partial information
about the probabilities of different values within these intervals.
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This information is usually given in terms of bounds on the standard char-
acteristics c(p) of the corresponding probability distribution p, such as the k-th
moment Mk

def=
∫

xk · ρ(x) dx (where ρ(x) is the probability density), the values

of the cumulative distribution function (cdf) F (t) def= Prob(x ≤ t) =
∫ t

−∞ ρ(x) dx
of some of the variables, etc. Most of these characteristics are linear in terms of
ρ(x) – and many other characteristics like central moments are combinations of
linear characteristics: e.g., variance V can be expressed as V = M2 −M2

1 .
A typical practical problem is when we know the ranges of some of these

characteristics ai ≤ ci(p) ≤ ai, and we want to find the range of possible values
of some other characteristic c(p). For example, we know the bounds on the
marginal cdfs for the variables x1 and x2, and we want to find the range of
values of the cdf for x1 + x2.

In such problems, the range of possible values of c(p) is an interval [a, a].
To find a (correspondingly, a), we must minimize (correspondingly, maximize)
the linear objective function c(p) under linear constraints — i.e., solve a linear
programming (LP) problem; see, e.g., [17, 18, 19, 26].

Other simple examples of linear conditions include bounds on the values of
the density function ρ(x); see, e.g., [16].

Interval probability problems also naturally arise in the analysis of not fully
identified probabilistic models – e.g., when we need to estimate population-
related parameters (such as variance or covariance) and some data points are
missing. These models often results in problems that are, essentially, interval
computation problems. Economists recently became interested in the analysis
of such models. For an overview of these models and their economic applications
see, e.g., [11, 20] and references therein.

Similar problems also naturally appear in robust (= multi-prior) Bayesian
analysis. If a set of priors is convex, this approach essentially boils down to
interval probabilities as well.

In both economic and Bayesian applications, some of the resulting problems
are non-linear, but many problems are linear and can be thus solved by LP
techniques.

Comment. In some practically important cases, the traditional formulation of
the problem is not explicitly related to LP, but it is possible to reformulate
these problems in LP terms. For example, when we select a new strategy for a
company (e.g., for an electric company), one of the reasonable criteria is that
the expected monetary gain should be not smaller than the expected gain for a
previously known strategy. In many case, for each strategy, we can estimate the
probability of different production values – e.g., the probability F (t) = Prob(x ≤
t) that we will produce the amount ≤ t. However, the utility u(t) corresponding
to producing t depends on the future prices and is not well known; therefore, we
cannot predict the exact value of the expected utility

∫
u(x) · ρ(x) dx. One way

to handle this situation is require that for every monotonic utility function u(t),
the expected utility under the new strategy – with probability density function
(pdf) ρ(x) and cdf F (x) – is larger than or equal to the expected utility under the
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old strategy – with pdf ρ0(x) and cdf F0(x):
∫

u(x) ·ρ(x) dx ≥ ∫
u(x) ·ρ0(x) dx.

This condition is called first order stochastic dominance. It is known that this
condition is equivalent to the condition that F (x) ≤ F0(x) for all x.

Indeed, the condition is equivalent to
∫ t

0

u(x) · (ρ(x)− ρ0(x)) dx ≥ 0.

Integrating by part, we conclude that

−
∫ t

0

u′(x) · (F (x)− F0(x)) dx ≥ 0;

since u(x) is non-decreasing, the derivative u′(x) can be an arbitrary non-
negative function; so, the above condition is indeed equivalent to F (x) ≤ F0(x)
for all x.

Each of these inequalities is linear in terms of ρ(x) – so, optimizing a linear
objective function under the constraints F (x) ≥ F0(x) is also a LP problem.

This requirement may be too restrictive; in practice, preferences have the
property of risk aversion: it is better to gain a value x with probability 1
than to have either 0 or 2x with probability 1/2. In mathematical terms, this
condition means that the corresponding utility function u(x) is concave. It is
therefore reasonable to require that for all such risk aversion utility functions
u(x), the expected utility under the new strategy is larger than or equal to the
expected utility under the old strategy. This condition is called second order
stochastic dominance (see, e.g., [7, 8, 22, 23]), and it known to be equivalent to
the condition that

∫ t

0
F (x) dx ≤ ∫ t

0
F0(x) dx.

Indeed, the condition is equivalent to
∫ t

0

u(x) · (ρ(x)− ρ0(x)) dx ≥ 0

for every concave function u(x). Integrating by part twice, we conclude that

∫ t

0

u′′(x) ·
(∫ x

0

F (z) dz −
∫ x

0

F0(z) dz

)
dx ≥ 0.

Since u(x) is concave, the second derivative u′′(x) can be an arbitrary non-
positive function; so, the above condition is indeed equivalent to

∫ t

0
F (x) dx ≤∫ t

0
F0(x) dx for all t.
The cdf F (x) is a linear combination of the values ρ(x); thus, its integral∫

F (x) dx is also linear in ρ(x), and hence the above condition is still linear in
terms of the values ρ(x). Thus, we again have a LP problem; for details, see [2].

Most of the corresponding LP problems can be efficiently solved.
Theoretically, some of these LP problems have infinitely many variables ρ(x),
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but in practice, we can discretize each coordinate and thus, get a LP problem
with finitely many variables.

There are known efficient algorithms and software for solving LP problems
with finitely many variables. These algorithms require polynomial time (≤ nk)
to solve problems with ≤ n unknowns and ≤ n constraints; these algorithms are
actively used in imprecise probabilities; see, e.g., [1, 4, 5, 6].

For example, for the case of two variables x1 and x2, we may know the
probabilities pi = p(x1 ∈ [i, i + 1]) and qj = p(x2 ∈ [j, j + 1]) for finitely many
intervals [i, i + 1]. Then, to find the range of possible values of, e.g.,

Prob(x1 + x2 ≤ k),

we can consider the following linear programming problem: the unknowns are

pi,j
def= p(x1 ∈ [i, i + 1] & x2 ∈ [j, j + 1]),

the constraints are pi,j ≥ 0, pi,1 + pi,2 + . . . = pi, p1,j + p2,j + . . . = qj , and the
objective function is

∑
i,j:i+j≤k

pi,j .

Comment. The only LP problems for which there may not be an efficient
solution are problems involving a large amount of variables v. If we discretize
each variable into n intervals, then overall, we need nv unknowns pi1,i2,...,iv

(1 ≤ i1 ≤ n, 1 ≤ i2 ≤ n, . . . , 1 ≤ iv ≤ n) to describe all possible probability
distributions. When v grows, the number of unknowns grows exponentially with
v and thus, for large v, becomes unrealistically large.

It is known (see, e.g., [13]) that this exponential increase in complexity is
inherent to the problem: e.g., for v random variables x1, . . . , xv with known
marginal distributions, the problem of finding the exact bounds on the cdf for
the sum x1 + . . . + xv is NP-hard.

Beyond LP. There are important practical problems which lie outside LP.
One example is problems involving independence, when constraints are linear in
p(x, y) = p(x) · p(y) and thus, bilinear in p(x) and p(y). In this paper, we show
that the corresponding range estimation problem is NP-hard.

Another example of a condition which cannot be directly described in terms
of LP is the condition of unimodality. This notion is very practically useful,
because in many practical situations, we do not know the exact probability
distribution, but we do know that this (unknown) distribution is unimodal. For
example, in statistical analysis, a unimodal distribution means that we have the
data corresponding to a single cluster, while a multi-modal distribution would
mean that we have a mixture of data corresponding to different clusters – a
mixture that needs to be separated before we start statistical analysis of this
cluster (see, e.g., [15]); other applications of uni- and multi-modality – and
corresponding interval-related problems and algorithms – are presented, e.g.,
in [24, 25]. Often, when we take unimodality into account, we can drastically
improve the resulting estimates; see, e.g., [9, 21].
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For a one-variable distribution with probabilities p1, . . . , pn, unimodality
means that there exists a value m (“mode”) such that pi increase (non-strictly
= weakly) until m and then decreases after m:

p1 ≤ p2 ≤ . . . ≤ pm−1 ≤ pm ≥ pm+1 ≥ . . . ≥ pn−1 ≥ pn.

When the location of the mode is known, we get several linear inequalities, so
we can still use efficient techniques such as LP; see, e.g., [9, 27].

For a 1-D case, if we do not know the location of the mode, we can try
all n possible locations and solve n corresponding LP problems. Since each
LP problem requires a polynomial time to run, running n such problems still
requires a polynomial time.

In this paper, we show that if we assume unimodality in the 2-D case, then
the range estimation problem also becomes NP-hard – and therefore, that, unless
P=NP, no algorithm can solve all the instances of this problem in polynomial
time.

Comments.

• This paper builds on our previous work: our motivations are very similar
to the ones described in our conference paper [2], and two of the results
– Theorem 3 and Theorem 6 – first appeared in our conference paper [3].
All other results are new.

• Other possible restrictions on probability may involve bounds on the en-
tropy of the corresponding probability distributions; such problems are
also, in general, NP-hard [12].

2 Adding Unimodality Makes Interval Probabil-
ity Problems NP-Hard

Before we formulate our first result, let us recall the definition of a unimodal
distribution.

For a continuous distribution (1-D or 2-D) with density ρ(x), a mode is
usually defined as a value m at which the probability density function ρ(x)
attains a (non-zero) local maximum, i.e., at which ρ(m) ≥ ρ(y) for all y from
some neighborhood of the point m. A distribution with a unique mode is called
unimodal, a distribution with exactly two modes is called bimodal, etc.

For most distributions, this definition captures an intuitive meaning of uni-
modality. For example, in the 1-D case, the graph of a function ρ(x) corre-
sponding to a unimodal distribution has exactly one local maximum m, i.e., the
function ρ(x) increases for x ≤ m, and then decreases. The graph of the func-
tion ρ(x) for a bimodal distribution has two local maxima m1 and m2, so the
function ρ(x) grows for x ≤ m1, then it start decreasing, then increases again
until it reaches m2, and then finally decreases to 0. Intuitively, a multi-modal
distribution is a distribution for which the density function ρ(x) oscillates a lot.
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The above definition, however, may be somewhat counter-intuitive if we
try to apply it to, e.g., a uniform distribution on an interval [0, 1]. In this
distribution, ρ(x) = 1 for all x ∈ [0, 1], and ρ(x) = 0 for all other x. From
the purely mathematical viewpoint, all the values x ∈ [0, 1] are local maxima,
and thus, the uniform distribution is classified as multi-modal. However, in this
example, the density function ρ(x) stays constant and does not oscillate at all.
It is therefore reasonable to consider a modified definition of unimodality, in
which a local maximum is defined as either a connected set S of points (which
may be a 1-point set) such that:

• ρ(x) is constant on this set S, and

• ρ(y) is smaller than this constant for all values y from some neighborhood
of the set S.

Under this new definition, the uniform distribution is unimodal, with the
only local maximum set S = [0, 1]. To distinguish between these two definitions,
we will call unimodality according to the traditional definition strict unimodality,
and the new definition simply unimodality.

Both definitions can be naturally extended to a discrete case. In the 1-D
case, each value i has two natural neighbors: i−1 and i+1; we can also consider
the point i to be its own neighbor. In the 2-D case, points (i, j) and (i′, j′) are
neighbors if i is a neighbor of i′ and j is a neighbor of j′.

We will show that under discrete analogues of both definitions, the problem
becomes NP-hard.

Definition 1 Let n1 > 0 and n2 > 0 be given integers. By a probability
distribution, we mean a collection of real numbers pi,j ≥ 0, 1 ≤ i ≤ n1, and

1 ≤ j ≤ n2, such that
n1∑
i=1

n2∑
j=1

pi,j = 1.

Definition 2

• We say that two integers i and i′ are neighbors if |i− i′| ≤ 1.

• We say that two points (i, j) and (i′, j′) are neighbors if i and i′ are
neighbors, and j and j′ are neighbors.

Definition 3 Let pi,j be a probability distribution.

• We say that a point (i, j) is a mode (or a local maximum) if pi,j > 0 and
for every neighbor (i′, j′) of this point, pi,j ≥ pi′,j′ .

• We say that a distribution pi,j is strictly unimodal if it has exactly one
mode.

Definition 4 Let pi,j be a probability distribution.

• A set of integer points S is called connected if we can connect every two
points x = (i, j) and x′ = (i′, j′) from this set can be connected by a
sequence of points in which every two sequential points are neighbors.
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• A connected set S is called a mode set (or a local maximum set) if all
the points (i, j) ∈ S have the same value of pi,j, and every point (i′, j′)
outside S which is a neighbor to one of the points from S has a smaller
value of p: pi′,j′ < pi,j.

• We say that a distribution pi,j is unimodal if it has exactly one mode set.

Definition 5 By a linear constraint on the probability distribution, we mean

the constraint of the type b ≤
n1∑
i=1

n2∑
j=1

bi,j ·pi,j ≤ b for some given values b, b, and

bi,j.

Definition 6

• By an interval probability problem under strict unimodality constraint,
we mean the following problem: given a find list of linear constraints,
check whether there exists a strictly unimodal distribution which satisfies
all these constraints.

• By an interval probability problem under unimodality constraint, we mean
the following problem: given a find list of linear constraints, check whether
there exists a unimodal distribution which satisfies all these constraints.

Theorem 1 Interval probability problem under unimodality constraint is NP-
hard.

Theorem 2 Interval probability problem under strict unimodality constraint is
NP-hard.

Comment. So, under the unimodality constraints, even checking whether a
system of linear constraints is consistent – i.e., whether the range of a given
characteristic is empty – is computationally difficult (NP-hard).

Proof of Theorem 1. We will show that if we can check, for every system of
linear constraints, whether this system is consistent or not under unimodality,
then we would be able to solve a partition problem which is known to be NP-
hard [10, 14]. The partition problem consists of the following: given n positive
integers s1, . . . , sn, check whether exist n integers εi ∈ {−1, 1} for which ε1 ·
s1 + . . . + εn · sn = 0.

Indeed, for every instance of the partition problem, we form the following
system of constraints: n1 = 2, n2 = n + 2,

• p1,1 = p1,n+2 = 1/(n + 2), p2,1 = p2,n+2 = 0;

• p1,j+1 + p2,j+1 = 1/(n + 2) for every j = 1, . . . , n;

•
n∑

j=1

(−sj · p1,j+1 + sj · p2,j+1) = 0.

Let us prove that this system is consistent if and only if the original instance of
the partition problem has a solution.
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“If” part. If the original instance has a solution εi ∈ {−1, 1}, then, for every
j from 1 to n, we can take:

• if εj = −1, then we take p1,j+1 = 1/(n + 2) and p2,j+1 = 0;

• if εj = 1, then we take p1,j+1 = 0 and p2,j+1 = 1/(n + 2).

We also take p1,1 = p1,n+2 = 1/(n + 2) and p2,1 = p2,n+2 = 0.
The resulting distribution is unimodal. Indeed, every probability pi,j in this

distribution is either 0, or 1/(n + 2). The set S of all the points at which
pi,j = 1/(n + 2) is connected, so this set is the mode set – and clearly the only
mode set.

Let us check that this distribution satisfies all the desired constraints. We
explicitly selected p1,1 = p1,n+2 = 1/(n + 2) and p2,1 = p2,n+2 = 0, so the first
constraint is satisfied. It is easy to check that for every j, we have p1,j+1 +
p2,j+1 = 1/(n + 2). Finally, due to our choice of pi,j , we conclude that −sj ·
p1,j+1 + sj · p2,j+1 =

1
n + 2

· εj · sj and thus,

n∑

j=1

(−sj · p1,j+1 + sj · p2,j+1) =
1

n + 2
·

n∑

j=1

εj · sj = 0.

“Only if” part. Vice versa, let us assume that we have a unimodal distribu-
tion pi,j for which all the desired constraints are satisfied.

For j = 1 and j = n + 2, we have p1,j = 1/(n + 2) and p2,j = 0. For
all other j, we have p1,j + p2,j = 1/(n + 2) and thus, p1,j ≤ 1/(n + 2) and
p2,j ≤ 1/(n + 2); so, all the probabilities pi,j are smaller than or equal to
1/(n + 2), and max

i,j
pi,j = 1/(n + 2) = p1,1 = p1,n+2. Since the value p1,1 is a

global maximum, the point (1, 1) has to be a part of a local maximum (mode)
set. Similarly, the point (1, n + 2) has to be a part of a mode set. Since the
distribution is unimodal, there exists only one mode set, so this set S must
contain both (1, 1) and (1, n + 2). By definition of a mode set, S is connected,
and we must have the same probability pi,j = 1/(n + 2) for all the points
(i, j) ∈ S.

Since the set S is connected, the elements (1, 1) ∈ S and (1, n+2) ∈ S must
be connectable by a sequence of points in which every two sequential points
are neighbors. When the points are neighbors, their coordinates cannot differ
by more than 1. Thus, the second coordinates of the connecting points from S
must take all the integers from 1 to n + 2, without any gaps. Hence, for every
j from 1 to n, the set S must contain one of the two points (m(j), j + 1), for
some m(j) ∈ {1, 2}. Here:

• If m(j) = 1, i.e., if (1, j + 1) ∈ S, then p1,j+1 = 1/(n + 2) and therefore,
since p1,j+1 + p2,j+1 = 1/(n + 2), we conclude that p2,j+1 = 0.

• If m(j) = 2, i.e., if (2, j + 1) ∈ S, then p2,j+1 = 1/(n + 2) and therefore,
since p1,j+1 + p2,j+1 = 1/(n + 2), we conclude that p1,j+1 = 0.
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If we denote εj
def= 2m(j) − 3, then we conclude that εj ∈ {−1, 1}. For each j,

we have
−sj · p1,j+1 + sj · p2,j+1 = εj · sj · 1

n + 2
,

hence from the constraint
n∑

j=1

(−sj · p1,j+1 + sj · p2,j+1) =
1

n + 2
·

n∑

j=1

εj · sj = 0,

we conclude that
∑

εj · sj = 0, i.e., that the original instance of the partition
problem has a solution.

The theorem is proven.

Comment. The above constraints are not just mathematical tricks, they have
a natural interpretation if for x1, we take the values −1 and 1 as corresponding
to i = 1, 2,, and for x2, we take the values 0, s1, . . . , sn, S, where S > max si.
Then:

• the constraint p1,j+1 + p2,j+1 = 1/(n + 2) means that Prob(x2 = si) =
1/(n + 2) for all n values si, and

• the constraint
n∑

j=1

(−sj ·p1,j+1 +sj ·p2,j+1) = 0 means that the conditional

expected value of the product is 0: E[x1 · x2 | 0 < x2 < S] = 0.

So, the difficult-to-solve problem is to check whether it is possible that

E[x1 · x2 | 0 < x2 < S] = 0

for some unimodal distribution for which the marginal distribution on x2 is
“uniform”, and for which on the edges, i.e., for x2 = 0 and x2 = S, we have
x1 = −1.

Proof of Theorem 2. We will prove this theorem by using the same reduction
to the partition problem that we used in the previous proof.

Let us select a small real number α > 0, and for every instance s1, . . . , sn

of the partition problem, form the following system of constraints: n1 = 2,
n2 = n + 2,

• p1,1 =
1

n + 2
·
(

1 + α ·
(

1− n + 3
2

))
; p2,1 = 0;

• p1,n+2 =
1

n + 2
·
(

1 + α ·
(

(n + 2)− n + 3
2

))
; p2,n+2 = 0;

• p1,j+1 + p2,j+1 =
1

n + 2
·
(

1 + α ·
(

(j + 1)− n + 3
2

))
for every j =

1, . . . , n;
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• −α · n

2
≤

n∑

j=1

(−sj · p1,j+1 + sj · p2,j+1) ≤ α · n

2
.

Let us prove that for sufficient small α this system is consistent if and only if
the original instance of the partition problem has a solution.

The condition that α is sufficiently small includes the requirement that α <
p1,1 which is clearly satisfied for all sufficiently small values α.

“If” part. If the original instance has a solution εi ∈ {−1, 1}, then, for every
j from 1 to n, we can take:

• if εj = −1, then we take p1,j+1 =
1

n + 2
·
(

1 + α ·
(

(j + 1)− n + 3
2

))

and p2,j+1 = 0;

• if εj = 1, then we take p2,j+1 =
1

n + 2
·
(

1 + α ·
(

(j + 1)− n + 3
2

))
and

p1,j+1 = 0.

We also take p1,1 =
1

n + 2
·
(

1 + α ·
(

1− n + 3
2

))
,

p1,n+2 =
1

n + 2
·
(

1 + α ·
(

(n + 2)− n + 3
2

))
,

and p2,1 = p2,n+2 = 0.
The resulting distribution is strictly unimodal. Indeed, every non-zero prob-

ability pi,j in this distribution is strictly smaller than the non-zero probability
corresponding to j+1, and the only local maximum (mode) is the point (1, n+2).

Let us check that this distribution satisfies all the desired constraints. We
explicitly selected the desired values for p1,1, p1,n+2, and p2,1 = 0, and p2,n+2 =
0, so the first constraint is satisfied. It is easy to check that for every j, we have
the desired value for p1,j+1 + p2,j+1.

As in the proof of the previous result, we conclude that the α-free part of

the sum −sj · p1,j+1 + sj · p2,j+1 =
1

n + 2
· εj · sj is 0. The α-dependent part

can be bounded by α · 1
n + 2

·
n∑

j=1

∣∣∣∣j −
n + 3

2

∣∣∣∣. Each term in the sum is bounded

by
n + 2

2
, hence the sum is bounded by

n · (n + 2)
2

, and the entire expression is

bounded by α · n

2
, as desired.

“Only if” part. Vice versa, let us assume that we have a strictly unimodal
distribution pi,j for which all the desired constraints are satisfied.

Due to our selection of constraints, the sum p1,j + p2,j increases with j; for
j = 1 and j = n + 2, this whole sum corresponds to just one value p1,j . Thus,
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for every j < n + 2 and for every i, we have

pi,j ≤ p1,j + p2,j < p1,n+2 + p2,n+2 = p1,n+2.

So, the point (1, n + 2) is the global maximum of the probability distribution
pi,j . Since the distribution pi,j is strictly unimodal, the function pi,j only has
one local maximum – the same as its global maximum (1, n + 2).

Let us use this conclusion to prove that there exist values m(1), . . . ,m(n)
for which

p1,1 < pm(1),2 < . . . < pm(j),j+1 < . . . < pm(n),n+1 < p1,n+2,

pm(j),j+1 > p3−m(j),j+1 and p3−m(j),j+1 < α for all j = 1, . . . , n.
We will prove the existence of the desired sequence m(j) by induction:

namely, we prove that for every j from 1 to n, there exists a sequence such
that

p1,1 < pm(1),2 < . . . < pm(j),j+1,

and for which pm(j),j+1 > p3−m(j),j+1 and p3−m(j),j+1 < α.

Induction base j = 1. Since p1,1 is not a local maximum, and p1,1 > p2,1 = 0,
we must therefore have a larger value of pi,j at one of the other two neighboring
points. So, either for m(1) = 1, or for m(1) = 2, we must have p1,1 < pm(1),2.

Since pm(1),2 > p1,1 =
1

n + 2
·
(

1 + α ·
(

1− n + 3
2

))
and

pm(1),2 + p3−m(1),2 =
1

n + 2
·
(

1 + α ·
(

2− n + 3
2

))
,

we conclude that

p3−m(1),2 = (pm(1),2 + p3−m(1),2)− pm(1),2 <

(pm(1),2 + p3−m(1),2)− p1,1 =
1

n + 2
· α.

This value is < α. Since we selected α for which α < p1,1, the value p3−m(1),2

is smaller than p1,1 and hence, smaller that pm(1),2.

Induction step. Let us assume that we have already proven the existence of
the sequence m(1), . . . , m(j − 1), and let us prove the existence of the term
m(j). From the induction assumption, we conclude that pm(j−1),j > p3−m(j−1),j

and that pm(j−1),j > pm(j−2),j−1. Since pm(j−2),j−1 > p3−m(j−2),j−1, we thus
conclude that pm(j−1),j > p3−m(j−2),j−1. Thus, the value pm(j−1),j is larger
than the values at 3 neighboring points. Since this value cannot be a local
maximum, this means that there must exist a neighboring point with a larger
value, i.e., there must exist m(j) ∈ {1, 2} for which pm(j−1),j < pm(j),j+1.

11



To complete the induction proof, we must show that p3−m(j),j+1 < α and
pm(j),j+1 > p3−m(j),j+1. Indeed, since

pm(j),j+1 > p1,1 =
1

n + 2
·
(

1 + α ·
(

1− n + 3
2

))

and

pm(j),j+1 + p3−m(j),j+1 =
1

n + 2
·
(

1 + α ·
(

(j + 1)− n + 3
2

))
,

we conclude that

p3−m(j),j+1 = (pm(j),j+1 + p3−m(j),j+1)− pm(j),j+1 <

(pm(j),j+1 + p3−m(j),j+1)− p1,1 =
j

n + 2
· α.

For j ≤ n, the value
j

n + 2
·α is smaller than α. Since p3−m(j),j+1 < α, α < p1,1,

and p1,1 < pm(j),j+1, we thus conclude that p3−m(j),j+1 < pm(j),j+1.
For each j from 1 to n, we have 0 ≤ p3−m(j),j+1 < α and p1,1 < pm(j),j+1 <

p1,n+2. By our selection of p1,1 and p1,n+2, we conclude that p1,n+2 − p1,1 =
n + 1
n + 2

· α < α, hence p1,n+2 < p1,1 + α, and so p1,1 < pm(j),j+1 < p1,1 + α.

Let us εj
def= 2m(j) − 3, then εj ∈ {−1, 1}. If m(j) = 2, then εj = 1,

and from p1,1 < p2,j+1 < p1,1 + α and 0 ≤ p3−m(j),j+1 < α, we conclude that
p1,1 − α < −p1,j+1 + p2,j+1 < p1,1 + α, hence

sj · p1,1 − α · sj < −sj · p1,j+1 + sj · p2,j+1 < sj · p1,1 + α · sj .

Similarly, if m(j) = 1 and εj = −1, we conclude that

−sj · p1,1 − α · sj < −sj · p1,j+1 + sj · p2,j+1 < −sj · p1,1 + α · sj .

In general,

εj · sj · p1,1 − α · sj < −sj · p1,j+1 + sj · p2,j+1 < εj · sj · p1,1 + α · sj .

Thus,

n∑

j=1

εj ·sj ·p1,1−α·
n∑

j=1

sj <

n∑

j=1

(−sj ·p1,j+1+sj ·p2,j+1) <

n∑

j=1

εj ·sj ·p1,1+α·
n∑

j=1

sj .

Since the constraints are satisfied, we have

−α · n

2
≤

n∑

j=1

(−sj · p1,j+1 + sj · p2,j+1) ≤ α · n

2

12



and therefore,
n∑

j=1

εj · sj · p1,1 − α ·
n∑

j=1

sj < α · n

2

and
n∑

j=1

εj · sj · p1,1 + α ·
n∑

j=1

sj > −α · n

2
.

Dividing both sides of these inequalities by p1,1 =
1

n + 2
·
(

1 + α ·
(

1− n + 3
2

))

and combining these two inequalities, we conclude that −β <
n∑

j=1

εj · sj < β,

where

β =

α ·



n∑

j=1

sj +
n

2




1
n + 2

·
(

1 + α ·
(

1− n + 3
2

)) .

When α → 0, we have α/p1,1 → 0 and β → 0. Thus, for sufficiently small α,

we have β < 1. For such α, since the sum
n∑

j=1

εj ·sj is an integer, its only possible

value is 0. So, the original instance of the partition problem has a solution.
The theorem is proven.

3 Adding Conditional Unimodality Makes In-
terval Probability Problems NP-Hard

In some practical situations, we are not sure that the 2-D distribution is uni-
modal, but we know that, for every value of x2, the corresponding 1-D condi-
tional distribution for x1 is unimodal. In this case, to describe this as a LP
problem, we must select a mode for every x2. If there are n values of x2, and at
least 2 possible choices of mode location, then we get an exponential amount of
2n possible choices. In this section, we show that this problem is also NP-hard –
and therefore, that, unless P=NP, no algorithm can solve it in polynomial time.

Definition 7 Let n1 > 0 and n2 > 0 be given integers, and let pi,j be a proba-
bility distribution.

• We say that the distribution pi,j is conditionally unimodal in the 1st vari-
able (or 1-unimodal, for short) if for every j from 1 to n2, there exists a
value m(j) such that pi,j grows with i for i ≤ m(j) and decreases with i
for i ≥ m(j):

p1,j ≤ p2,j ≤ . . . ≤ pm(j),j ≥ pm(j)+1,j ≥ . . . ≥ pn1,j .

13



• We say that the distribution pi,j is conditionally unimodal in the 2nd
variable (or 2-unimodal, for short) if for every i from 1 to n1, there exists
a value m(i) such that pi,j grows with j for j ≤ m(i) and decreases with j
for j ≥ m(i):

pi,1 ≤ pi,2 ≤ . . . ≤ pi,m(i) ≥ pi,m(i)+1 ≥ . . . ≥ pi,n2 .

• We say that the distribution pi,j is conditionally unimodal if it is both
1-unimodal and 2-unimodal.

• By an interval probability problem under 1-unimodality constraint, we
mean the following problem: given a find list of linear constraints, check
whether there exists a 1-unimodal distribution which satisfies all these con-
straints.

• By an interval probability problem under conditional unimodality con-
straint, we mean the following problem: given a find list of linear con-
straints, check whether there exists a conditionally unimodal distribution
which satisfies all these constraints.

Theorem 3 Interval probability problem under 1-unimodality constraint is NP-
hard.

Comments.

• If the coefficients of the linear equalities are rational, then this problem
is in the class NP and is, thus, not only NP-hard but also NP-complete.
(The authors are thankful to the referees for this observation.)

• This result clearly means that the interval probability problem under 2-
unimodality constraint is also NP-complete.

Theorem 4 Interval probability problem under conditional unimodality con-
straint is NP-hard.

Comments. Similarly to Theorem 3, one can easily see that if the coefficients
of the linear equalities are rational, then this problem is in the class NP and is,
thus, not only NP-hard but also NP-complete.

Proof of Theorem 3. We will prove this theorem by using the same reduction
to the partition problem that we used in the previous proofs.

Specifically, for every instance of the partition problem, we form the following
system of constraints: n1 = 3, n2 = n,

• p2,j = 0 for every j = 1, . . . , n2,

• p1,j + p2,j + p3,j = 1/n for every j = 1, . . . , n2;

14



•
n2∑

j=1

(−sj · p1,j + sj · p3,j) = 0.

Let us prove that this system is consistent if and only if the original instance of
the partition problem has a solution.

“If” part. If the original instance has a solution εi ∈ {−1, 1}, then, for every
j from 1 to n2, we can take p2+εj ,j = 1/n and pi,j = 0 for i 6= 2 + εj . In other
words:

• if εj = −1, then we take p1,j = 1/n and p2,j = p3,j = 0;

• if εj = 1, then we take p1,j = p2,j = 0 and p3,j = 1/n.

The resulting distribution is 1-unimodal: indeed, for each j, its mode is the
value 1 + εj . Let us check that it satisfies all the desired constraints. It is easy
to check that for every j, we have p2,j = 0 and p1,j + p2,j + p3,j = 1/n. Finally,

due to our choice of pi,j , we conclude that −sj · p1,j + sj · p3,j =
1
n
· εj · sj and

thus,
n2∑

j=1

(−sj · p1,j + sj · p3,j) =
1
n
·

n2∑

j=1

εj · sj = 0.

“Only if” part. Vice versa, let us assume that we have a 1-unimodal distribu-
tion pi,j for which all the desired constraints are satisfied. Since the distribution
is 1-unimodal, for every j, there exists a mode m(j) ∈ {1, 2, 3} for which the
values pi,j increase for i ≤ m(j) and decrease for i ≥ m(j). This mode cannot be
equal to 2, because otherwise, the value p2,j = 0 will be the largest of the three
values p1,j , p2,j , and p3,j hence all three values will be 0 – which contradicts to
the constraint p1,j + p2,j + p3,j = 1/n. Thus, this mode is either 1 or 3:

• if the mode is 1, then due to monotonicity, we have 0 = p2,j ≥ p3,j hence
p3,j = p2,j = 0;

• if the mode is 3, then due to monotonicity, we have p1,j ≤ p2,j = 0 hence
p1,j = p2,j = 0.

In both case, for each j, only one value of pi,j is different from 0 – the value
pm(j),j . Since the sum of these three values is 1/n, this non-zero value must be

equal to 1/n. If we denote εj
def= m(j)− 2, then we conclude that εj ∈ {−1, 1}.

For each j, we have

−sj · p1,j + sj · p3,j = εj · sj · (1/n),

hence from the constraint
n2∑

j=1

(−sj · p1,j + sj · p3,j) =
1
n
·

n2∑

j=1

εj · sj = 0,
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we conclude that
∑

εj · sj = 0, i.e., that the original instance of the partition
problem has a solution.

The theorem is proven.

Comment. The above constraints are not just mathematical tricks, they have a
natural interpretation if for x1, we take the values −1, 0, and 1 as corresponding
to i = 1, 2, 3, and for x2, we take the values s1, . . . , sn. Then:

• the constraint p2,j = 0 means that Prob(x1 = 0) = 0;

• the constraint p1,j + p2,j + p3,j = 1/n means that Prob(x2 = si) = 1/n
for all n values si, and

• the constraint
n2∑

j=1

(−sj · p1,j + sj · p3,j) = 0 means that the expected value

of the product is 0: E[x1 · x2] = 0.

So, the difficult-to-solve problem is to check whether it is possible that E[x1 ·
x2] = 0 and Prob(x1 = 0) = 0 for some 1-unimodal distribution for which the
marginal distribution on x2 is “uniform”.

Proof of Theorem 4. To prove this result, we will reduce, to this problem,
the same partition problem as in the proof of the previous theorems.

For every instance of the partition problem, we form the following system of
constraints: n1 = 3 · n, n2 = n,

• pi,j = 0 for every i = 1, . . . , n2 and for every i 6= 3 · j and i 6= 3 · j − 2;

•
n1∑
i=1

pi,j = 1/n for every j = 1, . . . , n2;

•
n2∑

j=1

(−sj · p3·j−2,j + sj · p3·j,j) = 0.

Let us prove that this system is consistent if and only if the original instance of
the partition problem has a solution.

“If” part. If the original instance has a solution εi ∈ {−1, 1}, then, for every
j from 1 to n2, we can take p3·j−1+εj ,j = 1/n and pi,j = 0 for i 6= 3 · j − 1 + εj .
In other words:

• if εj = −1, then we take p3·j−2,j = 1/n and p3·j,j = 0;

• if εj = 1, then we take p3·j−2,j = 0 and p3·j,j = 1/n.

The resulting distribution is 1-unimodal: indeed, for each j, its mode is the
value 3 · j − 1 + εj . Similarly, it is 2-unimodal, because for each i, only one
probability pi,j may be different from 0. Similarly to the proof of Theorem 3,
we can check that this distribution satisfies all the desired constraints.
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“Only if” part. Vice versa, let us assume that we have a conditionally uni-
modal distribution pi,j for which all the desired constraints are satisfied. Since
the distribution is conditionally unimodal, it is 1-unimodal, so for every j, there
exists a mode m(j) ∈ {3·j−2, 3·j} for which the values pi,j increase for i ≤ m(j)
and decrease for i ≥ m(j). Similarly to the proof of Theorem 3, we conclude
that for each j, only one value of pi,j is different from 0 – the value pm(j),j , and

this non-zero value is equal to 1/n. If we denote εi
def= m(i) − (3 · i − 1), then

we conclude that εi ∈ {−1, 1}. For each j, we have

−sj · p3·j−2,j + sj · p3·j,j = εj · sj · (1/n),

hence from the constraint
n2∑

j=1

(−sj · p3·j−2,j + sj · p3·j,j) =
1
n
·

n2∑

j=1

εj · sj = 0,

we conclude that
∑

εi · si = 0, i.e., that the original instance of the partition
problem has a solution.

The theorem is proven.

Comment. We can get a natural interpretation of the above constraints if for
s

def= 3 · maxi si, we take the values x2 = s · j corresponding to j = 1, . . . , n2,
and for i:

• we take the value x1 = s · j corresponding to i = 3 · j − 1;

• we take the value x1 = s · j − sj corresponding to i = 3 · j − 2; and

• we take the value x1 = s · j + sj corresponding to i = 3 · j.

In this interpretation, the above constraint
n2∑

j=1

(−sj · p3·j−2,j + sj · p3·j,j) = 0

simply means that E[x1] = E[x2].

4 Adding Quasiconcavity Makes Interval Prob-
ability Problems NP-Hard

Another formalization of the intuitive notion of a unimodal (“single-cluster”)
distribution is that for every α, the level sets {x : ρ(x) ≥ α} should be con-
vex. Such distributions are called quasiconcave. Let us show that under this
formalization, the problem is also NP-hard.

Definition 8 We say that a set S of integer points (i, j) is convex if it contains
all integer points from its convex hull.
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Comment. For example, the set S1 consisting of the points (0,0), (0,1), (1,0),
and (1,1) is convex – because its convex hull is the unit square [0, 1]× [0, 1], and
S contains all 4 integer points from the unit square.

On the other hand, the set S2 consisting of the points (0,0) and (0,2) is
not convex, because its convex hull contains an integer point (0,1) which is not
contained in S2.

Definition 9

• We say that a probability distribution pi,j is quasiconcave if for every value
p0, the set {(i, j) : pi,j ≥ p0} is convex.

• By an interval probability problem under quasiconcavity constraint, we
mean the following problem: given a find list of linear constraints, check
whether there exists a quasiconcave distribution which satisfies all these
constraints.

Theorem 5 Interval probability problem under quasiconcavity constraint is NP-
hard.

Proof of Theorem 5. We will prove this theorem by using the same reduction
to the partition problem that we used in the previous proofs.

Specifically, for every instance s1, . . . , sn of the partition problem, we select

the value α =
2

n · (3n + 4)
and then form the following system of constraints:

n1 = 3, n2 = n,

• for every j from 1 to n: p1,j ≥ j · α, p2,j = j · α, p3,j ≥ j · α, and
p1,j + p3,j = (2j + 0.5) · α, and

•
n2∑

j=1

(−sj · p1,j + sj · p3,j) = 0.

Comment. The value α is selected so as to make
3∑

i=1

n∑
j=1

pi,j = 1: for each j,

we have p1,j + p2,j + p3,j = (3j + 0.5) · α, hence

∑

i,j

pi,j = α ·
n∑

j=1

(3j + 0.5) = α ·
(

3
n · (n + 1)

2
+

n

2

)
= α · n · (3n + 4)

2
.

“If” part. If the original instance has a solution εi ∈ {−1, 1}, then, for every
j from 1 to n, we can take:

• if εj = −1, then we take p1,j = (j + 0.5) · α and p2,j = p3,j = j · α;

• if εj = 1, then we take p1,j = p2,j = j · α and p3,j = (j + 0.5) · α.
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Let us prove that the resulting distribution is quasiconcave. Indeed, possible
values of pi,j are j · α and (j + 0.5) · α.

• for p0 = j · α, the level set S = {(i, j) | pi,j ≥ p0} consists of all the rows
{(1, j), (2, j), (3, j} starting from j-th – which is clearly a convex set;

• for p0 = (j + 0.5) ·α, the level set S = {(i, j) | pi,j ≥ p0} consists of all the
rows starting from (j + 1)-th plus two elements (midpoint i = 2 plus one
of the endpoints) from row j – which is also clearly a convex set.

Let us check that it satisfies all the desired constraints. It is easy to check that for
every j, we have p1,j ≥ j ·α, p2,j = j ·α, p3,j ≥ j ·α, and p1,j +p3,j = (2j+0.5)·α.

Finally, due to our choice of pi,j , we conclude that −sj · p1,j + sj · p3,j =
0.5 · α · εj · sj and thus,

n∑

j=1

(−sj · p1,j + sj · p3,j) = 0.5 · α ·
n∑

j=1

εj · sj = 0.

“Only if” part. Vice versa, let us assume that we have a quasiconcave dis-
tribution pi,j for which all the desired constraints are satisfied. Let us fix j from
1 to n. For p0 = min(p1,j , p3,j), we have p1,j ≥ p0 and p3,j ≥ p0 and therefore,
both points (1, j) and (3, j) belong to the level set S = {(i, j) | pi,j ≥ p0}.

Since the distribution is quasiconcave, the set S is convex, and thus, the set

S must also contain the midpoint (2, j) =
(1, j) + (3, j)

2
. The fact that (2, j) ∈ S

means that p2,j ≥ p0 = min(p1,j , p3,j). One of our constraints is that p2,j = j ·α,
so we can conclude that the smallest of the two values p1,j and p3,j must be
≤ j · α. Since, according to our constraints, both values p1,j and p3,j must be
≥ j · α, we thus conclude that one of these two values must be exactly equal to
j · α. Since their sum must be equal to (2j + 0.5) · α, we deduce that the other
value is equal to (j + 0.5) · α.

Let us define εj as follows:

• εj = −1 if p1,j = (j + 0.5) · α and p3,j = j · α, and

• εj = 1 if p1,j = j · α and p3,j = (j + 0.5) · α.

For each j, we have

−sj · p1,j + sj · p3,j = 0.5 · α · εj · sj ,

hence from the constraint
n∑

j=1

(−sj · p1,j + sj · p3,j) = 0.5 · α ·
n∑

j=1

εj · sj = 0,

we conclude that
∑

εj · sj = 0, i.e., that the original instance of the partition
problem has a solution.

The theorem is proven.
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5 Adding Independence Makes Interval Proba-
bility Problems NP-Hard

In general, in statistics, independence makes problems easier. We will show,
however, that for interval probability problems, the situation is sometimes op-
posite: the addition of independence assumption turns easy-to-solve problems
into NP-hard ones.

Definition 10 Let n1 > 0 and n2 > 0 be given integers.

• By an independent probability distribution, we mean a collection of real

numbers pi ≥ 0, 1 ≤ i ≤ n1, and qj, 1 ≤ j ≤ n2, such that
n1∑
i=1

pi =
n2∑

j=1

qj = 1.

• By a linear constraint on the independent probability distribution, we mean
a constraint of the form

b ≤
n1∑

i=1

ai · pi +
n2∑

j=1

bj · qj +
n1∑

i=1

n2∑

j=1

ci,j · pi · qj ≤ b

for some given values b, b, ai, bj, and ci,j.

• By an interval probability problem under independence constraint, we
mean the following problem: given a find list of linear constraints, check
whether there exists an independent distribution which satisfies all these
constraints.

Comment. Independence means that pi,j = pi ·qj for every i and j. The above
constraints are linear in terms of these probabilities pi,j = pi · qj .

Theorem 6 Interval probability problem under independence constraint is NP-
hard.

Proof. To prove this theorem, we will reduce the problem in question to the
same known NP-hard problem as in the proof of Theorem 1: to the partition
problem.

For every instance of the partition problem, we form the following system of
constraints: n1 = n2 = n,

• pi − qi = 0 for every i from 1 to n;

• Si · pi − pi · qi = 0 for all i from 1 to n,
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where
Si

def=
2 · si
n∑

k=1

sk

.

Let us prove that this system is consistent if and only if the original instance of
the partition problem has a solution.

Indeed, if the original instance has a solution εi ∈ {−1, 1}, then, for every i

from 1 to n, we can take pi = qi =
1 + εi

2
· Si, i.e.:

• if εi = −1, we take pi = qi = 0;

• if εi = 1, we take pi = qi = Si.

Let us show that for this choice,
n∑

i=1

pi =
n∑

j=1

qj = 1. Indeed,

n∑

i=1

pi =
n∑

i=1

1 + εi

2
· Si =

1
2
·

n∑

i=1

Si +
1
2
·

n∑

i=1

εi · Si.

By definition of Si =
2 · si
n∑

k=1

sk

, we have

n∑

i=1

Si = 2 ·

n∑
i=1

si

n∑
k=1

sk

= 2,

and

n∑

i=1

εi · Si = 2 ·

n∑
i=1

εi · si

n∑
k=1

sk

.

Since
n∑

i=1

εi · si = 0, the second sum is 0, hence
n∑

i=1

pi = 1.

In both cases εi = ±1, we have Si · pi − pi · qi = 0, so all the constraints are
indeed satisfied.

Vice versa, if the constraints are satisfied, this means that for every i, we have
pi = qi and Si ·pi−pi · qi = pi · (Si− qi) = pi · (Si−pi) = 0, so pi = 0 or pi = Si.
Thus, the value pi/Si is equal to 0 or 1, hence the value εi

def= 2 ·(pi/Si)−1 takes

values −1 or 1. In terms of εi, we have pi/Si =
1 + εi

2
, hence pi =

1 + εi

2
· Si.

Since
n∑

i=1

pi = 1, we conclude that

n∑

i=1

pi =
1
2
·

n∑

i=1

Si +
1
2
·

n∑

i=1

εi · Si = 1.
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We know that
1
2
·

n∑

i=1

Si = 1, hence
n∑

i=1

εi · Si = 0. We know that this sum is

proportional to
n∑

i=1

εi · si, hence
n∑

i=1

εi · si = 0 – i.e., the original instance of the

partition problem has a solution.
The theorem is proven.

Comment. In our proof, we only used the case in which n1 = n2, i.e., in
which there are exactly as many different values pi as there are different values
of qj . Thus, we have proved, in effect, a stronger result: that even if we restrict
the interval probability problem under independence constraint to such cases,
we still get an NP-hard problem.

Let us clarify this observation. Informally, a problem P is NP-hard if every
instance of any problem Q from the class NP can be effectively reduced to an
instance of this problem P. If a subproblem P ′ of the problem P is NP-hard,
this means that we can reduce every instance of an NP-hard problem to an
instance of this subproblem P ′ – and thus, to an instance of the problem P. So,
if a subproblem P ′ of the original problem P is NP-hard, then the problem P
is NP-hard as well. In this particular case, since the subproblem P ′ formed by
all instances with n1 = n2 is NP-hard, the original problem is NP-hard as well.

Informal Open Question

In the proofs of some of our theorems, we produced a natural interpretation for
the constraints described in the proofs. For other proofs, the only constraints we
could find are purely mathematical. It would be nice to come up with alternative
proofs of these results – proofs based on more natural constraints.

Acknowledgments

This work was supported in part by NASA under cooperative agreement NCC5-
209, NSF grant EAR-0225670, NIH grant 3T34GM008048-20S1, and Army Re-
search Lab grant DATM-05-02-C-0046.

The authors are very thankful to the participants of the 4th Interna-
tional Symposium on Imprecise Probabilities and Their Applications ISIPTA’05
(Carnegie Mellon University, July 20–24, 2005), especially to Mikelis Bickis
(University of Saskatchewan, Canada), Arthur P. Dempster (Harvard Univer-
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